
water

Article

Optimal Water Quality Sensor Placement by Accounting for
Possible Contamination Events in Water Distribution Networks

Malvin S. Marlim and Doosun Kang *

����������
�������

Citation: Marlim, M.S.; Kang, D.

Optimal Water Quality Sensor

Placement by Accounting for Possible

Contamination Events in Water

Distribution Networks. Water 2021,

13, 1999. https://doi.org/10.3390/

w13151999

Academic Editor: Avi Ostfeld

Received: 9 June 2021

Accepted: 18 July 2021

Published: 21 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Civil Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu,
Yongin-si 17104, Korea; malvinmarlim@hotmail.com
* Correspondence: doosunkang@khu.ac.kr

Abstract: Contamination in water distribution networks (WDNs) can occur at any time and location.
One protection measure in WDNs is the placement of water quality sensors (WQSs) to detect con-
tamination and provide information for locating the potential contamination source. The placement
of WQSs in WDNs must be optimally planned. Therefore, a robust sensor-placement strategy (SPS)
is vital. The SPS should have clear objectives regarding what needs to be achieved by the sensor
configuration. Here, the objectives of the SPS were set to cover the contamination event stages of
detection, consumption, and source localization. As contamination events occur in any form of
intrusion, at any location and time, the objectives had to be tested against many possible scenarios,
and they needed to reach a fair value considering all scenarios. In this study, the particle swarm
optimization (PSO) algorithm was selected as the optimizer. The SPS was further reinforced using a
databasing method to improve its computational efficiency. The performance of the proposed method
was examined by comparing it with a benchmark SPS example and applying it to DMA-sized, real
WDNs. The proposed optimization approach improved the overall fitness of the configuration by
23.1% and showed a stable placement behavior with the increase in sensors.

Keywords: contamination; particle swarm optimization; sensor placement; water distribution network

1. Introduction

Implementing an efficient monitoring system is critical for water distribution net-
works (WDNs). Water quality sensor (WQS) placement is essential for maintaining WDN
functionality and plays an integral part in preventing contamination events and ensuring
the safety of distributed water to protect the health of users. Contamination occurs when
hazardous contaminants are introduced into distributed water. There are several pathways
for contaminants to enter distributed water, namely an accident in the system [1] or a
deliberate attack on the network [2], with contaminants being able to enter the network
at any stage of the distribution. If the contaminant is not detected quickly, it can cause
significant health and economic losses. Hence, a proper sensor placement strategy (SPS) is
required.

Deploying multiple WQSs will increase the robustness of the network in detecting
contamination. However, owing to the high cost of sensor installation and maintenance, it
is not practical to secure all individual network parts. It is more realistic to determine the
placement location to detect contamination efficiently from a cost-effective standpoint. SPSs
have been studied extensively and are typically developed using optimization formulations
where the optimization involves many types of optimization objective that are solved
through single-objective or multi-objective algorithms [3].

At the outset, this study was dominated by single-objective optimization with the
approach aiming to optimize the SPS based on a single target criterion. Lee and Deininger
introduced the maximum coverage objective and solved it using an integer programming
(IP) model [4]. Later, a heuristic approach was applied using mixed-integer programming
(MIP) by Kumar et al. [5] and a genetic algorithm (GA) by Al-Zahrani and Moeid [6].

Water 2021, 13, 1999. https://doi.org/10.3390/w13151999 https://www.mdpi.com/journal/water

https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0002-6808-6053
https://doi.org/10.3390/w13151999
https://doi.org/10.3390/w13151999
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/w13151999
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w13151999?type=check_update&version=1


Water 2021, 13, 1999 2 of 18

Kessler et al. [7] applied the volume consumed before the detection as an objective, whilst
Berry et al. [8] minimized the fraction of the exposed population using MIP. Later, multi-
objective optimization was used. In this approach, many criteria that needed to be fulfilled
for an SPS were defined. The optimization provided the singular best option or the Pareto
front of the options. Watson et al. [9] considered a multi-objective approach using MIP.
The approach focuses on the population exposed, time to detection, volume consumed,
number of failed detections, and extent of contamination as the performance objectives.
A similar set of objectives was employed by Wu and Walski [10] and solved using a GA.

Besides considering single or multiple objectives in SPS, other circumstances in the
approach can include the network hydraulic or sensor characteristics. In Ostfeld and
Salomon’s study [11], unsteady hydraulic and water quality conditions were considered
using a GA framework paired with EPANET [12]. Sensor favored objectives of sensor
detection likelihood, detection redundancy, and expected detection time were applied by
Preis and Ostfeld using NSGA-II [13].

Optimal SPS is a complex problem and is affected by many parameters. A change
in the contaminant source location and injection time could result in entirely different
contamination spread behavior. Changes in sensor configuration, such as quantity and
location, also vary the resulting accuracy in a non-linear manner. Quantifying the possible
contamination scenarios and the candidate sensor configuration, the optimal SPS is an
NP-hard combinatorial optimization [14]. Because of this, it is not practical to perform an
exhaustive search, and a heuristic or metaheuristic method is preferred. In past studies,
the typically used solvers are IP, MIP, GA, NSGA-II, and heuristic methods [3].

Despite the many advances in the field to date, there is still room for improvement
and additional perspectives. Single-objective optimization guarantees the optimal solution
for the said objective. However, it is not adequate to represent the optimality of sensor
placement using a single objective function. The consequences of contamination will affect
many aspects of WDNs. Therefore, different aspects should be considered to produce a
balanced result. This balancing aspect must be addressed in multiple objective optimiza-
tions. As water demand changes throughout the day, the flow pathway characteristics
also change, leading to many scenarios with different outcomes being considered. The
use of GA or its variant NSGA-II as the optimization algorithm has been favored by many
researchers [6,10,11,13]. However, it has some weaknesses in requiring more computational
power along with the increase in problem complexity and sensitivity to chosen parameters.

In this study, three objectives with respect to contamination stages were chosen. The
objectives considered the stages of contamination detection, contamination consumption,
and source identification. They were applied to many scenarios with different contaminant
source locations and times of intrusion combination. Hydraulic variability was also ac-
counted for in the scenarios as water usage characteristics change over time. A method to
save time and processing power was implemented through pre-simulation and databasing
to remove hydraulic and water quality simulation needs throughout the optimization
process. Particle swarm optimization (PSO) was chosen to bypass the GA’s computation
efficiency shortcoming. PSO has been applied in the field of WDN design [15,16], with
its performance compared to GA by Eberhart and Shi [17]. By applying all the described
methods, this study aimed to provide a configurable method that utilize fewer resources
and showcase the PSO algorithm adapted to solve the SPS. The method proposed in the
study was named the sensor placement swarm optimizer (SPSO) method. Some limitations
of this method need to be noted. The method was only tested against district metered areas
(DMA) sized networks. The scalability to more extensive networks was not tested. As the
scenarios were explicitly determined, no uncertainties were considered. Because SPSO is a
simplified method, it loses some accuracy when compared to the stochastic method. Con-
sidering that contamination behaves differently depending on the contaminant type, this
study only accounts for the presence of a contaminant in the network without consideration
of contaminant species and reactions in the pipes.
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The remainder of this paper proceeds as follows. Sections 2 and 3 describe the
methodology and objective functions used in the study in detail. An SPS in a network that
has been used in past studies is used as a benchmark for the new method. The applicability
of the proposed method is demonstrated in small DMA networks, as shown in Section 4.
Finally, the conclusions of this study are presented in Section 5.

2. Materials and Methods

The SPSO method performs SPS optimization using the PSO as the optimization
algorithm. As the name suggests, the particle or decision variable of the algorithm is
the sensor placement configuration (location of sensors in the WDN). The method aims
to provide the best sensor placement based on network data and defined contamination
scenarios. The overall process of this method is presented in Figure 1.
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Figure 1. Methodology flowchart.

The first step in the method is to define the contamination scenarios, which are a
combination of the location and time of contaminant injection. Next, hydraulic and water
quality simulations are conducted for each scenario, where the result of each scenario is
saved to a database. After the simulation is completed, a pre-analysis based on the data is
conducted to identify the eligible locations for sensor placement and average contamination
volume. Eligible locations can be determined based on the degree of nodes (DoN) or other
defined characteristics to reduce the search space. The average contamination volume is
the value that is used during the optimization fitness evaluation. Finally, the optimization
process is carried out using the database and pre-analysis results.
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2.1. Scenario Creation

The optimal SPS should perform well in all potential contamination scenarios. The
scenario described here was generated from a combination of multiple intrusion locations
and times. Thus, the total number of scenarios is the multiplication of the possible intrusion
point (i.e., junction node) and intrusion time (i.e., 24 h). The minimum number of scenarios
would be equal to the number of junctions if only one time was considered a critical
injection time. Even at the same node, if the injection time is different, it could result in
different pathways due to changing water usage with respect to time of day. Therefore, it
was better to consider various injection times throughout the day, such as every hour. The
injection aftermath can then be observed for each scenario. The contaminant movement
through the network over time is especially important. It should be noted that the scenarios
are not tied to a specific contaminant, and the sensors are treated as Boolean. Hence, the
contaminant concentration is not considered in this study. Therefore, the contaminant is
simulated as non-decaying to only account for the presence of a contaminant in the system.

2.2. Databasing

During the optimization process, the defined scenarios were tested using the sensor
set solution. As hydraulic and water quality simulations are complicated calculations,
testing each solution while performing simulations will consume a significant amount of
computational power and time. To combat this resource hogging, a databasing method
was applied. This databasing method utilizes a set of predefined scenarios instead of
performing a stochastic analysis. The database stores all the data from each hydraulic and
quality simulation scenario, thus removing the need to access the network file and simulate
every possible solution.

One of the essential databases is the static network database, wherein the data were
fixed and did not change over time. In this database, the characteristics of the network
nodes and links were stored. The data of the node contain the id, type, base demand, and
coordinates, whilst the data of the link include the id, type, length, diameter, and connected
nodes. The other database is the simulation database, where the simulation results are
stored. Two simulation databases were created. The first was used to store the demand at
each node during the simulation. This database is fixed regardless of the scenario because
the water consumption will be the same. The second was created for every scenario and
contained information needed to determine the contaminant spread behavior, which can
be reflected through the contamination status of all the nodes through the simulation time.
This database stored the time and status matrices of all scenarios (TS matrix). An example
of a TS matrix is presented in Table 1. The rows denote the time in seconds, the columns
denote the node, and the cells show the contamination status (1 for true and 0 for false).

Table 1. Example of time and status matrix (TS matrix) of a scenario.

Time Node 1 Node 2 Node 3 Node 4 Node 5

0 1 0 0 0 0
1800 1 0 1 0 0
3600 1 1 1 0 0
5400 1 1 1 0 1
7200 1 1 1 0 1
9000 1 1 1 0 1

As shown in Table 1, in this scenario, the contaminant source can be identified by
the earliest detected contaminant, which is Node 1 at time 0. The contamination spread
sequence can be derived by observing the status of each node over time. After the contami-
nant is injected at Node 1, it then spreads in sequence from Node 3 to Node 2 and finally
Node 5. Coincidently, Node 4 is free from contaminants. We can then use these databases
to check how the sensor responds when placed at a specific location during optimization.
For example, considering only a single sensor, it detects a contaminant immediately if it
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is placed at Node 1. However, placing the sensor at Node 4 will result in no detection
of contaminants. It can be said that for this specific scenario, placing the sensor at Node
1 produces the best result. However, more scenarios need to be considered, demanding
optimization to achieve a balanced result.

2.3. Optimization

Unlike the conventional SPS optimization approach, where the decision variables are
usually the status of the nodes as sensors, a map-based optimization was conducted in this
study. The decision variables in this calculation were the coordinates of the search points
that determine the nearest node location in the network map. By this definition, to describe
the abscissa and ordinate of a sensor in a single vector, the number of decision variables
was twice the number of deployed sensors. An illustration of this method is presented in
Figure 2.
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PSO is a meta-heuristic algorithm that can be used for discrete, continuous, and
combinatorial optimization problems. The algorithm takes inspiration from swarms’ social
behavior in nature, such as bird flocking or fish schooling [18]. The swarm explores the
search space to reach an unknown destination (fitness function). Each individual in the
swarm is a candidate solution and is referred to as a particle. The algorithm starts by
initiating random particles in the swarm where each particle has knowledge of its velocity,
the best-achieved location in the past (pBest), and which particle is currently the global best
inside the swarm (gBest). At every iteration step, each particle will try to move to a location
that is closer to both pBest and gBest by adjusting its velocity. In this study, a modification
was applied to the PSO algorithm, specifically in the evolution part, where a mutation
factor is used. The workflow of the PSO is shown in Figure 3 and explained afterward.

For this problem, each particle represents the coordinate point of each sensor. The
vectors contained in each particle are described as follows.

(1) Location

The location vector contains coordinate points. The abscissa is stored in the first
half and the ordinate in the second half, where the vector length was 2·Nsen. During the
algorithm initiation at t = 0, this value was generated randomly from the minimum (pmin)
and the maximum (pmax) coordinates of the nodes in the network. Equations (1)–(5)
describe the contents of the location vector.

vlen = 2·Nsen (1)

pmin = min(min(corxn), min(coryn)), f or n = 1, . . . , Njunc (2)
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pmax = max(max(corxn), max(coryn)), f or n = 1, . . . , Njunc (3)

xi,j,0 = rand(pmin, pmax) , f or j = 1, . . . , vlen (4)

Xi,t =
[
xi,j,t

]
, f or j = 1, . . . , vlen (5)

where vlen is the vector length; Nsen is the number of sensors; max () is the maximum of the
contained elements; corxn and coryn are the abscissa and ordinate of node n, respectively;
Njunc is the number of junctions in the network; xi,j,0 is the ith particle’s jth location element
at iteration 0 (initialization); rand() is the random uniform numbers drawn between the
contained first and second element; pmin and pmax are the minimum and maximum
allowable location respectively; Xi,t is the location vector of the ith particle at iteration t;
xi,j,t is the jth location element of the ith particle at iteration t.

(2) Velocity

The velocity vector contains the velocity of the particle, which controls the coordinate
displacement in the next iteration. At t = 0, the velocity was generated randomly from
the number between the minimum velocity (vmin) and maximum velocity (vmax). The
element of the velocity vector is described by Equations (6) and (7).

vi,j,0 = rand(vmin, vmax) (6)

Vi,t =
[
vi,j,t

]
, f or j = 1, . . . , vlen (7)

where vi,j,0 is the jth velocity element of the ith particle at iteration 0 (initialization); vmin
and vmax are the minimum and maximum allowable velocities, respectively; Vi,t is the
velocity vector of the ith particle at iteration t; vi,j,t is the jth velocity element of the ith

particle at iteration t.

(3) Personal best location (pBest)

The personal best location describes the location at which a particle achieves the best
fitness. This vector is empty during t = 0, and is updated as the iteration proceeds.

pBesti =
[
xpi,j

]
, f or j = 1, . . . , vlen (8)

where pBesti is the best location vector of the ith particle, xpi,j is the jth personal best
location element of the ith particle.

(4) Global best location (gBest)

In each iteration, the particle with the best fitness value in the swarm was saved as the
gBest, as shown in Equation (9).

gBest =
[
xgj
]
, f or j = 1, . . . , vlen (9)

where gBest is the best location vector of the swarm, xgj is the jth best global location
element of the swarm.

The evolution of the particle was applied by adding a new velocity to the current
particle location where the new velocity was affected by the distance between the current
location and the personal best location (individual component) and the global best location
(social component). In the individual component, the interval of the personal best to the
current location was multiplied by the individual learning rate, which was a randomly
generated number between 0 and c1. The social component was the distance between the
current location and the known best location in the swarm affected by the social learning
rate, which was another randomly generated number between 0 and c2. Another important
element was inertia (ω) [19], which controls the influence of past velocity into a new
velocity. The inertia adapts with the increase in iteration by decreasing the past velocity
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influence to balance the local and global search. Equations (10)–(12) show the evolution
calculation.

Xi,t+1 = Xi,t + Vi,t+1 (10)

Vi,t+1 = ω·Vi,t + rand(0, c1)·(pBesti − Xi,t) + rand(0, c2)·(gBest − Xi,t) (11)

ω = 0.9 −
(

0.9 − 0.4
tmax

)
·t (12)

where ω is the inertia weight, c1 and c2 are the individual and social acceleration constants,
respectively, t is the current iteration step, and tmax is the maximum allowable iteration.
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One of the reasons why PSO was chosen over the more commonly used GA is that
this optimization scheme allows the sensor to be moved with respect to its past position
instead of creating a new set of points. This behavior allows for fine adjustments near the
current point. However, without some modifications, the algorithm can still get stuck at
the local optima. In this study, another variable, c3, was added as a mutation factor. The
variable enables an individual to change some of its elements without considering velocity.
The applicability of mutation to a location vector and the mutation procedure are described
in Equations (13) and (14):

Xi,t+1 =

{
Xi,t+1, i f rand(0, 1) > c3

f m(Xi,t+1), i f rand(0, 1) ≤ c3
(13)

f m(Xi,t+1) =

{
[xi,j,t+1], i f rand(0, 1) > θ

[xi,j,t+1 = rand(pmin, pmax)], i f rand(0, 1) ≤ θ
, f or j

= 1, . . . , vlen; θ = 0.1
(14)

where c3 is the mutation factor, f m(Xi,t) is the mutation function and θ is the independent
probability for each element to be mutated.
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3. Objective Functions

The optimization requires a direction to go to; thus, quantifiable objective functions
were necessary to guide it. The objective functions considered in this study include the
detection, consumption, and source identification stages of a contamination event, partic-
ularly the objectives are blindspot (BS), consumed contamination (CC), and localization
efficiency (LE). Each objective was designed to show an improvement in SPS performance
as the value decreases. Hence, the target is minimized. The multiple objectives are grouped
into a single fitness value by averaging their values, as shown in Equation (15).

min(Fitness) = (BS + CC + LE)/3 (15)

where Fitness is the fitness value, BS is the blindspot value, CC is the consumed contami-
nation value, and LE is the localization efficiency value. Note that the objective function
values range from 0 to 1, as described in more detail in the following sections.

3.1. Blindspot (BS)

The first stage of a contamination event starts with the intrusion of a contaminant into
the WDN. The presence of this contaminant was assumed to be undetected until a WQS
picked it up and, in the worst case, remained undetected if no WQS detected it. The BS
quantifies the sensor configuration capability to detect contamination in various scenarios.
The contaminant injection spread to specific locations depending on the scenario injection
characteristics. When a sensor was located in any of the pathways, it resulted in a detected
scenario. This objective function shows good performance with an increase in detected
scenarios or a decrease in undetected scenarios, as defined in Equation (16).

BS =
Sundet
Stotal

(16)

where Sundet is the number of undetected scenarios, Stotal is the total number of scenarios.

3.2. Consumed Contamination (CC)

After a contaminant enters the WDN, it is in an undetected state until the sensor detects
it. In this undetected state, contaminated water was still being consumed inadvertently,
endangering user health. It was assumed that the water usage stopped only after detection.
Therefore, the purpose of the CC objective was to consider the duration and spread of the
contaminants until detection. Several events can occur at different locations and have the
same contaminated volume until detection. However, these events were not considered
equal in severity as the contamination was not instantly stopped because of potential
sensor malfunctioning [20]. Contaminant intrusion at a point with many downstream
connections may cause severe consequences because it enables a larger area to be infected.
To reflect this, a weighted factor was applied to this objective. The weight was assigned
by the possible affected base demand of each scenario, and base demand was used as a
surrogate for the network users. A good measurement for this objective was observed
if sensors were placed upstream or after high demand nodes to reduce the consumption
volume and downstream contamination chance.

To obtain the CC value, the scenario weight was first calculated. The weight for each
scenario was first calculated by observing the possible contaminated area of each injection
scenario through the database. Then, the infected base demand of each node was summed
as the weight of the scenario, and the weights were sorted in ascending order. A two-degree
polynomial regression algorithm was then applied to smooth the weight and prevent large
leaps. The weight was then normalized using a min-max normalization to convert it
into weight factors. As the values were turned into a range of 0 to 1, multiplication by
0 removed the scenario. Scenario removal was not desired, as a contamination event
should not be disregarded, no matter how small. The average weight factor was used
as the minimum weight. In the final weight, all values below the minimum weight
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were changed into the minimum weight value. This prevented scenario removal and
underestimation of the scenario. The sorted weights were then redistributed to the related
scenarios. A visualization of the weight calculation is shown in Figure 4.
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Initially, the contaminated base demand of each scenario was calculated and then
sorted in ascending order, as represented by the blue cross mark. The regression was
applied, turning it into a dotted blue line. The contaminated base demand was then
normalized, and the average value was calculated. The weight factor starts from the
average value, as seen in the figure, where the red line starts flat until it intersects with the
blue line.

The CC was then calculated after the scenario weight was calculated. For a single
scenario, the contaminant will continue to spread until the full saturation time, when all
the possible areas are contaminated without any sensor application, is reached. This means
that the amount of contaminated water consumed continued to increase exponentially
with time, as earlier contaminated nodes still consumed water. The ratio of consumed
contaminated water when the sensor was deployed to the non-sensor condition would
be distorted. To obtain a more impactful divisor, instead of using the total contaminated
volume of all nodes until the full saturation time, average consumption is used. The
average consumption is calculated by averaging the total consumption of each node and
adding the standard deviation, as shown in Equation (17). This guarantees a smaller divisor
that works better during optimization and is still a good representation of the situation.

Vavgs = mean(Vsat,k) + st.dev.(Vsat,k), f or k = 1, . . . , nnode (17)

where Vavgs is the average consumed contaminated water without sensor deployment
during scenario s; Vsat,k is the total consumed contaminated volume until saturation time
of node k; nnode is the total number of nodes, mean() and st.dev.() are the average and
population standard deviations of the contained elements, respectively.

The CC can then be calculated as in Equation (18).

CC =
∑Stotal

s=1 Ws·Vconss

∑Stotal
s=1 Ws·Vavgs

(18)
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where associated with scenario s, Ws is the weight factor, and Vconss is the consumed
contaminated water during sensor deployment.

During undetected events, the Vconss is equal to Vavgs. In this way, the effect of an
event being undetected can be measured. This action allows the algorithm to choose which
cases of undetected event are safer (with lower weight) when it is not possible to detect
all events.

3.3. Localization Efficiency (LE)

In the mitigation process of a contamination event, the critical step is to find the
contamination source after the sensing period [21]. This objective function describes the
amount of information available for the source localization step. As more sensors are able
to detect contamination, there will be an increase in accuracy for detecting the source [22].
The LE value is better when the contamination event is picked up by multiple sensors,
as expressed in Equation (19). To improve this objective, sensors are more likely to be
deployed downstream. This value only applies to detected contamination events, so it
does not account for undetected events such as the BS value.

LE = 1 − ∑Sdet
s=1 Ds

Nsen·Sdet
(19)

where Ds is the number of sensors detecting the contamination during scenario s; Nsen is the
number of sensors deployed in the network, and Sdet is the number of detected scenarios.

4. Application

In this study, simulations were conducted using the Python 3 programming lan-
guage [23] and was supported by the Water Network Tool for Resilience (WNTR) 0.3.0
Python package [24] to utilize the EPANET hydraulic simulation model. The databases
were created using MySQL and connected to Python, which was able to take advantage of
multiple CPUs, whilst the calculation scheme allowed for parallel computing.

4.1. Study Networks

Three networks were utilized in this study. The first network was the well-known
EPANET example network 3 (NET3). This network is used as a benchmark for the SPS per-
formance by comparing it with the sensor placement of the example in the threat ensemble
vulnerability assessment and sensor placement optimization tool (TEVA-SPOT) [25]. The
second and third networks were real DMA-sized WDNs operating in South Korea. These
networks were used to show the behavior and performance of the SPSO with an increase
in the number of sensors. The layout and details of the networks are shown in Figure 5
and Table 2.

Table 2. Network details.

No. of Elements
Network

NET3 NET-A NET-B

Junctions 91 104 87
Sources 2 1 1
Tanks 3 0 0
Pipes 115 151 129

Pumps 2 0 0
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4.2. Benchmark Comparison (NET3 Network)

In the example provided by TEVA-SPOT, the SPS was based on minimizing the extent
of contamination, which was the length of the contaminated pipes. Here, it was decided
for each junction to have 24 different contaminant injection times with one-hour intervals.
The total number of scenarios was 24 multiplied by the number of junctions, totaling
2184 unique scenarios. The hydraulic and water quality simulations were performed,
and all the required databases were created. After this, a pre-analysis was performed to
determine the weight distribution of each scenario and the average contamination volume.
The eligible locations for sensors were limited to only nodes with a DoN of at least three,
preventing sensors from being placed at dead-end nodes and serial connections. The
evolution parameters for the SPSO are set as [c1, c2, c3] = [2, 2, 0.1].

Applying SPSO to NET3, the results show an improvement compared with the TEVA-
SPOT example. The sensor placement layout comparison is provided in Figure 6, and the
results are summarized in Table 3. Note that the number of deployed sensors is five in
both studies.
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Table 3. Comparison of objective values between TEVA-SPOT and SPSO.

TEVA-SPOT SPSO Improvement

Fitness 0.2851 0.2192 23.1%
BS 0.1868 0.1648 11.8%
CC 0.1984 0.1280 35.5%
LE 0.4701 0.3647 22.4%

Results from SPSO show that it performs better than the TEVA-SPOT with all three
objective values. Among the five deployed sensors, only one sensor (S 141) is used in both
studies. Two sensors have close placements, i.e., S 247 is adjacent to S 241, and S 201 is
near S 207. The overall fitness value shows an improvement of 23.1%, resulting from the
improvement of all objectives without any trade-off. The BS improved with the addition of
S 217, increasing the capability to detect contamination upstream of the location, and the
total number of undetected scenarios decreased from 433 to 280. The CC value showed the
most significant improvement compared with the other objectives and favors the sensor
to be placed upstream or after high-demand nodes. This is reflected by S 111, which was
located upstream compared to S 193 in the TEVA-SPOT. Although S 119 was upstream in
the TEVA-SPOT, removing it did not degrade the CC value. By inspecting the simulation, it
was found that most of the high-demand nodes were located on the left side of the network,
meaning that the placement of S 119 was not optimal. The LE also shows improvement by
SPSO, as there are more sensors in the downstream area of the network with S 217, which
provides additional sensor readings for most contamination events that occurred upstream
of it. The reduction of upstream sensors might be harmful in terms of CC, but the new SPS
shows that this is not the case.

4.3. SPSO Performance Evaluation (NET-A and NET-B Networks)

The SPSO method performed well for the benchmark network, as shown in the
previous section. In this section, the method was applied to configure the SPS in two
real-life DMA-scale networks to show how the SPSO performs with an increase in the
number of sensors in different types of network characteristics. Note that minimum of
three sensors were deployed for both networks because NET-A has three looped-blocks.
Same number of sensors was deployed for both networks, which were three (Config-A),
four (Config-B), five (Config-C), and six (Config-D) sensors. Sensor locations were limited
to only nodes with a DoN of at least three, and the evolution parameters for the SPSO
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were set as [c1, c2, c3] = [2, 2, 0.1]. The same limitations and parameters were applied as
previously described.

4.3.1. SPSO Performance on NET-A

NET-A featured a hybrid branch-looped network in which one source supplied water
to the largest looped section, and a bridge connection in series connected two smaller
looped sections. SPSO was used to assign three to six sensors in the network. A compar-
ison of each configuration of the sensor is shown in Figure 7. A numerical performance
comparison of each configuration is summarized in Table 4, and Figure 8 shows a graphical
comparison.
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Table 4. Performance comparison for NET-A.

Objective
Config | Number of Sensors

A | 3 B | 4 C | 5 D | 6

Fitness 0.4996 0.3562 0.3169 0.2988
BS 0.1923 0.1250 0.1058 0.1058
CC 0.6752 0.4123 0.3066 0.2745
LE 0.6314 0.5312 0.5385 0.5160
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The increase in the number of sensors resulted in an improvement in the fitness value
and overall objectives, with a diminishing return of improvement noted by observing the
slope of the fitness. The most significant improvement was found when the number of
sensors was adjusted to four from three, in which the fitness improved by 0.1434 and CC
by 0.2629. Config-A (three sensors) placed two sensors in the large section and one in the
medium section, while the small section did not have any sensors placed. This created
many undetected events, large consumption of contaminants before detection, and poor
localization efficiency. Config-B (four sensors) placed one sensor in each of the large and
small sections, whilst two sensors were placed in the medium section. The configuration
was found to be more balanced, and a steep improvement in fitness was observed, as shown
in Figure 8. The BS and LE for configurations B, C, and D did not change significantly with
the LE impaired by a tiny value in Config-C but still exhibited a better fitness value than its
predecessor owing to the improvement in CC and BS. The addition of one more sensor in
Config-D did not improve the BS, but it did improve the other objectives. In this application,
CC showed the greatest improvement with the increase of sensor numbers, followed by BS
and LE. Additional sensors reduced the amount of consumed contamination in this hybrid
network by providing more cover to the branch section; thus, the LE did not benefit from
the dispersed sensor configuration.

The layout figure shows that sensors S 709 and S 726 were always placed, signifying
that the location is strategic for sensor placement. Sensor S 710 was also present for all
except Config-A and Sensor S 723 for Config-C and Config-D. Config-D placement proved
to be a superset of Config-C, as it only added Sensor S 769 as the 6th sensor. This can be
explained by observing the objective, particularly in the BS. As there was no improvement
in the BS, Config-C minimized the undetected events. An additional sensor was placed
to improve the other objectives. Increasing the number of sensors showed that additional
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sensors were more likely to be placed in the medium and small sections instead of in the
large section. Due to the medium section having its water supplied from the large, looped
section, any contamination sourcing from the large section would eventually reach the
medium section, but not vice-versa. Therefore, placing more sensors in the large section
did not benefit the BS and LE. Finally, it featured a balanced placement of the two sensors
in each section in Config-D.

4.3.2. SPSO Performance on NET-B

NET-B was a densely looped network that features more high-demand nodes in the
east area. Owing to the densely looped nature of the network, most of the flow that
reached the east area passed through the majority of the nodes in the west area. In other
words, contamination sourcing from the west area was extremely likely to reach the eastern
area. The sensor placement layout for each configuration is shown in Figure 9, and the
performance comparison is presented in Table 5 and Figure 10.
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Table 5. Performance comparison for NET-B.

Objective
Config | Number of Sensors

A | 3 B | 4 C | 5 D | 6

Fitness 0.1747 0.1453 0.1374 0.1281
BS 0.0349 0.0349 0.0349 0.0349
CC 0.1362 0.0928 0.0864 0.0856
LE 0.3529 0.3083 0.2909 0.2637

Water 2021, 13, x FOR PEER REVIEW 16 of 19 
 

 

  
(c) (d) 

Figure 9. Sensor configuration for NET-B (a) Config-A, (b) Config-B, (c) Config-C, and (d) Config-D. 

Table 5. Performance comparison for NET-B. 

Objective 
Config | Number of Sensors 

A | 3 B | 4 C | 5 D | 6 
Fitness 0.1747 0.1453 0.1374 0.1281 

BS 0.0349 0.0349 0.0349 0.0349 
CC 0.1362 0.0928 0.0864 0.0856 
LE 0.3529 0.3083 0.2909 0.2637 

 
Figure 10. Performance comparison graph for NET-B. 

A low BS of 0.0349 was achieved by placing only three sensors, which translated to 
72 out of 2088 scenarios not detected, with the additional sensors only improving the CC 
and LE. Similar to the application in NET-A, adding more sensors resulted in an improve-
ment of fitness and the objectives individually (except for BS being constant). Using Con-
fig-A as the base, the most significant improvement jump was in Config-B, and the subse-

Figure 10. Performance comparison graph for NET-B.

A low BS of 0.0349 was achieved by placing only three sensors, which translated to 72
out of 2088 scenarios not detected, with the additional sensors only improving the CC and
LE. Similar to the application in NET-A, adding more sensors resulted in an improvement
of fitness and the objectives individually (except for BS being constant). Using Config-A
as the base, the most significant improvement jump was in Config-B, and the subsequent
addition of sensors only resulted in a slight improvement of the fitness value. Config-B to
Config-D did not show much change in the CC value, while LE continued to improve. It
was easier for the configuration to produce a good BS value in a highly looped network
because the flow to downstream nodes was received from various upstream nodes. In
this case, three sensors proved to be sufficient to detect all contamination events except
contamination emanating from dead-end nodes. The CC was also affected by a looped
network structure with the same effect, which reduced the number of sensors required to
reduce contaminant spread. The detection area of the sensors overlapped, as demonstrated
by the diminishing improvement as the number of sensors increased. The overlapping area,
in turn, provided more information for localization and improved the LE value instead.

With the east area having more high-demand nodes than the west area, it was preferred
to place sensors in the east area. Sensor S 750 was always included, with this node serving
as the end node for many sources of contamination. Sensor S 718 was also present for
all except Config-A and Sensor S 697 places for all except Config-B. Config-D placement
proved to be a superset of Config-C, as it only added Sensor S 738 as the 6th sensor.

Comparing the fitness values between NET-A and NET-B, the overall SPSO perfor-
mance is better in NET-B. That is, with the same number of sensors placed, a contaminant
is more likely to be detected and traced and less likely to be consumed in looped networks
compared to branch-type networks.
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5. Conclusions

A new SPS method, termed SPSO, which accounted for possible contamination sce-
narios using PSO, is proposed in this study. SPSO uses objective functions related to the
stages of contamination events. The objectives were designed to enhance the ability of the
configuration to detect contamination (BS), reduce consumption of contaminated water
(CC), and provide information to locate the contamination source (LE). The described objec-
tives were used to evaluate the sensor configuration across possible scenarios of intrusion
location and time. Optimization of the configuration uses PSO in map-based optimization
to determine the location of the sensor based on the coordinates. Furthermore, a databasing
method was also applied to enhance the computation efficiency of the optimization model.

The SPSO was first demonstrated by comparing the configuration result with the
TEVA-SPOT example SPS on the well-known benchmark network by applying the same
number of sensors. The results revealed that the configuration from SPSO performed better
for all applied objectives. The fitness improved by 23.1%, and for individual objectives,
the most significant improvement was observed in CC which improved by 35.5%. The
benchmark simulation showed that the proposed method is efficient and performs well
in locating the sensors. Furthermore, the performance of the method in different network
types and number of sensors was analyzed by using two DMA-scale networks. With an
increase in the number of sensors, the results showed improved fitness and individual
objectives. The increase in fitness experienced a diminishing return, showing that the
method can be used to determine the optimal number of sensors to be deployed. It was
observed that the BS value had the greatest effect on the placement of sensors, as it was
the first to reach the lowest value. This was expected as the detection of the contaminant
was the first step that needed to be reached before any action could be taken in practical
scenario. The CC value was closely related to the water flow pathways and the nodal
demand in the network, with the sensors more likely to be placed near busy pathways
and high-demand nodes. The LE had less impact than the other objectives as it modified
the sensor configuration to be more optimal after contamination was detected (BS) and
after reducing the volume of contaminated water (CC). The results were in line with the
expected objective responses to the contamination stages. From the different network
characteristics, it was more likely for CC to improve with the addition of sensors in a
(loop-branch) hybrid network, whereas in a densely looped network, LE showed more
improvement. Comparing the efficiency of sensors, when a similar number of sensors
are placed in a network, a contamination event is more likely to be detected and traced,
thus inducing less contamination damage in a densely looped network compared to a
branch-type network.

The proposed method can be used to determine the strategic locations of WQSs in
DMA-sized WDNs. As the method is based on multiple consolidated objectives, users can
customize the individual weight of objectives and prioritize some objectives over others.
The proposed approach can be further improved by including multiple injection points
or by considering the flow uncertainties (due to water consumption change in space and
time), as well as specifying the contaminant and sensor type in the scenarios. As the
study mainly proposed a framework for an SPS method, some parts of the method, such
as the objective functions, can be replaced in future studies. Applying a multi-objective
optimization scheme to include the sensor number as decision variables will allow for
seeking optimal sensor design. A more complex network could also be considered in future
case studies.
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