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Abstract: During the night between 9 and 10 September 2017, multiple flash floods associated with
a heavy-precipitation event affected the town of Livorno, located in Tuscany, Italy. Accumulated
precipitation exceeding 200 mm in two hours was recorded. This rainfall intensity is associated with
a return period of higher than 200 years. As a consequence, all the largest streams of the Livorno
municipality flooded several areas of the town. We used the limited-area weather research and
forecasting (WRF) model, in a convection-permitting setup, to reconstruct the extreme event leading
to the flash floods. We evaluated possible forecasting improvements emerging from the assimilation of
local ground stations and X- and S-band radar data into the WRF, using the configuration operational
at the meteorological center of Tuscany region (LaMMA) at the time of the event. Simulations were
verified against weather station observations, through an innovative method aimed at disentangling
the positioning and intensity errors of precipitation forecasts. A more accurate description of the
low-level flows and a better assessment of the atmospheric water vapor field showed how the
assimilation of radar data can improve quantitative precipitation forecasts.

Keywords: WRF model; 3D-Var data assimilation; radar data; short-range prediction; heavy precipi-
tation event

1. Introduction

Almost every year, during the fall, heavy precipitation events (HPEs) bring destruction
and cause fatalities somewhere in the Western Mediterranean (WM) region [1–4]. HPEs can
either persist for several days in large areas, resulting in extensive flooding (e.g., 1966 Arno,
Italy [5,6] and 1994 Piedmont, Italy [7,8]), or manifest at the sub-daily scale and produce
flash floods (e.g., 1999 Aude, France [9,10] and 2011 Liguria, Italy [11,12]).

Short HPEs often assume the form of V-shaped, quasi-stationary convective sys-
tems [13,14]. These storms are characterized by a back-building dynamics, where convec-
tive cells developing upstream of the affected area continuously replace dissipating cells,
resulting in pulsating heavy rain [15,16]. This continuous cell replacement is frequently
initiated offshore [17]. This structure becomes quasi-stationary due to the perduration of a
favorable synoptic and mesoscale environment [18]. Important factors for the persistence
and evolution of these precipitation phenomena can be found at the surface (e.g., moist
and conditionally unstable air associated with warm sea surface temperatures [19,20]),
within the boundary layer (e.g., convergence associated with a frontal system [21], induced
by orography [11,13,20] or land-sea differences [19,22]), and throughout the troposphere
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(e.g., coupling between low and upper-level jet streaks [23]). When these conditions persist
for several hours, the system may assume the characteristics of a mesoscale convective
system, which is able to partially drive the mesoscale circulation [24–26].

The frequency of these HPEs over the WM region has already increased [27,28],
although a significant reduction of annual rainfall has been observed in relatively recent
years [29,30]. Climate projections support this trend, by predicting a further increase in
the frequency of HPEs, and a decrease in average precipitation in the WM region [31].
In this framework, considering that in the period 1975–2001 the average mortality per flash
flood was 5.6% of the affected population [32], the most threatening consequence of the
increasing HPE frequency is the expected increase of human losses associated with the
flash floods they produce. Monitoring, mitigating, predicting, and communicating the
potential of such dramatic events are necessary for reducing mortality [33].

Several studies investigated improvements in the characterization of severe precip-
itation events arising from the assimilation of radar data. Some of these studies [34–36]
compared the performances of ensemble-based or hybrid assimilation techniques [37,38]
and concluded that they provide better analyses and forecasts than traditional three-
dimensional variational (3D-Var) data assimilation. Other studies [39–44] demonstrated
the effectiveness of the 3D-Var method in assimilating radar data while still having a
relatively low computational cost. The vast majority of these studies used weather analyses
as initial and boundary conditions and assimilated data which were measured during
the events. This methodology, despite being optimal for accurate reconstruction of HPEs,
is not suitable for evaluating operational improvements. For bridging the gap between
the improvements described in previous works and operational improvements, a reason-
able latency period consisting of observation collection, data assimilation, WRF run-time,
and forecast communication for early warnings should be taken into account. Considering
this latency by assimilating observations before—and not during—the storm allows for
a quantification of the impact data assimilation has on the predictability of HPEs in a
pseudo-operational framework.

This work focuses on a numerical reconstruction of the quasi-stationary convective
system that, during the night between 9 and 10 September 2017, caused several flash
floods in the town of Livorno, Italy, resulting in nine fatalities. The Livorno case was
recently studied by [45] using the non-hydrostatic model RAMS@ISAC [46]. The authors
evaluated the impact of assimilating lightning and radar reflectivity data in the short term
(i.e., forecast length shorter than 3 h) and at the convection-permitting scale (i.e., grid
spacing up to about 1 km). The authors underlined the paramount importance of the
reflectivity data and found that the assimilated runs outperformed the control one (i.e., no
data assimilated), by reducing the number of missed precipitation events at the expense
of a higher number of false alarms. The authors acknowledged that not updating the
initial and boundary conditions in the assimilation step represents a limit of their work,
and they claimed that exploring this issue deserves further investigations. In a recent
paper, Lagasio et al. [47] tested the effect of assimilating a broad range of remote sensed
data into the WRF model. The authors found that information about the wind field, and
to a minor extent, atmospheric water vapor content, is crucial for better localization of the
rainfall peaks.

We present a simulation of the Livorno case using the WRF model in an operational-
like configuration. We investigated the impact of assimilating radar and automatic weather
station data for a refinement of the operational setup, which should lead to immediate
benefits for any early warning system that relies on data produced by numerical weather
models. In particular, the main goal of the work was to evaluate to what extent the
information carried by a relatively small radar system, such as the X-band radar located at
the Livorno harbor [48], can improve the predictions of the WRF model in the short term.
In fact, in recent years, some European projects, such as those funded in the framework of
the European Cross-Border Cooperation Programme Italy-France “Maritime,” dealt with
the deployment of a network of X-band radars in the Tuscany region and surrounding
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areas. The explicit goal of such projects is to monitor potential severe weather occurring
offshore, using radar instruments, an essential tool for nowcasting applications. The cross-
border sharing of such relevant meteorological observations and the integration with
existing tools and methodologies are intended to improve the forecasting and alerting
capabilities of operational regional weather agencies. Furthermore, the uniqueness of our
work leverages the operational forecasts issued twice a day at the weather service of the
Tuscany regional (LaMMA). In fact, with such data, we computed a custom and long-term
(about ten months) background error covariance matrix. The quality of the background
error covariance matrix is crucial in a 3D-Var assimilation step [40], because its statistics
determine how the observations spread in the model space and how each model grid
point contains dynamically balanced increments. We claim that this represents a consistent
improvement with respect to previous studies, which computed the background error
covariance matrix for a shorter time period (less than three months [39,40,45,49,50]) or
used the default matrix provided by the software developers [42]. Finally, to evaluate
the results obtained when assimilating observations from weather stations and radars
and compare such results with those obtained without assimilation, we developed an
object-oriented verification method, aimed at evaluating both the intensity and position
errors of rainfall predictions.

The paper is organized as follows: in Section 2 we describe the meteorological context
of the Livorno case and the modeling setup implemented; in Section 3 we give the details
about the method used to evaluate model outputs; in Section 4 we present the main
results; in Section 5 we discuss the implications of the results and the limitations of this
study; and we describe our vision of the path forward in Section 6.

2. Materials and Methods
2.1. Synoptic Conditions

During the first hours of the 9 September, a large trough deepening over the Eastern
Atlantic Ocean approached the Mediterranean Sea. At 0000 UTC of 10 September 2017,
the axis of the trough was oriented from the Scandinavian Peninsula to the Western
Mediterranean Sea (see Figure 1a). The trough slowly moved eastward, causing the
deepening of a low-pressure area (see Figure 1b) over the Ligurian sea and lee of the
Italian Alps [51,52]. As a result, the pre-existing warm and humid air masses over the
Tyrrhenian Sea interacted with the dry and relatively cold flow from France (see Figure 1b
and Figure 7b in [45]), making the environment conducive for persistent precipitation
systems. Furthermore, upper level divergence, sustained convective available potential
energy values in the range 500–1000 J· kg−1, and strong wind shear (plots not shown)
favored convective motions. A well-defined line of convergence of low-level winds over
the Tyrrhenian Sea acted as a trigger to overcome the convective inhibition energy (see
blue wind vectors in Figure 1b).
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Figure 1. (a) Geopotential height at 500 hPa, isobaric level in decametres at 0000 UTC, 10 September
2017. (b) Mean sea level pressure in hPa, and 10 m wind vectors in blue at the same time. In both
panels, the red rectangle indicates the WRF domain of integration, and the red triangle (“4”) indicates
the location of Livorno. ERA5 data [53] were used to plot the maps.

Following the classification of [54], the Livorno case belongs to the HPEs of short
duration (less than 12 h) with spatial extents smaller than 50× 50 km2.

2.2. Observed Precipitation Measurements

The Livorno case can be described by using the data obtained from the weather
stations managed by the Hydrological Service of Tuscany (www.sir.toscana.it, (accessed
on 29 April 2021)). The network is composed by approximately 400 rain gauges, located
over an area of about 23,000 km2, reporting conditions every 15 min [55]. In Figure 2a we
report the precipitation map of the accumulated precipitation in the 6 h period ending on
0300 UTC of 10 September 2017. One precipitation maxima, located in the coastal area,
and exceeding a cumulative rainfall amount of about 240 mm can be noticed, to the south
of the Livorno township (indicated with the red triangle in Figure 2a). The extreme is
located in a widespread area of total precipitation exceeding 100 mm, which covers the
entire central coast of Tuscany.

www.sir.toscana.it
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(a) (b)

Figure 2. (a) Observed rainfall accumulated in the 6 h period ending on 10 September 2017 at 0300 UTC, registered by
automatic weather stations in the Tuscany region and surrounding areas. The Cressman interpolation technique [56] is used
to estimate rainfall amounts (shown with the shaded colors) when no rain gauge data are available. The Livorno township
is indicated with the red triangle (“4”). (b) Accumulated precipitation registered by four rain gauges located close to the
Livorno township. Two of them are located to the north of the city (Metato and Bocca d’Arno) and two to the south (Valle
Benedetta and Quercianella).

The variability of both the duration and intensity of precipitation across the territory
played a major role in the downstream hydrological responses. The sector south of the
Livorno township, which was responsible for the flash floods in the urban areas, produced
precipitation that was limited in time: 210.2 mm was registered in the 2 h period between
0045 UTC and 0245 UTC, 10 September (see Figure 2b reporting the data collected at
the station of Valle Benedetta). This corresponds to 86% of the total event precipitation
registered by this station. Another weather station, Quercianella, still located in the
southern sector, measured similar values: 188.6 mm in 2 h, corresponding to 89% of the
total precipitation during the event. Analogies in the maximum hourly rain rate are even
stronger, since the first station measured 120.8 mm in 1 h, and the second 1 mm more.
For both rain gauges, [57] estimated a return period of > 200 years for the 1 and 3 h
duration rainfall events. The sector north of the town of Livorno, represented in Figure 2b
by the stations of Bocca d’Arno and Metato, was characterized by a peak rain rate between
50 and 70 mm in 1 h and a total event duration of 3 to 4 h. This precipitation was mostly
concentrated between 2000/2100 UTC of 9 September and 0000 UTC of 10 September. In the
rest of the region (plots not shown), precipitation was either intense and brief (further
south: Castellina Marittima rain gauge, return period > 200 years for 1 and 3 h duration
rainfall events [57]), or long lasting and less intense (north of Livorno: Coltano and Stagno
rain gauges, return period ' 90 years for 12 h duration rainfall events [57]).

2.3. Radar Data

Several weather radars were operational during the rainfall event, belonging to dif-
ferent networks: the Italian national [58,59], the French national [60], and the Tuscany
regional [48,61] ones. Among these available radars, two were selected for this work:
the Aléria and the Livorno radars. The former is a Doppler S-band (the signal frequency
is 2802 MHz) system located in Aléria in the central Eastern Corsica and was detecting
the severe weather system from a distance of approximately 70–80 km. The latter is a
non-Doppler, single polarization X-band radar (its frequency is 9410 MHz) located in
the Livorno harbor, and it monitored the dynamics of the meteorological event moving
towards the radar site. These systems have been designed and produced by different
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manufacturers and have different technical characteristics, particularly in regard to the
operational frequencies, system dimensions, and architectures [48]. The Aléria radar (S-
band) is characterized by low attenuation impacts on radio signals due to the atmosphere
and rainfall, and consequently can reliably monitor rainfall fields up to a distance of ap-
proximately 100–150 km. The Livorno radar system (X-band) is more sensitive to smaller
rainfall drops and can provide a finer resolution, but with a limited range due to the strong
effects of atmosphere and rainfall attenuation on radio signals. Moreover, the effects of
path and wet radome attenuation due to the rain falling directly over the radar system
were increased in this case by the strong precipitation occurring at the Livorno site. The
calibration of the two radars is performed during maintenance procedures, using reference
radiofrequency sources directly sent to the receiver, so that the receiver dynamics can be
monitored and correctly taken into account in the radar constant. In this paper, reflectivity
data were used for the assimilation into the WRF model (the Aléria radar provided also
radial velocity data).

These two radar systems detected the rainfall event, since its origin was over the
sea between North Corsica and the Ligurian Gulf, while approaching the Tuscany coasts.
The Livorno radar localized the weather event and followed its dynamics with high spatial
detail, as shown in Figure 3a. Then the longitudinal shape of the strong precipitation
front, well detected when approaching the Tuscany coasts (Figure 3c), underestimated the
reflectivity intensity of the storm, at least during its beginning and early development on
the sea (Figure 3b,d). Later, when the storm reached Livorno, the Aléria radar detected
the strong rainfall and its persistence over the area (Figure 3f), whereas the Livorno radar
system underestimated the intensity of precipitation, presumably due to a significant path
and radome attenuation (Figure 3e). These two radars, in association with the Italian
weather radar network [58,59], were used by [61] to characterize the Livorno event and
were found to provide valuable information for the quantitative precipitation estimation.

2.4. Satellite and Lighting Data

The deep convection of the Livorno event was detected by the Rapid Scan High Rate
(5-min) mode of the Spinning Enhanced Visible and Infrared Imager on board the Meteosat
Second Generation satellite [62]. Satellite images (maps not shown) indicate a cloud top
brightness temperature below −65 ◦C, a temperature that can be found at approximately
12.5 km height, according to the atmospheric sounding measured at 0000 UTC on 10
September at Pratica di Mare (data not shown), a sounding station located approximately
250 km south of the area of interest. Further and in-depth analyses of the Livorno case
using satellite-based observations are available in [63].

The deep convection of the Livorno event produced (see Figure 4a) an average of four
lightning strikes per second over northern Tuscany in the six hours between 2150 UTC of 9
September and 0350 UTC of 10 September; this number is approximately 10% of the global
flash rate [64].

For those rain gauges that recorded the greatest amounts of precipitation (Valle
Benedetta and Quercianella), corresponding lightning time series graphs are shown in
Figure 4b,c as histograms of the number of strokes per hour within ±0.1 degree of the
two weather stations centers, from 2200 UTC of 9 September to 0400 UTC of 10 September
2017. Totals of 9015 and 7177 strikes were detected during the 6 h period for Quercianella
and Valle Benedetta stations, respectively. The highest number of flashes was recorded
at 0100 UTC on 10 September for both Quercianella and Valle Benedetta (3053 and 2528,
respectively).
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(a) Livorno 2017/09/10 1730 UTC (b) Aléria 2017/09/10 1730 UTC

(c) Livorno 2017/09/10 2045 UTC (d) Aléria 2017/09/10 2045 UTC

(e) Livorno 2017/09/10 0100 UTC (f) Aléria 2017/09/10 0100 UTC

Figure 3. Sequence of radar reflectivity (unit dBZ) maps during the rainfall event as detected by the
Livorno (left) and Aléria (right) radar systems. (a,b) At 1730 UTC on 9 September. (c,d) At 2045 UTC
on 9 September. (e,f) At 0100 UTC on 10 September.

2.5. Modeling Setup

The numerical model used in this work to simulate the 9–10 September Livorno case
was the WRF model [65]. The Mesoscale and Microscale Meteorology (MMM) Laboratory
at the National Center for Atmospheric Research (NCAR) has led the development of the
WRF model since its inception in the late 1990s. It is a fully compressible, Eulerian, non-
hydrostatic mesoscale model, designed to provide accurate numerical weather forecasts
both for research activities and for practical operations. In this work, we implemented the
Advanced Research WRF (ARW) version of the model updated to version 4.0 (June 2018).
The model’s dynamics, equations, and numerical schemes implemented in the WRF-ARW
core are fully described in [65,66]; the model’s physics, including the different options
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available, is described in [67]. In Table 1 we give a short summary of the basic model
settings used in this study: the domain of integration is indicated in Figure 1 with the
red rectangle; the grid spacing is 3 km; a stretched vertical grid with 50 vertical levels
up to a height of 100 hPa was applied, with 12 levels in the lowest 1500 m. The time
step was 12 s, and we stress the fact that the model was set with the explicit treatment of
convective processes. In Table 1, we also give references to the micro-physics, boundary-
layer, land-surface, radiation, and turbulence schemes adopted. All the WRF simulations
(with and without assimilation) performed in this study share the same basic set of physical
parameterizations listed in Table 1. This configuration mirrors the one that was operational
at the weather service of the Tuscany regional (see www.lamma.toscana.it, (accessed on
29 April 2021)) at the time of the Livorno event, although in this study we used a more
updated WRF model version (4.0 instead of 3.9).

(a)

(b) (c)

Figure 4. (a) Map of lightning strikes measured between 2150 UTC, 9 September 2017, and 0350 UTC, 10 September 2017.
(b) A histogram of the number of strokes per hour within ±0.1 degree of the Valle Benedetta rain gauge, registered from
2200 UTC, 9 September, to 0400 UTC, 10 September, 2017. (c) As in (b) but for the Quercianella rain gauge. Data were taken
from the Blitzortung dataset (www.blitzortung.org/, (accessed on 29 April 2021)).

www.lamma.toscana.it
www.blitzortung.org/
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Table 1. Basic settings of the WRF model simulations.

Parameter Value

Rows × Columns 440 × 400
Grid spacing 3 km
Vertical levels 50

Time step 12 s
Cumulus convection explicit (no parameterisation)
Micro-physics option Thompson scheme [68]

Boundary-layer option Yonsei University [69]
Land-surface option Unified Noah model [70]

Radiation option Rapid radiative transfer model [71]
Turbulence option Yonsei University+2D Smagorisnski [69]

To start the WRF simulations, initial and boundary conditions were derived from the
ECMWF-IFS global model data operational at the time of the event (model cycle 43r3).
The spectral resolution was TCO1279, (where CO means that a cubic-octahedral grid was
used), which corresponds to a grid spacing of approximately 9 km; the number of vertical
levels was 137 and the top of the atmosphere was set to 0.01 hPa.

The control forecast was initialized at 1200 UTC on 9 September 2017, and the forecast
length was set to 15 h (ending time was 0300 UTC, 10 September). To test the impact of
assimilating conventional and radar data, we utilized the WRF data assimilation (WRFDA)
system [72]. The WRFDA software was used to perform 3 h cycling 3D-Var data assim-
ilation using the rapid update cycle approach, similarly to what is found in [73]. We
implemented an assimilation step every 3 h starting from 1200 UTC on 9 September up
to 1800 UTC of the same day with an assimilation window of ±30 min; i.e., all the ob-
servations between t− 30 minutes and t + 30 minutes were assumed to be valid at the
analysis time t. The 3D-Var implementation of the WRFDA package relies on previous
developments designed for the fifth-generation Penn State/NCAR Mesoscale Model [74].
Although detailed descriptions of the 3D-Var method can be found in [41,75,76], the tech-
nique can be summarized as follows: the basic idea is to estimate the optimal state of the
atmosphere (in the model space) by using the observations available, a short-term forecast
(often referred as first guess or background), and information about error statistics on both
the observations and the model. Let t ∈ R be the time of the analysis and let x = x(t) ∈ Rn

be the model analysis at time t. Using an iterative process, the 3D-Var method looks for the
minimum value of the cost function J(x), defined as:

J(x) =
1
2

{
(x− xb)

TB−1(x− xb) + (yo − H(x))TR−1(yo − H(x))
}

, (1)

where, following the notations of [77], xb ∈ Rn is the background model state at time
t, B ∈ Rn×n is the covariance matrix of the background errors, yo ∈ Rp is the vector of
observations (p < n) at time t, H : Rn 7→ Rp is the observation operator that transforms the
variables from the model state to the observation space, and R ∈ Rp×p is the covariance
matrix of observation errors.

Accurate estimates of the B and R matrices determine the quality of the analysis.
As regards the R matrix, default values provided by the WRFDA software (see User’s
Guide [65]) were used for diagonal elements, whereas off-diagonal’s elements were set
to zeros. In fact, correlations between different instruments are usually assumed as null.
Although some studies demonstrated that including inter-correlations in the R matrix
may provide better analyses [78], this mainly holds when satellite radiance data are con-
sidered [79,80]; thus, we claim that the assumption of the R’s structure was valid in our
study. We computed the background error correlation matrix B by means of the National
Meteorological Center (NMC) method [81], which estimates the value of the elements of
the matrix statistically, by averaging the differences between two short-term forecasts valid
at the same time but initialized one shortly after the other (we used 12 h later). Although
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the NMC method is described as a very crude first step by its authors, it is still widely used
nowadays. The B matrix we used is the result of the NMC method applied for ten months
(from December 2018 to October 2019).

Following [82], the observation operator H for the radial velocity Vr is defined by the
relationship:

Vr = u
x− xi

ri
+ v

y− yi
ri

+ (w− vT)
z− zi

ri
, (2)

where (u, v, w) are the modeled wind components, (xi, yi, zi) are the coordinates of the radar
antenna, (x, y, z) are the coordinates of the radar observation, ri is the distance between
(x, y, z) and (xi, yi, zi), and vT is the mass-weighted terminal velocity of the precipitation.
To calculate vT , the default formula [83] was used—that is:

vT = 5.4 · (p0/ p̄)0.4 · q0.125
r , (3)

where p0 is the surface pressure, p̄ is the base-state pressure, and qr (unit g· kg−1) is the
model predicted rainwater mixing ratio. Let Z be the reflectivity data expressed in dBZ;
then the nonlinear Z− qr relationship is defined by [82]:

Z = c1 + c2 · log10(ρqr) , (4)

where c1 = 43.1 and c2 = 17.5 are constants and ρ (unit kg· m−3) is the air density.
Following the performances achieved by [43], radar reflectivity data were assimilated
using the indirect technique proposed by [76], that is, by inverting the Z − qr relation
given in Equation (4) and assimilating the observed rainwater mixing ratio estimated from
reflectivity values.

Before assimilation, radar reflectivity data undergo to a thinning procedure. This
consists of eliminating ground/sea clutter and georeferencing radar data onto the model
grid; then for each model grid point the procedure selects the maximum reflectivity value
(and the corresponding radial velocity) among radar observations belonging to that grid
point. Finally, to reduce the spin-up in the first hours of integration, we implemented the
digital diabatic filter initialization [84] at each starting time of the WRF simulationsw.

To assess the impact of assimilating different types of observations, three experimental
forecasts were deployed, and their results are compared with those obtained with the
control forecast (named with the code C), which did not assimilate any observational
dataset. The first experimental forecast (code S) assimilated data from ground weather
stations; the second (code S + R) assimilated radar data in addition to ground weather
station data. Conventional data assimilated in both experiments were: pressure, temper-
ature, and relative humidity at the 2 m above ground level; wind speed and direction at
the 10 m above ground level. The total number of weather stations reporting valid data
was 1036 for the assimilation step performed at 1500 UTC on 9 September and 1051 for
the 1800 UTC assimilation. Remote sensed data assimilated were reflectivity data from
the X- and S-band radars and radial velocity data from the Aléria S-band radar. The loca-
tions of weather stations and radars are indicated with the blue points and red triangles,
respectively, in Figure 5.

To investigate the role of sea surface temperatures (SSTs) in the Livorno case, we
performed a further numerical experiment (code S + R + M), which shared the same
settings and design of the S + R experiment, but included a simplified ocean model
that modified its status (SSTs and ocean mixed layer depth) thanks to the interface heat,
momentum, and mass fluxes. In fact, the interaction between the atmosphere and the ocean
can play a key role in the formation and intensification of extreme atmospheric events [85]
through the energy fluxes, which can impact the generation of HPEs by modifying the
structure of the boundary layer, the distribution of wind fields, and therefore the position
of the convergence line [86,87]. Historically, numerical weather models implemented the
SSTs as a static boundary, taken from the global models or from low-resolution satellite
datasets. However, when following this approach, it is difficult to reproduce complex
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energy feedback between air and sea [88], particularly in coastal areas. In order to limit this
impact, without slowing down the calculation time with the coupling of an ocean model,
we proceeded by using a “slab ocean,” also known as a simple ocean mixed layer [89],
which updates the SSTs every hour, according to the energy fluxes at the air–sea interface.
This approach is based on a simplified model that aims at implementing the SSTs and ocean
mixed layer depth into the WRF model. This one-dimensional approach was initialized
with SST data, a mixed layer depth value of 40 m, and a lapse rate 0.14 K · m−1. These
data were provided by the Copernicus Marine Services (CMEMS) numerical model. WRF
modifies the SST values according to the energy and momentum fluxes at the interface, not
taking into account the ocean dynamics, but making each grid point evolve as a function of
the energy budget at the surface.

Figure 5. Geographical extent of the domain of integration of the WRF model. The two red triangles
“4” indicate the locations of the Aléria (in the Corsica region) and Livorno (on the Tyrrhenian coast)
radar stations. The blue dots indicate the locations of the ground weather stations assimilated during
the assimilation steps.

Table 2 shows a summary of the various forecasts and the codes adopted to name
them. Figure 6 shows a scheme of the modeling setup.
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Table 2. Codes assigned to name the forecasts and descriptions of the data used in each assimi-
lated forecast.

Forecast Code Data Assimilated

C none (control run)

S Convectional data from weather stations:
pressure, 2-m temperature
2-m relative humidity
10-m wind speed and direction

S + R as in S plus reflectivity data from X- and S-band radars,
and radial velocity data from the S-band radar

S + R + M as in S + R
(it differs from the S + R experiment because
it implements a simplified marine model)

First GuessFirst Guess

3DVar Assimilation

12 UTC

21 UTC – 03 UTC

Initial and
Boundary

Conditions

Update
Boundary

Conditions

Observations
± 30 min

Digital
Filter

Initialization
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Figure 6. Modeling setup of the WRF control run C and assimilated runs S, S + R, and S + R + M.

3. Quantitative Precipitation Forecast Verification

When evaluating the performances of different forecasts, a quantitative evaluation of
the spatial agreement between predicted and observed values is crucial. A direct numerical
comparison can be misleading, especially for a variable whose spatial distribution is highly
concentrated in a small area, as happens during HPEs. In fact, any forecast that correctly
predicts the occurrence of highly localized heavy rain, may incur the so called “double
penalty” error [90] if it places the event in a nearby area, producing, for example, a root
mean squared error (RMSE, see [91]) higher than another forecast which completely misses
the prediction. To overcome such a limitation, object-based verification methods have been
developed by the scientific community [92], and currently, software packages for practical
applications exist [93]. These methods exhibit some drawbacks, such as the smoothing and
filtering the observations undergo, and the large number of parameters whose settings are
somewhat arbitrary.

Considering the features of the phenomenon under examination, we have devised
a simple and robust ad hoc verification method, which does not alter in any way the
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recorded rainfall values. No arbitrary or subjective parameters are required, except for
the ones needed to define the area where the event occurred, namely, the center and
radius of the circle by which the area of interest is inscribed. For the flash flood under
examination, we chose a circle with a radius of 0.4 degrees in the longitude–latitude forecast
domain and centered at the point PC with coordinates (xC,lon, xC,lat) = (10.64◦ E, 43.75◦ N),
about 30 km northeast of Livorno. This area includes 91 rain gauges located at points Pi
(i = 1, . . . , 91), which measured the highest rainfall rate in the 6 h period ending on 0300
UTC, 10 September (see Figure 2). By applying affine transformations (more precisely,
rigid roto-translations preserving the Euclidean distance; these transformations are usually
denoted as the SE(2) group) to the 91 position vectors xi = (Pi − PC) ∈ R2, we searched for
the transformation while minimizing the RMSE between the cumulative rain ri measured
at station Pi and the f (yi) predicted by the forecast model f at the transformed points
yi ∈ R2 (see Figure 7). Since we applied a roto-translation, any point yi is determined by:

yi = Rφ(xi) + x0 , (5)

where φ is the rotation angle, Rφ ∈ R2×2 is the rotation operator, and has the form:

Rφ =

[
cos φ − sin φ
sin φ cos φ

]
, (6)

and x0 = (x0,lon, x0,lat) ∈ R2 is the translation vector. All the parameters of the roto-
translation are defined in the longitude–latitude space. We note that the distance, in km,
between PC and the center of any circle translated by a vector x0 is given by:

d0 ' R
√

cos2(xC,lat) · x2
0,lon + x2

0,lat , (7)

where x0,lon, x0,lat, and xC,lat are expressed in radians, and R is the Earth’s radius (approxi-
mately 6370 km). The minimization of the positive defined error function

RMSE =
√
〈( f (yi)− ri)2〉 , (8)

where 〈·〉 stands for the average operator over the index i, determines the particular set of
parameters for which the agreement between predicted and observed cumulative rain is
the highest possible, at least in terms of RMSE. In this way, the location and intensity errors
are disentangled, the former of which is given by the affine transformation parameter’s
amplitude (φ and x0), and the latter by the minimized RMSE.

To contend with the validation method described above, standard verification scores
were computed. Observed rainfall data registered at the 91 rain gauges were compared
with corresponding modeled data, which were extracted at the 91 nearest grid points
containing rain gauge locations. Standard verification statistics considered were: RMSE
(defined in Equation (8)), mean error (ME), and the multiplicative bias (mbias). Let ri and
f (Pi) be the observed and modeled rainfall values at location Pi, respectively; then ME
and mbias can be defined as follows (see also [91]):

ME = 〈 f (Pi)− ri〉, (9)

mbias =
〈 f (Pi)〉
〈ri〉

. (10)

Furthermore, to summarize multiple aspects of the model’s performance in a single
diagram, we made use of the performance diagrams (see [94]). Such diagrams plot four skill
measures of dichotomous (yes/no) forecasts, probability of detection (POD), success ratio
(SR), frequency bias (bias), and critical success index (CSI), using the 2× 2 contingency
table shown in Table 3.
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Figure 7. The gray circle contains the 91 rain gauges (colored points) that registered the heaviest rainfall in the 6 h ending at
0300 UTC on 10 September. The sample black circle contains the (i.e., roto-translated) 91 transformed rain gauges obtained
by varying the parameters d and φ. For each forecast, the verification procedure extracted the predicted precipitation values
(samples shown with the red contours) at the black points’ locations and calculated the root mean squared error against
values reported at the colored points.

Table 3. The 2× 2 contingency table.

Event Observed

yes no

Event Forecast yes A B
no C D

The four skill measures are defined as follows:

POD = A
A+C ,

SR = 1− B
A+B ,

bias = A+B
A+C ,

CSI = A
A+B+C .

4. Results

In Figure 8, we show with the shaded colours the quantitative precipitation forecast
(QPF) in the 6 h period ending at 0300 UTC, 20 September for the four experiments listed
in Table 2.
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Figure 8. Rainfall forecast accumulated in the 6 h period ending on 0300 UTC, 10 September 2017 (shaded colors, unit mm):
(a) control run C, (b) assimilated run S, (c) assimilated run S + R, (d) assimilated run S + R + M. The black circles are the
outputs of the roto-translations of the gray circles, minimizing the RMSE of the rainfall with respect to the values measured
by the 91 rain gauges covering the area mostly affected by the heaviest precipitation (rain gauge positions indicated in gray).
The dashed segments indicate the distances between the centers of the black and gray circles. The solid black segment shows
the rotation of the circle with respect to north, counterclockwise. The red triangle (“4”) indicates the Livorno township.

In each panel, the gray circle indicates the area containing the 91 rain gauges (closed
gray points) that registered the heaviest precipitation. The visual inspection of Figure 8
indicates that the C and S forecasts provided QPF values close to zero in the Livorno area.
On the other hand, both numerical experiments predicted QPF peaks up to 100–120 mm
in an area a few tens of kilometers (approximately 40–60 km) to the north of the area of
interest, where rain gauges registered accumulated precipitation of up to 30–40 mm (see
Figure 2a). Both the S + R and S + R + M forecasts predicted high QPF values inland
of the Livorno area; however, QPF maxima (in the ranges 125–150 and 80–100 mm for
the S + R and S + R + M forecasts, respectively) largely underestimated actual observed
values, which reached approximately 200–230 mm (see Figure 2b).

In Table 4, we show the verification skill scores defined in Equations (8)–(10). The scores
were computed using observed rainfall registered at the 91 rain gauges shown in the gray
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circle of Figure 8 and the corresponding modeled precipitation extracted at the grid points
closest to the rain gauge locations.

Table 4. Verification scores, as defined in Equations (8)–(10), for the four experimental runs.

Forecast Code RMSE ME mbias

C 65.8 −50.3 <10−3

S 65.9 −50.5 <10−3

S + R 46.3 −2.5 0.95
S + R + M 40.4 −2.9 0.94

The S + R and S + R + M forecasts exhibited the more satisfactory scores; in fact,
the RMSEs were approximately 40/45 mm, whereas C and S errors were higher and
reached approximately 65 mm. The MEs and biases demonstrate the underestimation of
all the four predictions; underestimations were remarkable for C and S (ME ' −50 mm
and mbias < 10−3). On the other hand, the S + R and S + R + M forecasts provided
more skillful scores, with the mbias being close to the perfect score of 1 and MEs being
approximately −2.5/−3 mm.

In Figure 9, we show the performance diagram for selected rainfall thresholds corre-
sponding to approximately the 20th, 40th, 60th, and 80th percentiles of the observational
dataset. The plots show that, for precipitation thresholds equal to 17, 34, and 49 mm,
the S + R and S + R + M forecasts behaved similarly and outperformed the C and S fore-
casts, which had no skill, since both matching points lie close to the bottom-right corner.
As the precipitation threshold equaled 83 mm, which approximately corresponds to the
80th percentile of the observations, the S+ R forecast did not provide any valuable informa-
tion, since the matching point lies close to the bottom-left corner. The S + R + M forecast
has some skill as regards the bias (approximately 0.5) and the SR score (approximately
0.3), whereas the performances of CSI ('10) and POD (<0.2) were limited. Skill scores for
precipitation thresholds greater than the 80th percentile of the observations were poor or
null for all the forecasts (performance diagrams not shown).

In each panel of Figure 8, we also show the result of the roto-translation of the gray
circle minimizing the RMSE between the observed and predicted rainfall data (the trans-
formed circle and rain gauge locations are indicated with the black color). The angle
of rotation φ was measured, by definition, counterclockwise from north. For each ex-
perimental run, the parameters of the RMSE minimizing roto-translation are shown in
Table 5.

Table 5. Parameters of the roto-translation minimizing the RMSE between observed and predicted
values extracted at the 91 rain gauge locations located within the gray and black circles, respectively,
shown in Figure 8. RMSEmin is the error after the minimizing roto-translation; x0,lon and x0,lat are
the coordinates of the translation vector x0 defined in Equation (5); d0 indicates the distance, in km,
between the centers of the black and gray circles (i.e, the dashed segment of Figure 8) and is given in
Equation (7). The angle φ indicates the rotation amplitude with respect to north, counterclockwise.

Forecast Code RMSEmin x0,lon x0,lat d0 φ

C 29.7 −0.36 +0.87 100 343◦

S 29.0 −0.30 +0.75 86 333◦

S + R 29.9 −0.24 −0.18 27 196◦

S + R + M 30.1 +0.48 +0.41 60 351◦
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Figure 9. Performance diagrams for selected precipitation thresholds accumulated in the 6 h period ending at 0300 UTC,
10 September. In each panel the x-axis shows the success ratio (SR), the y-axis shows the probability of detection (POD),
the curved lines represent critical success index (CSI) values, and the dashed diagonal lines represent bias. In each panel,
the blue point overlaps the gray point.

After the roto-translations, all four experiments exhibited similar RMSEmin; experi-
ment S provided the lowest value (29.0 mm) and experiment S + R + M had the largest one
(30.1 mm). However, the parameter d0 indicates that the S + R experiments displaced the
transformed black circle by approximately 27 km, whereas the other experiments provided
higher displacements, ranging from 60 to 100 km. We stress the fact that not only was the
displacement lower when radar data were assimilated, but this was also the case when
radar were oriented along the axis of the perturbation hitting the Livorno township (from
southwest to northeast). The angle of rotation φ reported in Table 5 spans from 196◦ for
S + R to 351◦ for S + R + M.

To further evaluate the impact of assimilating conventional and radar data, in Figure 10
we show the 10 m wind speed and direction at 0000 UTC on 10 September for the four
numerical experiments. All four forecasts reconstructed a well defined convergence line
over the Ligurian Sea between southerly and westerly winds, which is responsible for trig-
gering convective rainfall. However, in C experiment, that convergence line was positioned
approximately 70 km to the north of the Livorno area, causing the wrong displacement
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of precipitation. The impact of the conventional data (experiment S) was negligible and
did not modify the position of the convergence line with respect to the control run C
(see Figure 10a,c). On the other hand, assimilating radar data substantially modified the
10 m wind speed and direction forecast, producing a better localization of the convergence
line, positioned close to the area that registered the heaviest precipitation (see panel (c) in
Figure 10). The implementation of the simplified ocean model (see panel (d) in Figure 10)
generated prefrontal winds (southern part of the convergence line) more intense by about
8 m/s, and a local pressure decrease of about 1.5 hPa (map not shown); as a consequence,
the front-genesis evolved more quickly with greater intensity in the event area.

Figure 10. Ten-meter wind speed (unit km· h−1) and direction at 0000 UTC, 10 September for (a) control run C, (b) assimi-
lated run S, (c) assimilated run S + R, (d) assimilated run S + R + M. The white triangle indicates the Livorno township.

To understand how the precipitation field is modified in the experimental runs,
in Figure 11, we show the specific humidity averaged over the entire column of atmo-
sphere at 0000 UTC on 10 September. We stress the fact that these maps are the results of
both the assimilation procedure and the model evolution in the first hours of integration.
The S + R run (panel (c) in Figure 11) clearly shows a tongue of high water vapor intensity
extending from the northern tip of Corsica Island to the northern Tuscany coasts (and
further inland), which was not simulated, nor was it in the control run C (panel (a) in
Figure 11) or in the assimilated run S (panel (b) in Figure 11). The addition of the simplified
marine model to the S+ R experiment (panel (d) in Figure 11) moved this line of high water
vapor content northwards, close to the Ligurian coasts, slightly increasing its intensity,
with values greater than 6.3 g· kg−1.
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Figure 11. Mean specific humidity (unit g· kg−1) over the entire vertical profile at 0000 UTC of September for (a) control
run C, (b) assimilated run S, (c) assimilated run S + R, (d) assimilated run S + R + M. The red triangle (“4”) indicates the
Livorno township.

5. Discussion

As regards the infamous rainfall event that occurred in the Livorno area (Central Italy)
during the night between 9 and 10 September 2017, we evaluated possible improvements
arising from the assimilation of both conventional and radar data in the setup of the WRF
model, which was operational at the meteorological agency of the Tuscany region (LaMMA)
at the time of the event. In addition, we implemented a simplified ocean model, having a
relatively low computational cost, to evaluate any further improvements due to a better
description of energy exchanges between air and sea, which are known to play a crucial
role in the formation and intensification of HPEs [85–87]. Such experimental forecasts were
compared against a control run, which did not assimilate any data, nor implement the
simplified ocean model.

Since no reliable gridded observed rainfall dataset was available for the Livorno case,
as ground-truth data, we used the observations collected at the rain gauges managed by
the Hydrological Service of Tuscany [55]. To assess the accuracy of QPFs, we introduced a
novel method (see the sketch in Figure 7), aimed at a joint evaluation of both the intensity
and the position errors of the forecasts, while preserving the recorded rainfall data (i.e.,
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no interpolation or filtering of the observations was performed to comply with the model
data). To further validate the predictions, we also computed standard verification scores
and constructed performance diagrams for predefined precipitation thresholds.

Figure 8a demonstrates that the control simulation C was not able to correctly predict
rainfall peaks in the Livorno area; this is not new information and confirms the findings of
similar studies [43,45,63]. However, the results shown in Figure 8 and Table 5 suggest that
the S + R forecast is more valuable. In fact, looking at the position error, the d0 parameter
is the lowest, indicating the optimal positioning of the transformed black circle close to
the original gray circle. We note that the parameter d0 for the S + R forecast is about
one third the length of d0 for the S forecast and about one quarter the length of d0 for
the C control run, indicating the relatively higher accuracy of S + R with respect to C
and S. For all the forecasts, with the exception of the S + R case, the RMSE minimization
transformation moved the circle including the representative rain observation points inland,
next to the area with the highest predicted rain and applied translation with slight rotation
(the parameter φ is close to 360◦). In the R + S case, on the contrary, the translation
moved the circle towards the seaside with a rotation of φ = 196◦ that fliped coastline
and inland observation points, reversing north with south. Indeed, the S + R forecast
located the heaviest rain inland, instead of near the coast as actually happened, and further
south. Consequently, the minimization process tends to rotate the circle of stations by
about 180◦, flipping coastline and inland rain gauges, and northern with southern ones.
The translation towards the seaside indicates that the heaviest rain predicted inland was
even heavier than the maximum values recorded on the coast. As regards the intensity
error, the lowest RMSEmin value was obtained for the S forecast; however, all the forecasts
provided comparable intensity errors (at least for the selected rain gauges).

Similar conclusions can be drawn looking at the results shown in Table 4 and Figure 9.
Both the S + R and S + R + M forecasts outperformed C and S, yielding better scores.
However, in the absence of any assessment regarding the position errors, it is difficult
to evaluate which forecast between S + R and S + R + M provided the more valuable
predictions. We deduce that the position/intensity error information shown in Table 5 and
Figure 8 confirms and complements the information obtained from standard verification
skill scores shown.

Our conclusions agree with those of [45], who found that assimilating radar (and
lighting) data provides better QPFs by changing the water vapor mixing ratio during the
assimilation step. Incidentally, we note that the performance diagram shown in Figure 9b
agrees well with Figure 16f in [45] and provides similar, or slightly better, results, support-
ing common conclusions. However, we acknowledge that a direct comparison should be
treated with care, because the radar data and assimilation techniques were different, and
the period over which rainfall data were accumulated was shorter (3 vs. 6 h).

Our findings further confirm [39,41–43,45] that 3D-Var radar data assimilation is an
effective method for improving QPFs by correcting the initial conditions of limited-area
weather numerical models. In fact, concerning the assimilation of radial velocity data
(available at the Aléria S-band radar only), Figure 10 suggests that remote sensed data
are beneficial for better positioning of the low-level wind convergence line. Moreover,
the indirect assimilation of radar reflectivity (available at both the Aléria and Livorno
radars) and in turn the modification of water vapor mixing ratio (see Figure 11) are sup-
posed to provide an environment that is conducive for convection; convection carries large
contents of moisture higher into the atmosphere (see panels (c) and (d) in Figure 11) and
energetically favors cloud formation. Thus, water vapor’s spatial and temporal variations
indirectly provide some indications on how the different model setups may impact the
event prediction. Our findings agree with those of [41], who discussed how radial velocity
assimilation has a large impact on wind velocity, whereas reflectivity data have a direct
impact on hydrometeor analyses. We conclude that, since the origin of the Livorno event
took place on the sea, the assimilation of conventional data, available only on land, had a
low impact on the accuracy of QPF for the S experiment. On the other hand, assimilating
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radar data, which were available for the offshore stage, provided pertinent and crucial
information regarding rainfall triggering and atmospheric moisture content. Furthermore,
we claim that such remote sensed data modified the model dynamics in a way that per-
sisted a few hours (up to 9 h) after the assimilation step (which ended at 1800 UTC on
9 September).

Given the outputs of the S + R + M experiment (see panel (d) in Figures 8, 10 and 11),
the forecasts were not dramatically affected by the use of the simplified ocean model. This
is consistent with the conclusions drawn by [95], who found that the evolution of the SSTs
during the model integration has a marginal impact on the short-range predictions (forecast
length less than 18 h). We can deduce that, for the Livorno case, the exchange of both heat
and water vapor between the air and sea did not play a crucial role, as also found by [47].
In fact, the authors argued that feeding SSTs estimates from Sentinel-3 satellite observations
into the WRF model did not improve the Livorno QPF for a high precipitation rate. This
happened possibly because at the kilometer scale, the SSTs determine the intensity of the
warm low-level jet [88], which, in our case, was partially corrected by the ingestion of radial
velocity radar data. In our S + R + M forecast, it was observed that the heat southerly
fluxes were more intense by about 10–15% if compared to S + R data (map not shown).
We found that, although the skill scores of S + R and S + R + M were similar (see Table 4
and Figure 9), the simplified ocean model was able to modify the precipitation field by
reducing the QPF peaks close to the coast and thus producing a position error (see panels
(c) and (d) in Figure 8 and Table 5).

We claim that assimilating radar data turned out to be effective because we used
a covariance matrix of the background errors B that was the result of a long-term ap-
plication of the NMC method (approximately ten months). In fact, to estimate B, we
used the operational forecasts issued twice a day at the regional meteorological service
of Tuscany (LaMMA), which shared the same setup (in terms of resolution, number of
vertical levels, physical parameterisations, etc.) as the runs presented herein. This is a
remarkable improvement with respect to previous similar studies; to mention a few works,
Refs. [39,43] employed a 1-week and a 1-month period, respectively, to compute the B
matrix, whereas [45,50] applied the NMC method during the Hydrological cycle in the
Mediterranean Experiment—First Special Observing Period (HyMeX-SOP1, which lasted
for about two months in 2012, see [20]). It is also worth mentioning [42] who used the
default matrix provided by the WRFDA system, which is produced with global data and
its use for regional cases is sometimes discouraged [65]. Additionally, more recent works
(see [96]) used a time period shorter than one month to compute the covariance matrices of
the background errors. However, we acknowledge that further investigations are needed
to assess the impact of a long-term application of the NMC method to build a high-level,
quality B matrix and obtain better QPF data. We stress the fact that our study focused on
a single event; to draw more general and statistically sound conclusions, the promising
methodology and results have to be evaluated for different locations and similar events,
and that is what we intend to do. However such experiments must rely on the availability
of the same X- and S-band radar data used in this study; this limits the period to HPEs
occurred since 2014 [48].

6. Conclusions

Although tremendous improvements were achieved in recent years, the operational
forecasting of HPEs in the Western Mediterranean basin still remains a challenging task,
particularly in the context of a warming climate. As concerns the Livorno case, the main
findings of this work are:

• Assimilating reflectivity data from X- and S-band radars and radial velocity data from
S-band radar significantly improves the descriptions of atmospheric humidity content
and low-level winds, resulting in better QPFs.
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• The application of a simplified ocean model, although modifying the low-level jet
associated with the event, scarcely impacts the short-range forecast (length shorter
than 12 h) of precipitation.

• The novel QPF verification method introduced in this paper, based on roto-translation
RMSE-minimisation, confirmed and reinforced the results achieved with standard
verification scores, thereby providing more information about the position error of
the WRF simulations.

The conclusions we drew support the deployment of a dense network of relatively
small radars in the coastal areas of the Western Mediterranean Sea. Such high-resolution
(both spatial and temporal) data may have beneficial impacts on short-range numerical
weather predictions. In fact, by extracting the maximum value from local observations, such
as those collected by X-band radars which are not processed by international meteorological
organizations, higher quality analyses can improve the description of finer scale features
and thus provide better initial conditions to start limited-area weather models.
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