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Abstract: Reference evapotranspiration (ET0) in the hydrological cycle is one of the processes that is
significantly affected by climate change. The Qinghai–Tibet Plateau (QTP) is universally recognized
as a region that is sensitive to climate change. In this study, an area elevation curve is used to divide
the study area into three elevation zones: low (below 2800 m), medium (2800–3800 m) and high
(3800–5000 m). The cumulative anomaly curve, Mann–Kendall test, moving t-test and Yamamoto test
results show that a descending mutation occurred in the 1980s, and an ascending mutation occurred
in 2005. Moreover, a delay effect on the descending mutation in addition to an enhancement effect on
the ascending mutation of the annual ET0 were coincident with the increasing altitude below 5000 m.
The annual ET0 series for the QTP and different elevation zones showed an increasing trend from
1961 to 2017 and increased more significantly with the increase in elevation. Path analysis showed
that the climate-driven patterns in different elevation zones are quite different. However, after the
ascending mutations occurred in 2005, the maximum air temperature (Tmax) became the common
dominant driving factor for the whole region and the three elevation zones.

Keywords: ET0; mutation analysis; temporal trend; path analysis; climate driving factor

1. Introduction

Rapid global climate change has had a vast impact on the ecological environment and
biological living systems [1,2]. Changes in water resources and water demand are among
the important signals of climate change [3–6]. As the most active factor of the water cycle,
evapotranspiration is not only the unique junction of the water transport and energy cycle
in the earth-atmospheric system but also a hydrological cycle process, which is significantly
affected by climate change [7–10]. As a result of the unfeasibility of the direct prediction of
evapotranspiration, people usually estimate the reference evapotranspiration (ET0) first
when formulating crop irrigation plans [11]. ET0 is a metric that refers to the maximum
evaporation that can be achieved by a fixed underlying surface when the water supply
is sufficient, as defined by the Food and Agriculture Organization of the United Nations
(FAO) [12]. ET0 is one of the important indicators to reflect the regional evapotranspiration
capacity and crop water requirement [13]. The change of ET0 is only related to climate
factors and location. Studying the changing trend of ET0 plays an essential role in the
calculation of the water balance in a watershed when developing crop irrigation plans and
drought warning [14–17].

Climate change has significantly changed the spatial–temporal patterns of reference
evapotranspiration in many regions [18–23]. Since the 1960s, the increasing global tem-
perature has resulted in an obvious change in the trend of reference evapotranspiration in
different regions of the world [24–27]. In recent years, the annual series of ET0 showed a
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significant increasing trend in the Amazon basin, Kazakhstan, Romania and the Ecuador
coast [24–27]; however, a decreased ET0 appears in many other regions around the world,
such as the Qilian Mountains, the Huaihe River Basin, the upper reaches of the Yellow River,
and a major part of Northern China [28–35]. The abovementioned phenomenon is called
“the evaporation paradox”. Xing et al. [36] found that this was due to the limitation of
relative humidity. Furthermore, relative humidity is the main driving factor of ET0 change
in Tunisia, the Loess Plateau, Sichuan Plateau, Guangxi Basin, Yunnan Guizhou Plateau
and many other regions of China [37–40]. It has also been found that wind speed is the dom-
inant variable in the Huaihe River Basin and Southwest China [34,41]. McVicar et al. [29]
concluded that the decrease in ET0 was mainly related to aerodynamic factors (the global
wide performance of wind speed decline) and relative humidity (the significant humidity
increase in the warm season in Australia, Central and Southern Canada) at the global
scale. In addition, radiation composition, temperature and pollutant concentration were
also discovered to be key factors motivating the change of ET0 [42–44]. Because different
regions respond to climate change quite differently, it is necessary to conduct regional
research. Moreover, most of the relevant research at present focuses on the change trends
and its impact factors, only a few people have studied the impact relationships between
these factors.

Liu et al. [45] found that regions with a higher altitude are more sensitive to climate
change. As the most sensitive and vulnerable region in the context of global environmen-
tal change, the warming rate of the Qinghai–Tibet Plateau (QTP) is significantly higher
than other parts of the world during the same period [9,45–47]. A large number of stud-
ies have shown that the dramatic warming of the QTP has led to the rapid degradation
of glaciers and subsequently strengthened the hydrological cycle process and the hy-
draulic connectivity in this region [48–51]. Furthermore, Huang et al. [52] suggested that
compared with human factors, climate factors have a greater impact on vegetation dy-
namics in the QTP. Climate warming leads to the degradation of alpine grassland and
changes the soil nutrients as well as the components of the alpine grassland ecosystem,
which has a strong impact on the productivity of the plant community and soil microbial
community [53–58]. In addition to being a significant characteristic of climate change, ET0
is also an important index of crop water demand and a key referential factor of the hy-
drological cycle. Consequently, the analysis of the ET0 changing trend and climate-driven
mode of the QTP is not only of great value as a reference for guiding regional agricultural
activity and investigating the structure of the ecosystem, but also of great significance for
monitoring the dynamic changes of the world’s water resource reserves. However, most of
the existing research is mainly based on the spatial scale of the whole region of the QTP,
ignoring the huge altitude difference in the region.

The objectives of this study are as follows: (1) to identify the temporal variation
trend and mutation year of ET0 at different elevations in the QTP over the past 57 years,
(2) to analyze spatial characteristics of ET0 and its trend, and (3) to explore the driving
pattern and influence process between climate factors in different elevation zones on ET0
change before and after mutation. The results can help people understand the response
mechanism of ET0 to climate change, clarify the complex relationship between multiple
climate factors and provide a reference for agricultural and livestock production and water
resource management.

2. Materials and Methods
2.1. Study Area and Data

The Qinghai–Tibet Plateau (26◦00′ N~39◦47′ N, 73◦19′ E~104◦47′ E), which has a total
area of approximately 2.5 million km2, involving 8 countries (Figure 1), with an average
altitude of more than 4000 m, is the plateau with the highest altitude in the world and is
known as the “roof of the world” [59]. Furthermore, with approximately 70% of the global
alpine permafrost, the QTP is the source of some major Asian rivers, including the Indus,
Ganges, Salween, Brahmaputra, Mekong, Irrawaddy, Yangtze and Yellow rivers, known
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as “the world water tower” [60–62]. Because of its unique geographical conditions, fragile
ecological environment and sensitive climate change, the response of the QTP to climate
change is indicative of other regions.

Figure 1. Scope, altitude and geographical location of study area, and distribution of meteorologi-
cal stations.

The datasets were obtained from the China Meteorological Data Service Center
(CMDC) (available online at: http://data.cma.cn/, accessed on 13 April 2020), which
have undergone quality control and outlier processing before release (available online
at: http://data.cma.cn/, accessed on 13 April 2020). About the few missing data, we
interpolate it by the nearest neighbor method. We selected 46 meteorological stations
with long-term, relatively continuous and representative data in the QTP (Figure 1). The
daily meteorological data from 1961 to 2017 contain eight climatic elements, including
daily actual atmospheric pressure (AP), mean temperature (Tmean), maximum temperature
(Tmax), minimum temperature (Tmin), precipitation (P), relative humidity (RH), sunshine
duration (SD) and wind speed (U2).

The altitude of the QTP ranges from 732 m to 8848.43 m (Figure 1). In this study, the
area–elevation curve of the QTP was drawn (Figure 2), and 46 meteorological stations were
assigned into three elevation zones (low, medium, and high) according to the curve to ana-
lyze the variation trend of ET0 in different elevation zones in the QTP. Immerzeel et al. [60]
used this method to capture the spatial climate heterogeneity in the QTP.

Figure 2. Area-elevation curve for QTP. The dashed boxes are the altitude and area range of the three
elevation zones. The altitude of the low-elevation zone ranges from 1500 m to 2800 m (11 stations),
the medium is 2800 m to 3800 m (22 stations), and the high is 3800 m to 4800 m (13 stations).

http://data.cma.cn/
http://data.cma.cn/
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2.2. FAO Penman-Monteith Formula

The Penman–Monteith (P-M) formula is recommended by FAO [12] as the sole stan-
dard method to calculate the ET0, and it is currently one of the most widely used, together
with the pan evaporation method and some formulas, in the world [63,64]. In this paper,
the P-M formula is used to calculate daily ET0 values:

ET0 =
0.408∆(Rn − G) + γ 900

Tmean+273 U2(es − ea)

∆ + γ(1 + 0.34U2)
(1)

where ∆ is the slope of the relationship curve between saturated water pressure and
temperature (kPa ◦C−1); Rn is the net radiation on the crop surface (MJ m−2·day−1); G is
the soil heat flux (MJ m−2·day−1); γ is the hygrometer constant (kPa ◦C−1); Tmean is the
average air temperature (◦C); U2 is the wind speed at a height of 2 m above the ground
(ms−1); es is the air saturation vapor pressure (kPa); ea is the actual vapor pressure (kPa).

The net radiation is calculated using the following formula:

Rn = Rns − Rnl (2)

Rns = (1− α)Rs (3)

Rs =
(

as + bs
n
N

)
Ra (4)

Ra =
24(60)

π
Gscdr[ws sin ϕ sin θ + cos ϕ cos θ sin ws] (5)

Rnl = σ

[
T4

max,k + T4
min,k

2

]
(0.34− 0.14

√
ea)

(
1.35

Rs

Rso
− 0.35

)
(6)

where Rns is the shortwave radiation (MJ m−2·day−1); α is the canopy reflectance of
vegetation with a value of 0.23; n is the sunshine duration (h); N is the maximum possible
sunshine duration (h); Ra is the solar radiation at the top of the atmosphere (MJ m−2·day−1);
Gsc is the solar constant with a value of 0.082 (MJ m−2 min−1); dr is the inverse relative
distance of Earth–Sun; ws is the angle of the sunset sun (rad); ϕ is the latitude (rad); θ is the
solar declination (rad); Rnl is the net long wave radiation (MJ m−2·day−1); σ is the Stefan–
Boltzmann constant, the value is 4.903 × 10−9 (MJ K−4 m−2 day−1); Tmax,k is the maximum
daily air temperature (K); Tmin,k is the minimum daily air temperature (K); Rso is the
value of short wave radiation on the surface of vegetation on sunny days (MJ m−2·day−1).
Ye, J.S. et al. [65] found that as = 0.24, bs = 0.6 and Rso =

(
0.64 + 5.48 ∗ 10−5Z

)
Ra are

suitable for the QTP, where Z is the altitude (m).

2.3. Data Preprocessing

Before trend analysis for ET0, the Ljung-Box test (LB test) was used to test the autocor-
relation of the data, and the Cochrane–Orcutt method was used to transform the variables
of the sites with autocorrelation.

The LB test is widely used in white-noise monitoring of time series, especially in the
field of meteorology [66,67]. First, assuming that the sequences are completely uncorrelated,
this method constructs a statistic Q:

Q = n(n + 2)
h

∑
k = 1

ρ2
k

n− k
(7)

where n is the number of the sample, ρ2
k is the autocorrelation coefficient of the k-order lag

of the sample, and the statistic Q obeys the chi-square distribution. At the α significance
level, the reject domain is Q > x2

1−α,h. When the p-value of Q (h) is less than α, the original
hypothesis is rejected and the sequence receives autocorrelation.
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At a 0.05 significance level, this study calculated the p-value at the first order lay
of the original sequence by the LB test (Table S1 in Supplementary Information). If the
sequences with autocorrelation feature, the Cochrane–Orcutt method [68] was used for
variable transformation:

X′t = Xt − ρXt−1 (8)

ρ =
∑n−1

i = 1

(
Xi − X

)(
Xi+1 − X

)
∑n

i = 1
(
Xi − X

)2 (9)

Execute the LB test again on the new sequence after conversion. If autocorrelation
still exists, execute the variable conversion again by Cochrane–Orcutt until autocorrelation
is removed. Table S1 (in Supplementary Information) shows the p-value of the original
sequence and the converted sequence. It can be seen that many sites have autocorrelation,
but the autocorrelation can be removed after one conversion.

2.4. Temporal Trend and Mutation Analysis Method
2.4.1. Cumulative Anomaly Curve

A cumulative anomaly curve can intuitively indicate the long-term evolution trend
and continuous change of a sequence, and it is a common method to judge the change
trend of hydrological and meteorological sequences [69,70]. The calculation procedure of
the cumulative anomaly is as follows:

xt =
t

∑
i = 1

(xi − x), t = 1, 2, 3 . . . n (10)

x =
1
n

n

∑
i = 1

xi, i = 1, 2, 3 . . . n (11)

where xi is the meteorological dataset, n is the length of the dataset. The anomaly is the
distance to the average value, which reflects the degree of data dispersion. The rising of
the cumulative anomaly curve showed an upward trend, while the opposite showed a
downward trend. Since the mutation point must appear near the peak or inflection point
of the cumulative anomaly curve, the mutation year can be roughly tested.

2.4.2. Mann–Kendall Test

Recommended by the WMO, the Mann–Kendall (MK) test is widely used as a non-
parametric test of temperature, precipitation and other factors [71]. The advantage is that
the samples do not need to follow a certain distribution and are not disturbed by small
fluctuations. The MK test can as well reveal the trend and mutation of a dataset [72].

Define two statistics named S and Z, the calculation process is as follows:

S =
n−1

∑
i = 1

n

∑
j = i+1

sgn
(
xj − xi

)
(12)

gn(θ) =


1, if θ > 0

0, if θ = 0
−1, if θ < 0

(13)

Var(s) =
n(n− 1)(2n + 5)

18
(14)

Z =


s−1√
var(s)

, s > 0

0, θ = 0
s+1√
var(s)

, s < 0
(15)
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where xi and xj are two sequential values of the meteorological dataset (1 < i < j < n), n is
the length of the dataset; gn(θ) is a symbolic function; Z is an indicator for the severity of
the change trend. The positive value indicates that the trend is rising, while a negative
value indicates that the trend is falling. If |Z| ≥

∣∣∣Z(1−α)/2

∣∣∣, it means that at an α significance
level, the data series change significantly.

Define dk as the sum of the cumulative numbers when xj > xi (1 < i < j < n). The
mathematical expectation and variance of dk are:

E(dk) =
n(n− 1)

4
(16)

D(dk) =
k(k− 1)(2k + 5)

72
(17)

UFk =
dk − E(dk)√

D(dk)
(18)

where 2≤ k≤ n, UF1 = 0; at an α significance level, if UFk ≥ |Uα/2|, the data series change
significantly. UDk is the negative sequence of UFk. When the intersection point of the UFk
curve and UDk curve is within the confidence interval, the point is a mutation point.

2.4.3. Moving T-Test

The moving t-test examines whether the difference between the average values of the
two datasets are significant to detect mutations, which is widely used in the study of time
series [73]. The calculation method of the statistic t is as follows:

t =
x1 − x2

S
√

1
n1

+ 1
n2

(19)

S =

√
n1S1

2 + n2S22

n1 + n2 − 2
(20)

where x1 and x2 are two parts of the datasets, n1 and n2 are their lengths, x1 and x2 are
their average values, and S1 and S2 are their standard deviations.

The statistic t is submitted to the t-distribution, for which freedom v = n1 + n2 − 2.
At α significance level, if t ≥ |tα|, the point is a mutation point.

2.4.4. Yamamoto Test

The Yamamoto test defines the signal-to-noise ratio (SNR) of meteorological factors,
which is simple, effective and intelligible [74]. Its calculation formula is as follows:

SNR =
|x1 − x2|
S1 + S2

(21)

Similar to the moving t-test, where x1 and x2 are two parts of the datasets, n1 and n2 are
their lengths, x1 and x2 are their average values, and S1 and S2 are their standard deviations.

If SNR > 1.0, there is a mutation in the point. Furthermore, if SNR > 2.0, it can be
considered a strong mutation year.

Since the current methods for identifying mutation points have their own advantages
and disadvantages, this study believes that when the results of more than two methods are
consistent, specific mutation points are determined.

2.5. Path Analysis

Path analysis is an extension of the multiple linear regression analysis, which can
identify and quantify the direct and indirect effects of independent variables on dependent
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variables [75]. It is a powerful tool used to analyze the relationship between multiple
variables and is widely used in many fields. The analysis process is as follows:

First establish a multiple regression equation:

y = b1x1 + b2x2 + b3x3 + . . . + bnxn (22)

Then, standardize the variables of Equation (19):

(y−y)
σy

= b1
σx1
σy
∗ (x1−x1)

σx1
+ b2

σx2
σy
∗ (x2−x2)

σx2
+ b3

σx3
σy
∗ (x3−x3)

σx3
+ . . . + bn

σxn
σy

∗ (xn−xn)
σxn

(23)

where x1, x2, x3, . . . and xn are different meteorological factors, y is ET0, y is the estimated
value obtained by the least squares regression, σy is the standard deviation, xi is the
estimated value of the independent variable xi, σxi is the standard deviation of xi, and bi is
a partial regression coefficient. The direct path coefficient Pi is calculated according to the
following formula:

Pi = bi
σxi

σy
(24)

Establish a path analysis model:

ri1P1 + ri2P2 + ri3P3 + . . . + rijPj + . . . + rinPn = ri (25)

Pe =
√

1− (r1P1 + r2P2 + r3P3 + . . . + rnPn) (26)

where rij is the correlation coefficient between xi and xj, ri is the correlation coefficient
between xi and yPi indicates the direct influence degree of an independent variable on
a dependent variable. rijPj is the indirect path coefficient, which indicates the indirect
influence degree of xi on y through xj. Pe indicates the influence of factors not considered by
the dependent variables. Figure 3 shows the relationship between variables in path analysis.

Figure 3. Path network diagram between variables.

In this study, path analysis was used to identify and quantify the direct and indirect
effects of the nine climatic elements, including the daily actual atmospheric pressure (AP),
mean temperature (Tmean), maximum temperature (Tmax), minimum temperature (Tmin),
precipitation (P), relative humidity (RH), sunshine duration (SD), wind speed (U2) and net
radiation (Rn) on ET0.

To realize these methods, we used R programming and the SPSS software. Figure 4
shows the data processing and research procedure of this study.
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Figure 4. The flowchart of this study.

3. Results and Discussion
3.1. Mutation Analysis of ET0 in Different Altitudes during 1961–2017
3.1.1. Mutation Analysis of Annual ET0

The cumulative anomaly curve, Mann–Kendall (MK) test (α = 0.05), moving t-test
(α = 0.05) and Yamamoto test were used to distinguish the mutation year of the ET0 series
annually and for four seasons from 1961 to 2017. Figure 5 shows that there was a turning
point from increase to decrease in 1988; nevertheless, a turning point from decrease to
increase in the QTP in 1968 and 2005 can be found according to the cumulative anomaly
curve. Furthermore, in 1988, the moving t-test curves of the three steps all exceeded the
upper critical line, and their SNR reached a peak level. Moreover, the moving t-test and
Yamamoto test curves of 5-year and 10-year sliding steps exceeded the critical line in 2005.
In addition, the intersection points of the MK curves in the confidence interval were in
1964 and 2012, since the sequences before and after them were relatively short, neither of
them can be determined as a true mutation point. In summary, it can be considered that a
descending mutation occurred in 1988, while an ascending mutation occurred in 2005 in
the QTP.

Figure 5 illustrates that the results of the moving t-test and Yamamoto test in the
medium and high-elevation zones were more inclined to 1988 and 2005. Although the
positive peak value of the cumulative anomaly curve in the medium-elevation zone was
1981, 1988 was also its inflection point and the decline thereafter became more pronounced.
The year 2005 was the negative peak value of the cumulative anomaly curve. Therefore,
it can be determined that the descending mutation occurred in 1988, and the ascending
mutation occurred in 2005. However, in the low-elevation zone, 1981 was the positive
peak of the cumulative anomaly curve and the only intersection of the MK curve in the
confidence interval. Both the moving t-test and the Yamamoto test exceeded the critical
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line at the point. Therefore, it can be concluded that the descending mutation occurred
in 1981. In conclusion, the ET0 series in the QTP had two mutations during 1961–2017,
with a descending mutation occurring in the 1980s and an ascending mutation occurring
in 2005. Zhao et al. [76] and Li et al. [77] also found that mutations of climatic factors
occurred in China in the 1980s and the early 21st century. Furthermore, with the increase
in altitude below 5000 m, the period of the descending mutation of ET0 was prolonged,
and the amplitude of ascending was enhanced.

Figure 5. The results of mutation analysis of annual ET0 on different elevation zones. The marked year of the cumulative
anomaly curve is the year in which positive and negative peaks occur. The marks in the moving t-test and Yamamoto test
are the years in which the peak value of each line appears.

3.1.2. Mutation Analysis of Four Seasons of ET0

Figure S1 (in Supplementary Information) shows that the results of the QTP are
consistent with the low and the medium-elevation zones in the spring, the descending
mutations occurred approximately in 1981, and the ascending mutations occurred in 2005.
However, in the high-elevation zone, the peak value of the cumulative anomaly curve was
not prominent, the MK curve had more intersections in the confidence interval, and the
sliding t-value and SNR value of the three sliding steps did not exceed the critical line,
meaning no mutation was detected in the high-elevation zone. Table S2 and Figure S2
(in Supplementary Information) show that in the summer, the descending mutations in
the QTP and the medium-elevation zone occurred in 1988–1991 because 1991 was the
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intersection point of the MK curve in the confidence interval, and 1988–1991 was the peak
segment of their cumulative anomaly curve and passed the moving t-test for the 15-year
sliding step. However, in the low-elevation zone, the intersection point of the MK curve in
the confidence interval was 1985 and 1987. The other three methods were more inclined to
1981, which can roughly suggest that the descending mutation occurred in 1981–1987. In
addition, in the high-elevation zone, the ascending mutations in 2005 were more significant
than those in the lower ones. Figure S3 (in Supplementary Information) shows that in
autumn, the QTP and the medium-elevation zone had a descending mutation in 1987 and
that for the low-elevation zone was in 1994; furthermore, the medium-elevation zone in
2005 showed a significant ascending mutation. Figure S4 (in Supplementary Information)
shows that the descending mutation of the winter ET0 in the QTP, low and medium-
elevation zones failed to pass the test since no more than two methods had the same results,
and there was an ascending mutation in the high-elevation zone in 2004.

In conclusion, with the increasing altitude below 5000 m, the delay phenomenon of
the descending mutation of ET0 was verified in the summer, and the enhancement effect
on the ascending mutation was verified in the summer and winter series.

3.2. Temporal Trend Analysis of ET0 in Different Altitudes
3.2.1. Temporal Trend of Annual ET0

The trend ratios and Z-values from the MK test of annual ET0 in different periods are
listed in Table 1 and Table S3. From 1961 to 2017, ET0 on the QTP showed an increasing
trend, which is consistent with the findings of Wang et al. [78], but different from the
decreasing trend obtained by Thomas [79] and Kuang and Jiao [80] because the period of
the ET0 series was selected differently. Table 1 also shows that as the altitude increases, the
increasing trend of the ET0 sequence becomes more significant. Before the first mutation,
ET0 in different elevation zones of the QTP showed an increasing trend, and the increasing
trend in the low-elevation zone was the most significant by 28.56 mm per decade before
1981. Between the two mutations, there are negative Z-value and change ratios of ET0
in the QTP, low and high -elevation zones, indicating that their first reduction mutation
was a transit mutation, and the middle-elevation zone was a rate or mean value mutation.
After the second mutation occurred in 2005, the ET0 of each elevation zone of the QTP
showed an increasing trend, and with the increase in altitude, this trend became more
significant, which was consistent with 1961–2017. Thomas [79] also observed the positive
relation between evapotranspiration change and station altitude in the mountains of
Southwest China.

Table 1. Trend ratios and Z-values from the MK test of annual ET0 on different elevation zones in
different periods.

Region
1961–2017 Before the First

Mutation
Between Two

Mutations
After the Second

Mutation

Z Trend Z Trend Z Trend Z Trend

QTP 1.60 3.31 1.63 11.97 −0.37 −4.06 1.16 15.64
Low 0.47 0.72 2.56 * 28.56 −1.31 −8.45 0.79 10.75

Medium 1.11 2.21 1.58 13.23 0.12 3.16 0.42 12.05
High 3.42 *** 9.84 1.88 17.83 −0.54 −12.77 1.77 32.80

Trend ratios is the slope of linear regression between meteorological factors and year; the slope unit of ET0 is
mm/decade. The three periods before and after the mutation for the QTP, the middle and high-elevation zones are
1961–1987, 1988–2004 and 2005–2017, respectively, and those for the low-elevation zone are 1961–1980, 1981–2004
and 2005–2017, respectively. * Significance levels of 0.05 (p < 0.05). *** Significance levels of 0.001 (p < 0.001).

3.2.2. Temporal Trend of Four Seasons of ET0

Figure 6 shows the distribution of the Z-value of ET0 in the four seasons from the
MK test from 1961 to 2017. The graph shows that the change trend of ET0 varied greatly
in different seasons. In winter, the change trend of ET0 in the whole region was the
most consistent, with 89.13% of the stations showing an increasing trend, and 82.93%
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of the stations showing a significant increasing trend (p < 0.05). Kang et al. [81] and
Zhang et al. [82] also concluded that the warming trend in the winter has become more
significant. In the spring, the small Z-value bubbles of ET0 on the stations indicate that
the change trend was the gentlest, and the spring ET0 shows a decreasing trend at the
low-elevation stations of 63.64%, while most of the middle and high-elevation zones show
an increasing trend, with the proportion of stations being 68.18% and 84.62%. The low
elevation zone of the QTP is mainly located in the Qaidam Basin, where the ET0 decreased
significantly in summer and autumn, which is obviously different from the significant
increase in other elevation zones.

Figure 6. The distribution of the statistical Z-value from the MK test of four seasons (a–d) at each station of QTP from
1961 to 2017. At α = 0.05 significance level, if |Z| > 1.96, the ET0 changes significantly. At α = 0.001 significance level, if
|Z| > 3.25, the ET0 change is extremely significant. The red bubble represents the increasing trend, the blue represents the
decreasing trend, and the larger the bubble is, the more significant the change trend is.

3.3. Climate-Driven Pattern of ET0 in Different Altitudes

According to the mutation year determined in Section 3.1, the annual ET0 dataset is
divided into three series, which are before the first mutation, between two mutations and
after the second mutation. Path analysis was used to quantify the relationship between
ET0 and climate factors. Figure 7 shows that before the first mutation, ET0 in the QTP was
mainly related to the factors, including Tmean, U2, SD, AP and Tmax, of which U2 and
Tmax had a strong promotion effect on the change of ET0, and AP directly inhibited ET0
and indirectly inhibited ET0 by suppressing wind speed. Moreover, after the descending
mutation occurred in 1988, the main climatic factors affecting ET0 were Tmax, U2 and Rn.
The direct promotion effect of Tmax and U2 was greatly enhanced. Furthermore, after the
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ascending mutation in 2005, the main meteorological factor affecting the change of ET0
was only Tmax, and the combined effect of other factors accounts for only 31.69%.

Figure 7. The distribution of the statistical Z-value from the MK test of four seasons at each station of QTP from 1961 to
2017. At α = 0.05 significance level, if |Z| > 1.96, the ET0 changes significantly. At α = 0.001 significance level, if |Z| > 3.25,
the ET0 change is extremely significant. The red bubble represents the increasing trend, the blue represents the decreasing
trend, and the larger the bubble is, the more significant the change trend is.

In the low-altitude zone, the main influencing factors were Tmean, U2, SD and RH
before the first mutation, among which the direct promotion of U2 was the largest, and RH
directly inhibited ET0. Liu et al. [41] and Fan and Thomas [39] came to a similar conclusion
in China. After the descending mutation occurred in 1981, the main impact factors were
RH, Rn, U2 and Tmax. After 2005, the main impact factors were Tmax, with a contribution
rate of 63.16%. In the medium-elevation zone, Tmean, U2 and SD directly promoted the
extent of the change of ET0, and Tmin and AP played an inhibitory role before the first
mutation. From 1987 to 2004, the direct promotion of Tmax and U2 was greatly enhanced.
After 2005, Tmax and Rn were the main climatic factors, and both contributed. In the high
elevation zone, the main climatic factors and driving patterns were consistent with the
low-elevation zones before the first mutation. From 1988 to 2004, the direct promotion of
Tmean and U2 was enhanced, and Tmin had a significant inhibitory effect. After 2005, the
main impact factors became Tmax, RH, U2 and SD.
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In general, before the first mutation, Tmean and U2 played a major role in the change
of ET0 in QTP and the three elevation zones. Between the two mutations, the promotion
effect of Tmean and U2 in the QTP, low and medium-elevation zones was significantly
enhanced, and Rn became the main influencing factor in the QTP, low and high-elevation
zones. After the ascending mutation occurred in 2005, the direct promotion of Tmax in QTP
and the three elevation zones contributed the most to the change of ET0. Zhang et al. [83]
also found that Tmax had the greatest impact on China’s ET0.

4. Conclusions

Based on the daily meteorological data of 46 meteorological stations in the QTP from
1961 to 2017, the daily ET0 was calculated by the Penman–Monteith formula. Before trend
analysis, we used the Ljung-Box test to verify the autocorrelation of data and used the
Cochrane–Orcutt method to transform the variables of the sites with autocorrelation. Fur-
thermore, the cumulative anomaly curve, Mann–Kendall test, moving t-test and Yamamoto
test were implemented to identify the mutation year of the ET0 series in different elevation
zones. The combination of the four methods can avoid the error caused by the accidental
fluctuation of the sequence and make the recognition results more accurate. In this study,
the mutation of the ET0 series, temporal trend of different elevation zones, and the driving
mode of meteorological factors before and after the mutation were explored. The main
conclusions are as follows:

(1) The annual and four season ET0 series in the QTP experienced a descending
mutation in the 1980s and an ascending mutation in 2005. The descending mutation of the
low-elevation zone (below 2800 m) was in 1981. As the altitude (below 5000 m) increased,
the descending mutation of the annual ET0 tended to be delayed, while the ascending
mutation was more significant. The descending mutation of ET0 in the spring appeared
in 1981. The mutation features of the QTP and three elevation zones in the summer were
similar to those of the annual scale, but not obvious in winter.

(2) The annual ET0 series of the Qinghai Tibet Plateau and different elevation zones
showed an increasing trend from 1961 to 2017, and it increased more significantly with
the increase in elevation below 5000 m. The increasing trend was the most consistent and
intense in the winter, with 89.13% of stations showing an increasing trend. Regarding the
impact of mutations on trend changes, ET0 was more prone to mutation of the rate or mean
value in the middle-elevation zone, and transit mutation, in which the change trend before
and after the mutation is opposite, was more likely to occur in other elevation zones.

(3) Before and after the two mutations, the climate-driven patterns of different ele-
vation zones were quite different, but on the whole, before the descending mutation, the
Tmean and U2 played a major role in promoting the change of ET0 in the QTP and the three
elevation zones. Between the two mutations, the promotion effect of Tmean and U2 in the
QTP, low and medium-elevation zones was significantly enhanced, and Rn became the
main influencing factor in the QTP, low and high-elevation zones. After the ascending
mutation occurred in 2005, Tmax became the most important driving factor for the QTP
and the three elevation zones.

This study explored the different trends of evapotranspiration at different altitudes,
which adds new understanding to the regional hydrology research. The results of the
study find that there is an increasing trend of reference evapotranspiration in some areas,
where the department should conduct drought warning and water resources management
to avoid a water shortage. In the future, regional agricultural irrigation plans can be
formulated in combination with snow melting or river discharge research.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/w13131749/s1, Table S1: The p-value of the raw sequence and the converted sequence by LB
test, Figure S1: The results of mutation analysis of spring ET0 on different elevation zones, Figure S2:
The results of mutation analysis of summer ET0 on different elevation zones, Figure S3: The results
of mutation analysis of autumn ET0 on different elevation zones, Figure S4: The results of mutation
analysis of winter ET0 on different elevation zones, Table S2. The mutation years for ET0 of four
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seasons as a result of Section 3.1.2, Table S3. Z-values from the MK test of ET0 in four seasons in
different elevation zones in different periods.
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68. Demiroglu, O.C.; Kučerová, J.; Ozcelebi, O. Snow reliability and climate elasticity: Case of a Slovak ski resort. Tour. Rev. 2015, 70,
1–12. [CrossRef]

69. Peng, D.; Qiu, L.; Fang, J.; Zhang, Z. Quantification of Climate Changes and Human Activities That Impact Runoff in the Taihu
Lake Basin, China. Math. Probl. Eng. 2016, 2016, 1–7. [CrossRef]

70. Misra, V.; Bhardwaj, A. Defining the Northeast Monsoon of India. Mon. Weather Rev. 2019, 147, 791–807. [CrossRef]
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