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Abstract: The anaerobic digestion process is an effective means to eliminate the detrimental impacts
of cattle manure discharge into the environment, i.e., biochemical contamination and substantial
methane emissions, the latter leading to global warming. For proper operation of anaerobic digesters,
an efficient mixing provides a relatively homogenous mixture of the feedstock within the tank. This
study aims to investigate the mixing process and the total energy consumption needed for stirring by
using an asymmetrical mixer. A further objective is to analyze the formation of stagnant volume and
the velocity gradient in the digester in order to assure the mixing efficiency of the mixer type. The
computational model is implemented as the finite volume method, and the rheological properties of
the feedstock are considered. The results are validated by comparing the on-site power consumption
of the mixer with the values obtained by the numerical torque. At various mixer speeds, the dead
volume does not exceed 0.5% of the digester tank; however, with the increase of the mixer rotation
speed, the energy consumption of the mixer increases drastically.

Keywords: anaerobic digestion; computational fluid dynamics; dead volume; rheological fluid;
stirred tank

1. Introduction

Due to the release of greenhouse gases to the atmosphere, global warming has been
the main environmental challenge in the past decades. The international panel on climate
change has demonstrated that—over a period of 100 years—the standard global warming
potential of methane emissions amounts to 25 times that of carbon dioxide emissions [1].
However, since methane is the main part of the biogas generated by anaerobic digestion
(AD), the release impacts must hence be alleviated.

AD is a process where organic matter is decomposed synergistically by a microbial
consortium in the absence of oxygen [2]. The inlet feed of AD, known as feedstock, can
be a wide range of organic materials, which tend to consist of waste materials such as
animal manure [3], municipal sludge [4], industrial organic waste [5], and agricultural
residues [6]. As described in [7], livestock activities often produce large amounts of manure,
which affect soil, water, and air quality through contamination, gas emissions, and nutrient
leaching if released directly to the environment [8]. Not only do AD tanks ameliorate
the impacts of livestock manure (by minimizing/eliminating the detrimental aspects of
micro-organisms, such as antibiotic-resistant genes, oxytetracycline, and metabolites [9]),
but they also produce fertilizers and biogas from the initial sludge simultaneously [10].

In order to evaluate the behavior of the feedstock within the digester, what is needed is
to model the digester and simulate various aspects of the process. Among various physical
aspects of the process, the quality of mixing is a significant factor to obtain optimum
process conditions for growing anaerobic micro-organisms [11], while ineffective mixing
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leads to various problems such as stratification and short-circuiting in the digester, as
well as variation of pH and temperature [12] and the formation of surface crusts. It is
evident that the higher the active volume, the more efficient is the mixing. Accordingly,
the efficiency of mixing can be determined by calculating the inactive volume, also known
as dead zones, and the velocity gradient [13]. This helps operators to analyze the type
and performance of mixing so that the agitating feedstock approaches an ideally mixed
condition with minimum dead zones [14].

Computational fluid dynamics (CFD) is a numerical method to predict the hydrody-
namics of fluid flows in bioreactors, thus allowing estimation of the mixing quality within
the AD tanks [15]. The finite volume method (FVM) [16], as one of the most robust CFD
approaches, is employed in the current study to estimate the hydrodynamics. To analyze
the mixing quality of the feedstock inside the AD tank, various studies have been carried
out. Some papers have suggested using the mean value of the fluid viscosity for CFD mod-
eling of the mixing in bioreactors [17]; however, some others claim that the non-Newtonian
properties of the sludge are important in mixing simulations [18,19].

Regarding mixing methods for AD tanks, a number of research studies are found in
the literature. Zhang et al. [20] compared the flow field and power consumption in the
digesters with different feedstock materials, utilizing CFD. They employed the standard
k − ε turbulence model to simulate the tank stirred by an impeller and validated the
numerical results with experimental data. Bridgeman [21] demonstrated the ability of CFD
for modeling agitation in bioreactors, utilizing an impeller to agitate the AD tank. He
also considered the non-Newtonian behavior of the feedstock and validated his results by
comparing the numerical value for the power consumption of the mixer derived from a
function of energy dissipation rate with that obtained by experimental data.

To agitate the feedstock inside the digester, gas injection and also fluid recirculation
systems are utilized in some cases [22]. Dapelo et al. [23] presented an innovative Euler-
Lagrangian approach in CFD for simulating the fluid flow of an AD tank which utilizes
gas injection as mixer. They assessed the accuracy of their results by visualization of the
flow field in a lab-scale model with particle image velocimetry (PIV).

Sajjadi et al. [4] modeled an AD reactor which uses fluid injectors to recirculate the
feedstock. They showed the importance of the location of both the inlet and outlet fluid jets.
López-Jiménez et al. [24] simulated the process of mixing in an AD tank in which the sludge
was recycled into the tank at high velocities. They modeled the pump inlets with different
entrance angles and nozzle shapes to accelerate the inlet velocity. Reynolds-averaged
Navier-Stokes (RANS) equations were solved in a single-phase CFD model considering
both Newtonian and non-Newtonian characteristics for the sludge.

Since the injection approaches require prepared equipment, in some cases it is not easy
to utilize them. This is why impellers are installed more frequently. There are also other
methods for ensuring agitation in digesters, e.g., draft-tube mixers [25,26]. In some cases,
the agitation is caused just by the inlet flow recirculation depending on the geometry [27].
Hernández-Aguilar et al. [28] solved the CFD equations to evaluate different recirculation
configurations while considering the rheological properties of the fluid for an egg-shaped
digester without a mixer. Instead, the feedstock was agitated by flow recirculation only.
Based on the Reynolds number, they used a laminar flow model. Finally, they showed
velocity profiles in three different feed and drain configurations and distinguished the
optimum fluid agitation between the designed models. According to the aforementioned
articles, CFD is a desirable approach to predict the behavior of fluid within the AD tanks.
Therefore, the efficiency of the digester can be evaluated to avoid the unexpected inhibition
of the process.

The previous studies on stirred tanks have focused on rotating mixers located at
the center of the tank, but the mixing quality (i.e., dead volume, mixing time, velocity
gradient, etc.) of the asymmetrical mixers is largely unknown. Consequently, in this study,
the mixing quality is extensively investigated for a mixer that is located asymmetrically
at one side of the tank. Moreover, since the energy consumption of the mixer has a
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significant effect on the total energy efficiency of digesters, there is a need to get insight
into the mixer energy consumption and its relation to the mixing efficiency. The current
study aims at evaluating the mixer energy consumption, in addition to dead volume and
velocity gradient, for assuring mixing efficiency. TS concentration and the subsequent
non-Newtonian characteristics as well as the mixer rotation speed are the significant factors,
whose effects on the mixing efficiency are studied. After designing the geometry of the
model, including the effective components on the mixing quality, a mesh is implemented.
Next, to determine the amount of dead volume and the relation of mixer velocities and
energy consumption, velocity and pressure fields are obtained through solving fluid flow
equations, based on the SIMPLE algorithm, considering the non-Newtonian characteristics
of the fluid.

2. Materials and Methods
2.1. Geometry and Meshing

In this study, a full-scale simulation is conducted according to the properties of the
real AD in Malaard Livestock Yard located 70 km west of Tehran, Iran. It is a cylindrical
tank whose external and internal views are displayed in Figure 1a. The tank is 15 m in
diameter, and its height is 3 m with the wet height being 2 m. For supporting the base
of the roof, there is a vertical square column with a 0.7 m edge at the center of the tank.
Figure 1b shows and internal view of the digester tank.
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Figure 1. The location of the digester tank (a), the internal view of digester tank including its mixer (b), designed geometry 
to simulate agitation inside the tank (c), mesh implementation for the tank and mixer zones (d). 
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blade of the impeller is 0.36 m in its maximum extension, and the diameter of the central 
shaft is 0.10 m. Figure 1c illustrates the designed mixer, which is located at the height of 1 
m and with the distance of 4.8 m from the center of the tank. 

The built-in ANSYS meshing tool is used to mesh the whole geometry of the AD tank. 
For improving mesh quality around the blades of the mixer, mesh cell sizes are inflated 
smoothly. In order to conduct a continuous growth of the tetrahedral elements at the 
boundaries of the domain, the layers of boundary meshes with a growth rate of 1.2 are 
applied. After mesh refinement, the final network cells are converted to polyhedral cells 
with the number of elements being 222,058. Figure 1d shows the view of the implemented 
mesh of the tank zone, as well as the implemented mesh of the blades of the mixer zone. 

2.2. Assumptions 
• Since the flow enters the digester for just 15 min during a six-hour period, the effect 

of the inlet and outlet flow is not significant. 
• 2 m of the tank is filled by the feedstock. 
• The shear-thinning non-Newtonian characteristics of the feedstock are considered. 
• The density of the fluid is constant and calculated as 1001.7 kg/m3, based on [30]. 
• The effect of temperature is assumed as constant. 

2.3. CFD Method 
In order to compute the fluid dynamics within the feedstock of the AD, the governing 
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Figure 1. The location of the digester tank (a), the internal view of digester tank including its mixer (b), designed geometry
to simulate agitation inside the tank (c), mesh implementation for the tank and mixer zones (d).

The inlet and outlet tubes are 0.2 m in diameter and located at the height of 0.2 and
1.0 m from the base, respectively. The feedstock is agitated utilizing a submersible rotating
mixer [29], whose impeller is designed and incorporated within the mesh geometry. Each
blade of the impeller is 0.36 m in its maximum extension, and the diameter of the central
shaft is 0.10 m. Figure 1c illustrates the designed mixer, which is located at the height of
1 m and with the distance of 4.8 m from the center of the tank.

The built-in ANSYS meshing tool is used to mesh the whole geometry of the AD tank.
For improving mesh quality around the blades of the mixer, mesh cell sizes are inflated
smoothly. In order to conduct a continuous growth of the tetrahedral elements at the
boundaries of the domain, the layers of boundary meshes with a growth rate of 1.2 are
applied. After mesh refinement, the final network cells are converted to polyhedral cells
with the number of elements being 222,058. Figure 1d shows the view of the implemented
mesh of the tank zone, as well as the implemented mesh of the blades of the mixer zone.

2.2. Assumptions

• Since the flow enters the digester for just 15 min during a six-hour period, the effect of
the inlet and outlet flow is not significant.

• 2 m of the tank is filled by the feedstock.
• The shear-thinning non-Newtonian characteristics of the feedstock are considered.
• The density of the fluid is constant and calculated as 1001.7 kg/m3, based on [30].
• The effect of temperature is assumed as constant.

2.3. CFD Method

In order to compute the fluid dynamics within the feedstock of the AD, the governing
equations of mass and momentum conservation are solved in both the transient and steady
state for an incompressible fluid, using ANSYS Fluent v19.2 software [16].

For the flow regime inside the digester, the generalized Reynolds number was calcu-
lated as described in [31]. Accordingly, the flow regime is identified as turbulent, as the
calculated Reynolds number exceeds 20,000 [30]. Since previous studies (such as [32,33]),
have proved the robustness of the RNG k − ε turbulence model to predict bioreactors
hydrodynamics with minimal computational effort, we have also obtained the turbulent
closure by the RNG k − ε model [34]. In addition, the scalable wall functions option is
activated to improve the accuracy of the k− ε model for calculating the equations close
to the walls [35]. The solver is pressure-based, and the SIMPLE algorithm is employed to
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solve the flow equations in a second-order upwind discretization scheme. In addition, the
under-relaxation factors are aligned as default, and no limitations for the magnitude of the
residuals is defined until the convergence would be achieved.

2.4. Equations

The mass and momentum equations are solved to predict the formation of pressure
and velocity fields. Equation (1) is the continuity and Equation (2) is the conservation of
momentum for incompressible flows in a Cartesian coordinate system [36].

∂ρ

∂t
+∇

(
ρ
→
V
)
= 0 (1)

where ρ is the density,
→
V is the velocity of the fluid in the control volume.

∂

(
ρ
→
V
)

∂t
+∇

(
ρ
→
V
→
V
)
= −∇p +∇

(
=
τ
)
+ ρ
→
g (2)

where p is the static pressure and
=
τ is the viscous stress tensor.

The RNG k− ε model consists of two transport equations for two parameters, turbulent
kinetic energy (k) and the energy dissipation rate (ε) [34].

The rotation of the impeller is simulated using the multiple reference frame (MRF)
approach, and the equations in the moving reference frame can be found in [16].

2.5. Physical Characteristics

The concentration of total solids (TS) loading is an effective parameter on non-
Newtonian behavior of the feedstock. The mixing mode is continuous. The fluid flow
within the plant is cattle manure feedstock, with a TS concentration equal to about
120,500 ppm, or almost 12.1%. Thus, the non-Newtonian power-law model is activated
to calculate the viscosity of the fluid. It should be noted that the power-law model can-
not support scenarios with infinite viscosities. Thus, other alternative methods, such as
the Herschel-Bulkey model, are used by some researchers [18]. However, according to
literature references [26,30,37] the power-law method is capable of estimating the sludge
behavior up to a TS concentration of 12%. Therefore, the power-law model is also applied
in this study, due to its low computational complexity. At the mesophilic temperature
of 35 ◦C the non-Newtonian pseudo-plastic (shear-thinning) properties of the sludge are
based on [26,38], depicted by Table 1.

Table 1. Rheological properties used for sludge modeling (from [38]).

TS (% ) K (Pa sn) n
.

γ
(
s−1) ηmin (Pa s) ηmax (Pa s)

12.1 5.885 0.367 3–149 0.25 2.93

The apparent viscosity (η) of the rheological fluid depends on shear rate (
.
γ). Using a

power-law equation, the viscosity is described by:

η = K
.

(γ)
n−1

(3)

where η denotes apparent viscosity,
.
γ is the shear rate, K represents the consistency

index, and n indicates the flow behavior index, which should be below one for pseudo-
plastic fluids.
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2.6. Boundary and Zone Conditions

The boundary condition imposed to the digester is a no-slip shear condition on the
walls. The upper surface of the model is assumed as wall due to the aggregation of the
sludge. Thus, the feedstock is trapped between the upper, lower, and lateral walls, as well
as the walls of central column. The applied boundary conditions are listed in Table 2.

Table 2. The boundary conditions of the model.

Boundary Type Characteristic

Lateral walls

Wall No-slip shear condition

Mixer impellers

Central column walls

Upper surface

Lower surface

Two zones are created for the simulation. The tank zone is the total volume of the tank
and the mixer zone is the rotating zone in the vicinity of the impeller. The rotating region
(including the mixer) is 1 m in diameter and rotates at the speed of 300 rpm.

3. Results and Discussion
3.1. Validation

As shown by Bridgeman [21], model validation can be carried out by comparing the
real power consumption (P) of the mixer with that obtained from the numerical simulation.
Empirical power input measurements are determined from applied torque measured by a
torque transducer. Thus, the power consumption is:

P = 2πωT (4)

where ω represents the rotating speed and T is the applied torque.
In the numerical simulation, the torque imposed on the impellers is calculated through

the post-processing tools of the software, by summing the cross products of the pressure
and viscous force vectors with the moment vector (the vector from the specified moment
center to the force origin) for each face. It is also noteworthy to mention that we neglect
additional (and unknown) power losses induced by gear boxes and the like. The on-site
power consumption of the mixer is 18.1 kW while the obtained power consumption from
the simulation is equal to 24.5 kW, which differs by about 26% from the real value for
power consumption. This difference can, e.g., be due to uncertainties in the estimation of
rheological characteristics. However, the difference is acceptable, based on the difference
ranges calculated in [21]. Another method also exists for calculating the power consump-
tion, which is based on the energy dissipation rate. In this method, the overall power
consumption is estimated by integrating the local power consumption numerically over
the entire volume of the tank, so the power consumption of the mixer is calculated via:

P = ρ
∫

εdV (5)

where ρ is the density, ε denotes energy dissipation rate, and V indicates the volume. The
obtained numerical power consumption based on this method is equal to 22.3 kW (around
9% lower than the one obtained via surface integrals and differing by about 23.4% from the
real value for power consumption). Although the calculated power consumption via the
energy dissipation rate is closer to the on-site data, this method is not seen as accurate as
calculating the numerical torque [39]. Thus, we apply the numerical torque methods for
the remainder of the simulations.
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3.2. Grid Independence

To evaluate the mesh independence, three different sizes for the elements are analyzed
based on [18,40]. Consequently, a series of simulations are conducted, in which the numbers
of elements are chosen as 101,894, 222,058, and 462,912. For each simulation, the velocity
profile at the vertical line, crossing a specific point (located with a 90-degree angular
distance from the mixer, and at the same radial distance as the mixer), was computed
for each mesh structure, and then the results were compared to each other, according
to [26]. Figure 2 depicts the velocity profile along the mentioned vertical line for the three
mesh networks.
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Figure 2. Velocity profiles along the vertical line within the digester for the meshes with 101,894, 222,058, and 462,912 elements.

It was observed that the value for the velocity magnitude in the model with
101,894 elements differed more than 5.3% from that obtained by the model containing
222,058 elements, while the data of the model with 222,058 elements differed only about
0.5% compared to the model with 462,912 elements. Therefore, the velocity profiles for the
models with 222,058 and 462,912 elements were in a very good agreement. In addition,
based on the method in [40], the amount of the grid convergence index (GCI) was calcu-
lated for the central point of the obtained velocity profile. The variables ϕ1, ϕ2, and ϕ3
denote the velocity magnitude at the mentioned point for the cases with 101,894, 222,058,
and 462,912 elements, respectively (see Table 3). The variable ϕij abbreviates ϕj − ϕi, and
the ratios of the grid refinement are shown by r21 and r32. Then the order of convergence
(p) is determined by iteratively solving the 11th equation in [26]. By calculating the relative
error between the two finest meshes (e32=

∣∣∣ ϕ32
ϕ2

∣∣∣), the GCI value, with a safety factor of
1.25, is calculated as almost equal to 0.02%. It was, thus, concluded that the model with
222,058 elements is suitable for the simulation.
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Table 3. The calculated parameters for assessing mesh sensitivity.

Parameter Unit Value

ϕ1

m/s

0.4907

ϕ2 0.4846

ϕ3 0.4839

| ϕ21|
m/s

0.0061

| ϕ32| 0.0007

r21
-

≈1.3

r32 ≈1.3

p - 8.24

e32 % 0.14

3.3. Contours and Vectors

Velocity data of the model are captured from the simulation results. By Figure 3, the
variation of the velocity magnitude in the range of 0 to 0.5 m/s is illustrated along two
central vertical planes and three horizontal planes located at the heights of 0.5 m, 1 m,
and 1.5 m, respectively. Indeed, the flow within the digester tank is mixed by a rotating
impeller, which is employed to prepare a uniform distribution of the organic material in all
parts of the tank. The streamlines of the fluid are obtained and illustrated in Figure 4. The
streamlines are captured from 50 points and started from three planes located horizontally
at the height of 0.5 m, 1 m, and 1.5 m.
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Figure 5. Velocity vectors mapped in the three horizontal planes situated at the heights of 0.5 m (a), 1 m (b), and 1.5 m (c) 
from the floor, and the two vertical planes located according to Figure 3. 

Figure 4. Streamlines derived from three horizontal planes situated at the heights of 0.5 m (a), 1 m (b), and 1.5 m (c) from
the floor.

Additionally, for better understanding of the fluid motion, the absolute velocity
vectors are presented in Figure 5 in the three horizontal and two vertical planes. The
vector map in the horizontal planes, as well as the streamlines in Figure 4, show that the
fluid rotates in circular shape and is also agitated well. Likewise, the vector map of the
vertical planes illustrates some moving directions which are shaped diagonally. In fact,
from these diagonal rotations it is inferred that the material within the AD tank is mixed in
an appropriate manner.
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In the current study, the definition of dead zones is chosen according to the definition
in [41], where the regions with the sludge velocities less than 5% of the maximum velocity
are denoted as dead volume. As in our case, the maximum velocity is between 0.45 and
0.50 m/s (close to the mixer). Therefore, the 0.02 m/s velocity is selected as the threshold
for identifying dead volume.

Figure 3 reveals that the velocity magnitude in almost all elements of the tank is above
the threshold value of 0.02 m/s. We, hence, conclude that the feedstock within the digester
has been agitated properly and the type and the situation of the mixer is appropriate to
the evaluated model. As depicted by the velocity contours, the minimum magnitude for
velocity is reached even in the vicinity of the central square column. This is due to the
no-slip boundary condition of the wall surfaces.

3.4. Data Analysis

For assessing a time-dependent model, it is necessary to carry out a transient simula-
tion and compare its results with the steady-state simulation. After simulation in transient
conditions for about 46 min, the corresponding velocity fields are investigated for specified
time steps. The velocity magnitude at a specific point (1 m above the bottom and 4.8 m far
from the central column) is plotted as a timeline in Figure 6.
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Figure 6. The plot of the velocity magnitude at a specific point over the simulated time.

The velocity magnitude at the probed point increases approx. linear from 0.04 m/s
(after 24 sec) to 0.31 m/s (after 7 min). At this point in time, the slope of the timeline
declines, reaching 0.33 m/s after 11 min. This is already close to the maximum velocity
of 0.36 m/s at the probed point—as derived from the steady-state simulation. As the
difference to the steady state value is less than 10%, it can be estimated that the time to
reach the steady state at the probe point is 11 min.
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In order to investigate the velocity field along with the height of the tank, the average
velocities of seven horizontal planes located at heights of 0.25, 0.5, 0.75, 1, 1.25, 1.5, and
1.75 m are computed, and shown by Figure 7.
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It is observed that the values for averaged velocities stay within the range between
0.35 m/s and 0.43 m/s. The velocities at the central parts of the digester are higher than the
ones closer to the bottom and the top surface. This is because of the location of the mixer,
which is also at the central height (1 m above the bottom of the tank).

Employing user-defined memory (as declared in [16]), the total volume of the cells
with a velocity magnitude below 0.02 m/s (which are considered as stagnant zone) is
calculated. For the TS concentration of 12.1%, the stagnant zone value is computed as
1.66 m3 or 0.47% of the volume, respectively.

In order to estimate the effect of the TS concentration on the dead zone volume, the
simulation is performed for TS concentrations of 2.5%, 5.4%, 7.5%, and 9.1%, considering
individually their specific rheological properties according to [38]. Figure 8 demonstrates
that as the TS concentration increases from 2.5 to 12.1 the total value for dead volume also
increases from 0.20% (0.71 m3) to 0.47% (1.66 m3), respectively. This shows an increase of
about 133%, which can be considered as a significant variation in the total volume of dead
zones, although all of the obtained values for the dead volume are negligible as compared
to the total volume of the fluid. It is concluded that by increasing the TS concentration, the
volume of dead zones increases.
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In addition, employing Equation 4, the consumed power by the mixer is estimated for
each model with specific TS concentration. The achieved values for the power consumption
in the models with different TS concentrations are depicted by Figure 8.

It is indicated that by enhancing the TS concentration from 2.5% to 12.1%, the power
consumed by the mixer, which is rotating at the constant angular velocity of 300 rpm,
increases from 17.7 kW to 24.5 kW. This shows an enhancement of about 27.7% in power
consumption. Note that the increase in power consumption is not linear to the increase
of TS but rather exponential. This is because of the nonlinear effect to viscous forces for
higher TS concentrations.

In many cases, the appropriate agitation has another advantage, i.e., avoiding sedi-
mentation. In order to determine whether the mixing is sufficient to prevent sedimentation
of heavy solids in the digester, the velocity gradient is calculated. Calculating the veloc-
ity gradient (G) has become a fundamental approach within the water and wastewater
industry to classify mixing tanks. According to [42], G can be estimated with local energy
dissipation rate:

G =

√
ε

η
(6)

where ε is the turbulent energy dissipation rate in mass unit and η is the kinematic viscosity.
Sindall et al. [13] have suggested that the velocity gradient should lie between 7.2 and

14.5 s−1. In this research, G is determined by post-processing of the achieved data (utilizing
volume integrals in the software) as 26 s−1. Thus, mixing does not avoid formation of the
sedimentation layer and an additional sewage pump regime is necessary to improve the
performance of the AD. A solution could be reducing the amount of the mixer rotation
speed; however, due to structural limitations, reducing the mixing speed is not possible in
our case.

In order to investigate a possible prevention of sedimentation, an alternative mixing
scenario is tested by situating the mixer 0.25 m lower than its previous location, thus aiming
for increased agitation close to the bottom. Subsequently, the mixing quality is analyzed by
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calculating the dead volume and the velocity gradient. However, for the similar mixing
rotation speed of 300 rpm, the dead volume does not decrease but instead increases to
2.60 m3. While this is still only about 0.73% of the digester volume, we denote that the effect
is obviously contrary to the intended one (a 36% increase in the amount of dead volume
as compared to the case where the mixer is at the central height). For both the velocity
gradient and the power consumption, no significant difference is found for this scenario.

Evaluating the effect of mixing speed on the velocity gradient allows one to determine
whether it is viable to increase the mixer rotation speed instead of using a sewage pump.
The fluid with total solids of 12.1% is analyzed while imposing rotation speed values
greater than 300 rpm. Based on the infrastructures, it is considered that the mixer rotates
at the angular velocities of 300, 350, 400, 450, and 500 rpm. Similarly, the effect of mixing
speed on the dead volume is analyzed. Figure 9 depicts the effects of angular velocity on
the dead volume and velocity gradient, respectively.
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As to the effect of the mixer rotation speed on the dead volume (Figure 9), it is shown
that the values for the dead volume decrease from 1.66 m3 for a rotation speed of 300 rpm to
0.12 m3 for a rotation speed of 500 rpm. In general, the dead volume decreases as the mixer
rotation speed increases, but the relation is non-linear. This is different for the velocity
gradient as this value increases from 26 s−1 for the mixer with the rotation speed of 300 rpm
to 56.5 s−1 for the mixer with the rotation speed of 500 rpm. As the minimum mixer rotation
speed (300 rpm) already leads to higher values in velocity gradient, increasing the speed
does not help in keeping the G value in its optimum range. Moreover, when the mixer
rotates with the speed of 500 rpm, the power consumption increases to about 159.9 kW
(according to Equation 5), which is quite high for such a plant size. Indeed, the amount of
power consumption at 500 rpm is more than six times the one required for 300 rpm. For
different mixer rotation speeds, the power consumption is summarized in Table 4.
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Table 4. The corresponding power consumption for each mixer rotation speed.

Mixer Rotation Speed (rpm) Power Consumption (kW)

300 24.5

350 47.1

400 78.4

450 117.6

500 159.9

4. Conclusions

The purpose of this study was to evaluate mixing capabilities of an asymmetrical
mixer, which rotates at the lateral side of the tank, by employing the CFD method. The
energy consumption, mixing time, dead zone, and velocity gradient of the digester tank
were analyzed, based on the TS concentration and mixer rotation speed. When the mixer
rotation speed was 300 rpm, the dead zone volume amounted to about 0.47% of the total
volume of the digester; however, the velocity gradient was higher than the optimum region.
The following findings are obtained:

• The dead zone was found near the central column and the walls of the digester because
the applied mixer mostly affects the regions located at the same height and radial
distance as the mixer.

• Power consumption increases by increasing TS concentrations, especially at higher
TS concentrations. Similarly, by increasing TS concentrations, the amount of dead
volume increases considerably.

• There is not a huge change for dead volume once the mixer rotation speed increases
to 400 rpm and higher, while the energy needed for mixing increases.

• It is not recommended to increase the mixer rotation speed to more than 300 rpm,
since—besides the deteriorative effect of the higher velocity gradient—the energy
consumption of the mixer increases.

In order to reduce power consumption, another possible scenario is “intermittent
mixing”, which has shown good results in terms of biogas production [43]. For future
work, it is interesting to focus on such scenarios.
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