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Abstract: The proportional contribution of recycled moisture to local precipitation is a geographically
dependent parameter that cannot be ignored in water budgets. Stable hydrogen and oxygen isotopes
are sensitive to environmental changes and can be applied to investigate the modern water cycle.
In this study, a three-component mixing model is used to calculate the contribution of different
water vapors (advection, evaporation and transpiration) to summer precipitation in Lanzhou city,
Northwest China. The results show that for all sampling sites in Lanzhou, the contribution of
advection vapor to precipitation is the largest, followed by the plant transpiration vapor, and the
contribution of surface evaporation water vapor is usually the least, with the average values of
87.96%, 9.1% and 2.9%, respectively. The spatial differences of plant transpiration vapor are generally
larger than those of advection vapor and surface evaporation vapor, and the high values appear in
Yongdeng, Daheng and Gaolan.

Keywords: stable isotope; precipitation recycling; isotopic mixing model; Lanzhou city

1. Introduction

Terrestrial moisture that is produced by evapotranspiration, including surface evapo-
ration and transpiration, plays a critical role in hydrological processes [1–4], especially in
arid and semi-arid regions in inland Asia [5–8]. The contribution of surface evaporation
and transpiration to precipitation, also known as recycling fraction or recycling ratio, is a
geographically dependent parameter that cannot be ignored in water budgets. Generally
speaking, the recycling fraction is subject to seasonal and interannual climatic variations as
well as the spatial scale of the study area [9–12]. Additionally, land surface conditions such
as vegetation and moisture availability are also important aspects influencing recycled
moisture [13–15]. Logically, the recycling fraction for regions with high vegetation coverage
is larger than that of bare soil, and the growing season has larger moisture recycling fraction
than the nongrowing season with low temperature [16–18].

Although the water budget approach and empirical models are applied to measure
evapotranspiration, many field measurements are needed to determine the contribution of
surface evaporation and transpiration to local moisture [19–21]. These uncertainties from
insufficient observations and low accuracy of a gridded database may bring a number
of problems in estimating the contribution of local recycled moisture, especially in the
areas with diverse land-cover types. Moreover, the moisture from evapotranspiration
calculated through conventional methods cannot entirely convert to precipitation in many
actual situations.
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Stable hydrogen and oxygen in precipitation can provide useful information of hy-
drological processes due to fractionation, leaving a characteristic imprint on stable water
isotopes [22]. In past decades, stable water isotope compositions are used for estimating the
proportions of recycled moisture plant transpiration vapor, surface evaporation vapor and
advected vapor to precipitation [5,12]. According to the number of fluxes (such as surface
evaporation and transpiration), the models can be generally classified into two-component
mixing models [13] and three-component mixing models [5,16]. The three-component mod-
els are widely used under various environments with different vegetation coverages, and
the potential fluxes usually include advection, surface evaporation and transpiration. The
two-component models usually reflect the influence of surface evaporation only and ignore
the possible contribution of transpiration [13]. In many areas, the contribution of plant
transpiration to water vapor recycling is far greater than that of surface evaporation [8,19].

Water is an important resource to support a city’s development. Located in the
marginal zone of monsoon Asia, the Loess Plateau is a critical area in moisture sources
diagnostics [23–25]. As a semi-arid city in the western Loess Plateau, Lanzhou city is a
hot spot in precipitation isotopes studies during recent years [26–30]. Based on these in
situ observations of precipitation isotopes, previous studies focused on the below-cloud
evaporation [27,29] and moisture trajectories [28,30] in Lanzhou city. However, an isotope-
based integrated assessment of recycled moisture is still needed for this region. In this study,
we used the compiled database of stable isotopic compositions in precipitation during
recent years, and assessed the moisture recycling fraction in Lanzhou city using a three-
component mixing model. This research is of great help to understand the precipitation
regimes in the western Loess Plateau at the marginal area of monsoon Asia.

In Section 2, we describe the data and method, and in Section 3 we compare the
relative contribution of plant transpiration, surface evaporation and advection vapor to
precipitation in several sampling stations in Lanzhou city. In Section 4, we discuss the
main drivers for the identified patterns regarding changes in water vapor monthly isotopic
contributions. In Section 5, we provide a summary.

2. Data and Method
2.1. Sampling Network

Lanzhou city, ranging from 35◦34′ to 37◦07′ N and from 102◦35′ to 104◦34′ E, is situated
in the east of Northwest China (Figure 1a). It is the provincial capital of Gansu, and the
total area is 13,085.6 km2. The Yellow River goes across the urban area from southwest to
northeast. The seasonal distribution of precipitation is uneven and mainly concentrates in
the summer (Figure 1b). The temperature, relative humidity and vapor pressure are all the
highest in summer and the lowest in winter.

In 2011, a city-scale network was established to collect event-based precipitation sam-
ples across Lanzhou city, and the database from 2011 to 2014 was compiled in Chen et al. [26].
The liquid precipitation samples collected were stored in 50 mL HDPE bottles, and then
these bottles were placed in the refrigerator; the solid samples were filled into sealed
bottles before they were melted at indoor temperature in zip-lock LDPE bags. Precipitation
amount was measured by manual work, and air temperature, relative humidity during
precipitation events were observed using the automatic weather stations. See the previous
studies [26] for the basic characteristics of isotopic data during the period 2011–2014. In
this study, we used the isotopic data in the seven stations, including Renshoushan, An-
ning, LREVC (Lanzhou Resources & Environment Voc-Tech College), Yuzhong, Yongdeng,
Daheng and Gaolan (Table 1 and Figure 1), and the isotopic values in summer (June to
August) to reexamine the moisture recycling in Lanzhou city.
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Figure 1. (a) Spatial distribution of sampling sites in Lanzhou city; (b) Monthly variation of air temperature, precipitation 
amount, relative humidity and water vapor pressure in Lanzhou city during 1981–2010. 
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Figure 1. (a) Spatial distribution of sampling sites in Lanzhou city; (b) Monthly variation of air temperature, precipitation
amount, relative humidity and water vapor pressure in Lanzhou city during 1981–2010.

Table 1. Latitude, longitude and altitude of sampling stations in Lanzhou city used in this study.

Station Latitude N Longitude E Altitude/m

Renshoushan 36◦08′ 103◦41′ 1657
Anning 36◦06′ 103◦44′ 1548
LREVC 36◦01′ 103◦57′ 1725

Yuzhong 35◦52′ 104◦09′ 1874
Yongdeng 36◦45′ 103◦15′ 2119

Daheng 36◦40′ 103◦50′ 2029
Gaolan 36◦21′ 103◦56′ 1669

2.2. Laboratory Testing

The precipitation samples were analyzed using a liquid water isotope analyzer LGR
DLT-100 at the Stable Isotope Laboratory in Northwest Normal University. Of the six
values measured for each sample, the first two values were discarded so as to eliminate
the memory effect, and the means of the last four injections were used in the study. The
experiment values are expressed as delta-values and relative to the Vienna Standard Mean
Ocean Water (V-SMOW):

δsample =
Rsample − Rstandard

δstandard
× 1000‰ (1)

where δsample stands for ratio of 2H/1H or18O/16O in the samples relative to V-SMOW,
Rsample stands for the ratio of 2H/1H or18O/16O in V-SMOW. The accuracy of mea-
surement is ±0.6% for δ2H and ±0.2% for δ18O. See Chen et al. [26] for the details of
laboratory testing.

2.3. Three-Component Mixing Model

The recycling fraction in precipitation (f re) usually includes plant transpiration (from
plant stomata) and surface evaporation [16,31]:

fre =
Ptr + Pev

Ptr + Pev + Padv
(2)

where Ptr is the precipitation formed by transpiration vapor, Pev is the precipitation formed
by surface evaporation vapor, and Padv is the precipitation formed by advection vapor.
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Considering the stable isotopic compositions in these vapor fluxes, the three-component
mixing model can be expressed as follows:

2δ pv = 2δtr ftr +
2δev fev +

2δadv fadv (3)

18δ pv = 18δtr ftr +
18δev fev +

18δadv fadv (4)

1 = ftr + fev + fadv (5)

where ftr, fev and fadv stand for the contribution rates to precipitation from transpiration,
surface evaporation and advection, and δpv, δtr, δev and δadv stand for δ2H or δ18O in
precipitating vapor, transpiration vapor, surface evaporation vapor and advection vapor.

The solutions for ftr, fev and fadv in terms of delta values can be expressed as fol-
lows [16]:

ftr =
18δ pv

2δev − 18δ pv
2δadv +

18δev
2δadv − 18δev

2δ pv + 18δadv
2δ pv − 18δadv

2δev
18δtr2δev − 18δtr2δadv + 18δev2δadv − 18δev2δtr + 18δadv

2δtr − 18δadv
2δev

(6)

fev =
18δ pv

2δadv − 18δ pv
2δtr + 18δtr

2δ pv − 18δtr
2δadv +

18δadv
2δtr − 18δadv

2δ pv
18δtr2δev − 18δtr2δadv + 18δev2δadv − 18δev2δtr + 18δadv

2δtr − 18δadv
2δev

(7)

fadv =
18δ pv

2δtr − 18δ pv
2δev + 18δtr

2δev − 18δtr
2δ pv + 18δev

2δ pv − 18δev
2δtr

18δtr2δev − 18δtr2δadv + 18δev2δadv − 18δev2δtr + 18δadv
2δtr − 18δadv

2δev
(8)

Under equilibrium fractionation, the isotopic compositions in precipitating vapor (δpv)
are calculated using the measured stable isotopes in precipitation (δp) [32]. The equations
can be expressed as follows:

2δPV ≈2 δP − 103
(

α2
W−V − 1

)
(9)

18δPV ≈18 δP − 103
(

α18
W−V − 1

)
(10)

where 2αw−v and 18αw−v stand for the equilibrium fractionation factors of stable isotopes
between water and vapor, respectively. The values of 2αw−v and 18αw−v can be expressed
as follows [33]:

2α = exp
(

24.844× 103

T2 − 76.248
T

+ 52.612× 10−3
)

(11)

18α = exp
(

1.137× 103

T2 − 0.4156
T
− 2.0667× 10−3

)
(12)

where T is condensing temperature in K. T is calculated using air temperate of lifting
condensation level (LCL) [34]:

TLCT = Td − (0.001296Td + 0.1963)(T − Td) (13)

where Td and T are dew point temperature and air temperature in ◦C at sampling
site, respectively.

The isotopic composition of transpired vapor (δtr) is estimated using the average value
of isotope values at the sampling sites for a long time (δp) [5,16].

δtr ≈ δP (14)

The isotope compositions of the evaporated moisture (δev) are calculated by using a
modified Craig–Gordon model [35,36]:

δev ≈
δs − hδadv − ε∗ − ∆ε

1− h
(15)
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where δs represents isotopic composition of local surface water, which is the ratio of isotopes
in precipitation at the sampling sites in summer; δadv represents isotopic composition of
advection vapor, and h is the mean relative humidity in summer; ε* and ∆ε are equilibrium
fractionation factor and kinetic fractionation factor, respectively; ε* and ∆ε can be expressed
as follows [35,36]:

2ε∗(‰)= 103 ×
(

1− 1
2αw−v

)
(16)

18ε∗(‰)= 103 ×
(

1− 1
18αw−v

)
(17)

∆2ε(‰) = 12.5(1− h) (18)

∆18ε(‰) = 14.2(1− h) (19)

The isotope values of advection vapor (δadv) from the upwind site to target site are
expressed as follows [16]:

δadv = δpv−adv + 103(αw−v − 1) ln F (20)

where δpv−adv is isotope value of water vapor calculated using stable isotope in precipitation
at upwind site, which can be expressed in Equations (8) and (9); F is the ratio of water
vapor pressure from upwind site to target site [5,16].

3. Results

According to the simulated backward air trajectory [26,28], the upwind site can be
determined in the study area. In this study, we divided the seven stations into two
groups. For the southern group along the path of Renshoushan–Anning–LREVC–Yuzhong,
Renshoushan was selected as the upwind site for Anning, Anning was selected for LREVC,
and then LREVC was selected for Yuzhong. For the northern group along the path of
Yongdeng–Daheng/Gaolan, Yongdeng was selected for Daheng and Gaolan. Based on
stable isotope compositions (δ2H and δ18O) of precipitation and related meteorological
parameters at each sampling station, the proportional contributions of advection, surface
evaporation and transpiration to precipitation were calculated using a three-component
mixing model.

3.1. The Path of Renshoushan—Anning—LREVC—Yuzhong

Based on the stable isotopic compositions in precipitation at Renshoushan (2δp = −20.1‰,
and 18δp = −3.3‰) and corresponding meteorological parameters (T = 16.2 ◦C), the isotope
values of precipitating vapor at Renshoushan were calculated using Equations (9) and (10),
that is, the δpv values were −109.8‰ for δ2H and −13.4‰ for δ18O, respectively. A similar
procedure was applied to the rest of the stations. The δpv values for δ2H and δ18O were not
the same at each station (Table 2); therefore, the Rayleigh distillation equation was applied.
The stable isotopic values in advection vapor (δadv) were estimated using Equation (20).
The value f was estimated using the ratio of water vapor pressure from upwind site to
target site. For example, the value f at LREVC is a ratio of surface vapor pressure at LREVC
(14.5 hPa) and Anning (15.8 hPa).

As shown in Table 2 and Figure 2, the proportional contributions for the three compo-
nents (advection, surface evaporation and transpiration) in precipitation along the path
from Renshoushan to Anning can be calculated, that is, the ftr value is 12.2%, the fev value
is 3.0% and the fadv value is 84.8% at Anning. The contribution of transpiration in precip-
itation along the path from Renshoushan to Anning is more than that of evaporation in
summer. On the contrary, in LREVC, the contribution of evaporation (f ev = 5.2%) is higher
than that of transpiration (f tr = 2.5%) from Anning to LREVC. The results from LREVC to
Yuzhong (ftr = 14.2%, fev = 2.9%, and fadv = 82.9%) are similar to those from Renshoushan to
Anning. The phenomenon above conforms to the regional characteristics in semi-arid arid
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settings. The building and population densities in Anning are much larger than those in
LREVC, and the moisture contribution of transpiration is less than that of evaporation.

Table 2. Proportions of advected and recycled water vapor along the path of Renshoushan–Anning–
LREVC–Yuzhong in summer.

Anning LREVC Yuzhong

δ2H δ18O δ2H δ18O δ2H δ18O

δp/‰ −13.9 −3.0 −27.3 −4.8 −19.8 −3.7
δpv/‰ −101.6 −12.9 −117.5 −14.3 −109.7 −13.9
δtr/‰ −39.3 −6.2 −42.6 −7.0 −41.1 −6.4
δev/‰ −122.3 −28.6 −130.1 −28.6 −133.3 −28.8
δadv/‰ −109.8 −13.4 −94.0 −12.1 −120.6 −14.6

ftr/% 12.2 2.5 14.2
fev/% 3.0 5.2 2.9
fadv/% 84.8 92.3 82.9
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3.2. The Path of Yongdeng–Daheng/Gaolan

The isotope values of precipitating vapor at Yongdeng are estimated as 2δpv =−111.9‰
and 18δpv = −14.1‰. A similar procedure was applied to Daheng and Gaolan, respec-
tively, and the isotope values in precipitating vapor at Daheng (2δpv = −111.5‰, and
18δpv = −14.1‰) and Gaolan (2δpv = −102.0‰, and 18δpv = −14.3‰) are slightly depleted
relative to the upwind station Yongdeng. The stable isotope ratios in advection vapor at
Daheng and Gaolan are listed in Table 3.

Table 3. Proportions of advected and recycled water vapor over the path of Yongdeng–
Daheng/Gaolan in summer.

Daheng Gaolan

δ2H δ18O δ2H δ18O

δp/‰ −22.0 −6.2 −15.0 −4.8
δpv/‰ −111.5 −14.1 −102.0 −14.3
δtr/‰ −47.5 −6.2 −29.4 −7.0
δev/‰ −125.8 −34.8 −126.0 −28.6
δadv/‰ −113.2 −14.2 −113.2 −12.1
f tr/% 2.9 13.7
f ev/% 1.0 2.6
f adv/% 96.1 83.7
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The contributions of transpiration and surface evaporation at Gaolan (f tr = 13.7%,
and f ev = 2.6%) are larger than those at Daheng (f tr = 2.9%, and f ev = 1.0%) (Table 3
and Figure 2). The recycling fraction increases with the size of the study area. Figure 1
shows that the linear distance between Yongdeng and Gaolan is longer than that between
Yongdeng and Daheng. The proportional contributions of transpiration in precipitation
at Gaolan and Daheng are more than those of evaporation in summer. Taking the two
paths in Figure 2 into consideration, although the contributions for the three components
(advection, surface evaporation and transpiration) in precipitation are not the same along
the different paths, the contribution of advection moisture is the largest of the three. The
contributions of advection (f adv) are all more than 82.0%. The regional average contributions
of advection (f adv) is 87.9% in summer. The regional average f tr and f ev values are 9.1% and
2.9%, respectively.

3.3. Spatial and Monthly Patterns of Recycling Fraction

The spatial patterns of recycling fractions are helpful to understand the potential con-
trols of the local water cycle. Here, we focus on summer (June, July and August) when the
evapotranspiration is relatively strong. As shown in Table 4, the proportional contributions
of transpiration in precipitation at Anning, Yuzhong, Gaolan and Daheng are more than
those of evaporation in each month. However, the proportional contributions of transpi-
ration at LREVC are less than those of evaporation in June and July. As far as the overall
contributions are concerned, advection vapor to precipitation is the largest in the study
area, but the contribution of different water vapors to precipitation is unevenly distributed.

Table 4. Proportion of advected and recycled water vapor during summer months based on three-
component mixing model.

Upwind Station Target Station Month ftr/% fev/% fadv/%

Renshoushan

Anning
June 7.4 5.2 87.4
July 32.0 6.4 61.6

August 24.4 0.3 75.3

LREVC
June 0.2 5.2 84.6
July 4.0 7.9 88.1

August 13.9 6.2 79.9

Yuzhong
June 5.4 3.1 91.5
July 15.0 4.0 81.0

August 34.2 2.1 63.7

Yongdeng

Daheng
June 33.6 4.7 61.7
July 30.5 4.5 65.5

August 14.5 4.0 81.5

Gaolan
June 11.3 3.4 85.3
July 20.9 5.8 73.3

August 16.0 1.7 82.3

We also map the proportional contribution for each month using the inverse distance
weighted interpolation in Figure 3. The contributions of advection vapor to precipitation in
July and August are higher than those in June, and the high values are mostly distributed
along the Yongdeng–Daheng/Gaolan path, and the low values are mainly distributed near
Yuzhong. The proportional contributions of surface evaporation vapor to precipitation in
June and July are significantly higher than those in August, and the high value is mainly
distributed near Anning. Additionally, the contribution of transpiration vapor spatially
varies. In June, the high value for transpiration is mainly distributed along the Yongdeng–
Daheng/Gaolan path, and the high values in July and August are mainly distributed
near Anning.
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4. Discussion
4.1. Potential Spatial Controls of Recycling Fraction

The contributions for recycled moisture to local precipitation are logically related to
the meteorological conditions (e.g., air temperature, precipitation amount and relative
humidity), land cover (bare soil, water body, vegetation and so on) and spatial domain. As
shown in previous case studies, the recycling fraction in the forest mountain area is usually
higher than that in coastal plain area [16], and there is a significant correlation between
relative humidity and moisture recycling fraction [37]. Figure 3 shows that the recycling
fraction of the Yongdeng–Daheng/Gaolan path is high in June and July. As far as the
Yongdeng station is concerned, there are the Tulugou National Forest Park and Qinglong
Mountain in the Yongdeng county, and local vegetation coverage is relatively high. At the
same time, for the Gaolan county, the Yellow River goes through its whole territory and
there are many rivers in the region, which makes the relative humidity keep a relatively
high level. However, due to the lack of the longer time series, the relationship between the
recycling fraction and meteorological parameters, including air temperature, precipitation
amount and relative humidity, should be carefully considered in the future.

4.2. Model Uncertainty Analysis

In a three-component mixing model, the water vapor isotope value of the upwind
station is used to replace the advection vapor isotope value of the target station [16]. For
the study region, the westerlies affect the air regime all year round, so we selected the
western stations as the upwind station in the mixing model. That is, the influence of other
upwind stations on the advection vapor isotopes was ignored. Regarding the transpiration
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moisture isotopic values, it is difficult to acquire a regional mean value of isotope ratios in
xylem or stem water, as indicated in many in situ observations across Lanzhou city [38–40].
In the isotopic mixing model, the xylem water isotope values were usually replaced by
the isotope values of precipitation or surface water available to plants [5,16], but the
interannual variations of stable water isotopes do exist [15].

In addition, we present a map showing the spatial distribution of recycling fraction in
Figure 3. Here, the spatial interpolation is based on the inverse distance weighting (IDW)
method. This map is just a rough visualization of the recycling fraction, and many details
cannot be well predicted in such a large domain. In our previous investigation about
precipitation isoscape in Lanzhou city [26], the topography greatly impacted the spatial
distribution of isotopic values. However, the main pattern can be described in Figure
3, and the IDW method has been widely applied in geoscience interpolation [41–43]. In
the future, more attention should be paid to uncertainty on a spatial basis, although some
recent error analysis focused on the linear mixing model or Bayesian estimation [5,7,37].

5. Conclusions

In this study, the moisture recycling fraction in Lanzhou city at the western Loess
Plateau was analyzed by using a three-component mixing model.

(1) The results show that in the path of Renshoushan–Anning–LREVC–Yuzhong,
the contributions of recycled moisture were about 15% for Anning and Yuzhong, while
the contribution at LREVC was relatively low, which accounted for 7.7%. In the path of
Yongdeng–Daheng/Gaolan, the proportional contribution of recycled moisture to precipi-
tation in Daheng was lower than that in Gaolan, which was 3.9% and 16.3%, respectively.

(2) We mapped the fractions of different water vapor to precipitation in Lanzhou city
in summer. The spatial differences of surface evaporation vapors were smaller than those
of advected vapor and plant transpiration vapor. The high value of plant transpiration
vapor was located in the Yongdeng–Daheng/Gaolan path in June and July, while the low
value was located near Anning. On the contrary, the high contribution ratio of advected
vapor to precipitation was located near Anning. The spatial differences of contribution
rates of different water vapors to precipitation in August were smaller than those in June
and July.
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