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Abstract: Distributed physically based slope stability models usually provide outputs representing,
on a pixel basis, the probability of failure of each cell. This kind of result, although scientifically
sound, from an operational point of view has several limitations. First, the procedure of validation
lacks standards. As instance, it is not straightforward to decide above which percentage of failure
probability a pixel (or larger spatial units) should be considered unstable. Second, the validation
procedure is a time-consuming task, usually requiring a long series of GIS operations to overlap
landslide inventories and model outputs to extract statistically significant performance metrics.
Finally, if model outputs are conceived to be used in the operational management of landslide
hazard (e.g., early warning procedures), the pixeled probabilistic output is difficult to handle and
a synthesis to characterize the hazard scenario over larger spatial units is usually required to issue
warnings aimed at specific operational procedures. In this work, a tool is presented that automates
the validation procedure for physically based distributed probabilistic slope stability models and
translates the pixeled outputs in warnings released over larger spatial units like small watersheds.
The tool is named DTVT (double-threshold validation tool) because it defines a warning criterion
on the basis of two threshold values—the probability of failure above which a pixel should be
considered stable (failure probability threshold, FPT) and the percentage of unstable pixels needed
in each watershed to consider the hazard level widespread enough to justify the issuing of an alert
(instability diffusion threshold, IDT). A series of GIS operations were organized in a model builder to
reaggregate the raw instability maps from pixels to watershed; draw the warning maps; compare
them with an existing landslide inventory; build a contingency matrix counting true positives, true
negatives, false positive, and false negatives; and draw in a map the results of the validation. The
DTVT tool was tested in an alert zone of the Aosta Valley (northern Italy) to investigate the high
sensitivity of the results to the values selected for the two thresholds. Moreover, among 24 different
configurations tested, we performed a quantitative comparison to identify which criterion (in the
case of our study, there was an 85% or higher failure probability in 5% or more of the pixels of a
watershed) produces the most reliable validation results, thus appearing as the most promising
candidate to be used to issue alerts during civil protection warning activities.

Keywords: shallow landslide; hazard; early warning; validation; GIS; factor of safety

1. Introduction

A landslide early warning system is defined as the set of capacities needed to gener-
ate and disseminate timely and meaningful warning information to enable individuals,
communities, and organizations threatened by hazards to prepare and act appropriately
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and in sufficient time to reduce the possibility of harm or loss [1]. Warning systems for
landslides can be designed and employed at different reference scales.

Two categories of early warning systems can be defined on the basis of their scale of
analysis—local systems for single slopes [2,3] and regional systems [4]. Regional early warn-
ing systems for shallow landslides can be developed following two approaches: (a) rainfall
thresholds based on statistical analysis of rainfall and landslides, and (b) physically based
models. While the first approach is currently extensively used at regional scale [4–14], the
latter is more frequently applied at slope or catchment scale [15–29].

The physically based models would allow for the spatial and temporal prediction of
the occurrence of landslides with high accuracy, producing dynamic and spatially accurate
hazard maps that can be of help for landslide risk assessment and management [30–32].
However, poor knowledge of the spatial distribution of hydrological and geotechnical
parameters, caused by the extreme heterogeneity and inherent variability of soil properties
at large scale [33–38], hinders the physically-based model application at regional scale.

The uncertainty related to hydrological and geotechnical parameters (such as cohe-
sion, internal friction angle, and hydraulic conductivity) can be overcome through the
use of a probabilistic approach, supported by the combined use of Monte Carlo simu-
lations [29,36,39]. In this case, the output is a distributed probability of failure, i.e., the
probability of having the factor of safety below a defined threshold (usually one). The
interpretation of the results is already troublesome since a calibration and validation pro-
cedure has to be taken into account in order to define the value of probability of failure
to discriminate stable and unstable pixels and, in the perspective of possible application
purposes, to convert the probabilistic output into alerts referred to wider spatial units (e.g.,
catchments or alert zones). Indeed, the pixeled model output at fine spatial and temporal
resolution is difficult to manage and to interpret and, in order to provide reliable results
to stakeholders involved in the hazard management, a reaggregation over spatial units
(e.g., basins, slope units, and municipalities) and temporal units could be advisable and
it is a strategy pursued by many works focused on operational applications of slope sta-
bility models [37,40–43]. In particular, for the spatial aggregation of probabilistic outputs,
a calibration procedure must be performed in order to define how many pixels (over a
value of failure probability that has to be defined) are necessary to consider a spatial unit
unstable. At present, a standardized approach for model validation does not exist [41].
Rossi et al. [29] considered a watershed as potentially affected by a landslide if the prob-
ability of failure was higher than 80% in at least 1% of the pixels of the basin, whereas
Kuriakose et al. [44] identified slope failures in locations with failure of probability higher
than 60%. Salvatici at al. [45] used a methodology of verification of their model based on
the count of the pixels with probability of failure higher than 75%, while Salciarini et al. [20]
correlated the spatial distribution of the landslides with different classes of probability of
failure (the higher one being >40%). Conversely, Ho and Lee [19] considered the mean
value of the factor of safety in each catchment instead of a probabilistic value. Given
the fact that validation is a time-consuming activity and that no standardized procedure
has been established, in the recent scientific literature it is still common to make use of
qualitative validation procedures based on visual comparison between model outputs (at
the pixel scale) and landslide occurrences (usually mapped as polygons or points) [34,46].
In this work, we present a GIS-based tool (DTVT, double-threshold validation tool) that
automatically performs (i) the reaggregation of results from pixel to basins scale and (ii) a
quantitative validation of the results, including the setting up of confusion matrixes. The
tool has been applied to the simulation results obtained by Salvatici et al. (2018) [45] with
the physically-based model HIRESSS (high-resolution slope stability simulator) [29] in a
test site located in Valle d’Aosta region (northern Italy). The tool was used to explore the
sensitivity of the validation results to some parametrical settings and to define how its
configuration could be set to obtain an early warning system as effectively as possible.
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2. Materials and Methods
2.1. Test Site

The test area was located in the eastern part of the Valle d’Aosta region, northern Italy,
in a sub-area of alert zone B (Figure 1). The area stretches over approximately 195 km2, in
the south of the region and is characterized by two main valleys. The first is located on
the Dora Baltea catchment, from Champ De Vigne to Pont-Saint-Martin and the second
valley encompasses the Lys catchment, Dora Baltea’s tributary, from Pont Trenta to Pont
Saint Martin.

Figure 1. Map showing the location of the test site and the areas used to apply and test the DTVT
(double threshold validation tool).

The Valle d’Aosta region is located in the Italian alpine area and the main geological
units stretch from north-west to south-east, through two main geological alignments—
one downstream near the city of Borgofranco d’Ivrea, (the Canavese line) and the other
upstream (the Pennidico front). From a lithological point of view the study area is mainly
characterized by intrusive and metamorphic rocks, in particular granites, metagranites,
schists, and serpentinite [45].

The geomorphology of the study area is characterized by steep slopes, which pre-
dispose the area to the triggering of landslides. The landscape shows valleys shaped
by glaciers, mainly during the Pleistocene glacial period, with elevations ranging from
400 m a.s.l. on the Dora Baltea River floodplain to about 3000 m a.s.l. on the crests. The cli-
mate of the region is characterized by high variability that is strongly influenced by altitude,
with a continental climate in the valley floors and an alpine climate at high altitudes [45].

Different types of landslides such as rockfalls, deep seated gravitational slope defor-
mations (DSGSD), rocks avalanches, debris avalanches, debris flows, and debris slides
(Catasto dei Dissesti Regionale–from Val d’Aosta Regional Authorities) are quite common.
These landslide typologies have very different triggering mechanisms and predisposing
factors, which should be accounted for by different models. In this work, we model the
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triggering conditions of shallow landslides, i.e., soil slips and translational slides and we
do not take other types of movement into account.

The GIS-based tool was applied to the HIRESSS simulation results of two selected
events during which several landslides had occurred in the study area and a good quality
landslide inventory was available. These events took place in April 2009 and June 2010. The
event of April 2009 affected the southeastern part of the Aosta Valley region from 26 April
to 28 April, with the highest total precipitation (about 268 mm) recorded at the Lillianes-
Granges station, mainly concentrated on 27 April (daily amount of 208 mm and peak hourly
rainfall of 17.4 mm); in the same day several shallow landslides were triggered. The second
event started on 8 June 2010 and ended on 17 June 2010. The maximum total precipitation
for the entire event was recorded at Issime and Lillianes-Granges stations, where 190 mm
and 230 mm were measured, respectively. The days with the highest precipitation were
the 15 and 16 June. The maximum daily and hourly precipitation (78.0 mm and 10.4 mm,
respectively), were both recorded at the Lillianes-Granges station on 16 June. This event
triggered several debris flows during the last days of the storm.

The former rainfall event was used to investigate the sensitivity of the model outputs
to the calibration strategies adopted, while the latter was used to verify a possible strategy
for issuing alerts. The areal extension of the simulations was limited only in the sectors
of the alert zone B where the information about the landslides was deemed complete and
reliable (Figure 1).

2.2. Previous Slope Stability Modeling in the Test Site

The DTVT tool presented in this work can be applied to the outputs of any distributed
probabilistic slope stability model; it can therefore be applied to failure probability maps,
i.e., raster maps in which pixel values describe the factor of safety in probabilistic terms
(i.e., the probability of the factor of safety being lower than one) for points of a certain area
and time-step (e.g., 1h or 1 day). In this work, we present an application of the DTVT tool
to the failure probability maps obtained using HIRESSS [29] by Salvatici et al. [45], but we
wish to stress that the DTVT tool and HIRESSS are independent of each other.

Details about the HIRESSS model and the Salvatici et al. study are present in refer-
ences [28,29,45] and for the convenience of the reader there follows some information about
HIRESSS. HIRESSS is a physically-based distributed slope stability simulator developed to
analyze shallow landslide-triggering conditions on large scale at high spatial and temporal
resolution using a parallel calculation method [29,45]. The model is composed of two dif-
ferent modules—hydrological and geotechnical. The hydrological module is based on the
hydraulic diffusivity concept, using an analytical solution of an approximated form of the
Richards equation under wet condition [47] with rainfall as input data, whilst geotechnical
stability analysis is based on an infinite slope stability model, taking into account the effect
of strength and cohesion increase due to matric suction. The HIRESSS model needs the
following spatially distributed input data: slope gradient, effective cohesion (c’), root cohe-
sion (cr), friction angle (φ’), dry unit weight (γd), soil thickness, hydraulic conductivity (ks),
initial soil saturation (S), pore size index (l), bubbling pressure (hs), porosity (n), residual
water content (θr), and rainfall intensity [29,43]. HIRESSS computes the factor of safety at
each selected time step (and not only at the end of the rainfall event) and at different depths
within the soil layer and it can operate at any spatial resolution. A Monte Carlo simulation
is implemented in the model to manage the uncertainty of the input data, and consequently
the output is the probability of failure, i.e., the probability to have a value of factor of safety
below 1. Detailed information about HIRESSS can be found in Rossi et al. and Mercogliano
et al. [28,29] showing past applications of HIRESSS in early warning systems. All details
about the application of HIRESSS to this test site can be found in Salvatici et al. [45]; as
mentioned, the present work builds on those results to develop and test the DTVT tool.



Water 2021, 13, 2313 5 of 18

2.3. Input Data Needed

The following list has a twofold objective: (i) to explain in general terms the input data
needed to apply the DTVT tool to any test site where a distributed slope stability model has
been previously applied and (ii) to describe the datasets used for the present application.

• Pixel-based failure probability raster maps: raster maps describe the failure probability
distribution of a certain area (in a specific time) obtained using a distributed slope
stability model (i.e., raster maps, in which every pixel reports the probability to
have factor of safety below one) (Figure 2a). In this work, we used raster outputs of
HIRESSS [45] with 10 m resolution, consisting in a summarizing raster map computed
by the model in which each pixel was associated with the highest probability value
calculated during each hour of that day.

• Reaggregation units: a polygonal shapefile of territorial units identifying the elements
in which the user needs to spatially aggregate the pixel-based information, to be used
for hazard management. In our case, as reaggregation units, we used sub-watersheds
(Figure 2b) with 0.37 km2 average areal extension and extracted starting from a DEM of
the study area using ArcMap. Other possible reaggregation units could be municipal
areas, alert areas, and sub-areas used by civil protection centers.

• Landslide dataset: this is the inventory of the landslides that occurred in the modeled
events. In this case study, it is represented by a shapefile of landslides including all
landslides triggered by the meteorological event described in the previous section,
as reported by the local authorities to the regional Civil Protection offices (Figure 2b,
“observed unstable areas”). Most of these landslides were originally mapped as
polygons. In this case, they were just imported in the shapefile. Other landslides
were registered less accurately: only the approximated location (e.g., name of the
locality, road trait hit by the slide, and address of a damaged infrastructure) was noted
and thus they were represented only as points. The points were transformed into
circles with a radius corresponding to the associated uncertainty in the location. Only
landslides with a small spatial uncertainty that would allow the triggering point into a
precise watershed to be located (a total of 10 landslides) were included. Moreover, on
the basis of the reports and of a field survey, all landslide types not compatible with
the triggering mechanism encompassed by HIRESSS (e.g., rockfalls) were discarded.

Figure 2. Input data: (a) pixel-based failure probability (FP) raster map and (b) reaggregation units
(sub-watersheds) and landslide database (observed unstable areas).

2.4. Instability Diffusion Threshold—Tool Development

The input data were combined into a GIS system (ESRI ArcMap 10.6) and the “model
builder” application was used to get a procedure for the automatic validation of the slope
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stability results aggregated on small watersheds. The procedure, named double-threshold
validation tool (DTVT) is based on the definition of watershed to be warned and on two
threshold values.

The first threshold operates at the pixel scale and is used to discriminate unstable
pixel from stable pixels. Probabilistic distributed models produce a raster map in which
each pixel is associated with its probability of slope failure calculated by the model. These
values range from 0 to 1 and the failure probability threshold (FPT) is used to define the
probability value above which pixels should be considered unstable.

The second threshold operates at the small watershed scale and is used to discriminate
watersheds with a relevant triggering hazard from watersheds that could be considered
relatively safe. Indeed, one could observe that an unstable pixel is not enough to consider a
whole watershed as unstable—issuing a warning that may involve serious countermeasures
(e.g., evacuation or road traffic closure) requires that the instability is quite widespread.
Therefore, we considered an instability diffusion threshold (IDT), which expresses the
percentage of the watershed area that needs to be occupied by unstable pixels (as defined
by the FPT) to issue a warning in the whole watershed. This approach is quite well
established in landslide hazard management [37,40].

The two thresholds (FPT and IDT) operate jointly and the outcomes may vary greatly
according to the threshold values used. Indeed, FPT and IDT can be considered parameters
that can be adjusted and calibrated during a testing phase (e.g., with a trial and error
procedure or empirically calibrated through case studies), to define the best arrangement
for forecasting purposes. This issue will be explored in the second part of the manuscript,
while in this section a detailed explanation of the steps performed by the tool is reported.

The procedure performed by the DTVT combines 32 ArcMap commands into an
automated tool: it is shown in Figure 3 and it is described hereafter, divided into five
main steps.

First, by means of a simple graphic user interface (Figure 3), all input data listed in
Section 2.3 must be loaded, the user-defined threshold values (FPT and IDT) have to be set,
and the directory where the results have to be saved has to be defined. Afterwards, the
model can be run.

Step 1: Set up the Failure Probability Threshold (FPT)

Using the raster maps of the probability of landslide-triggering produced by the
distributed slope stability model, a default expression of the Raster Calculator tool identifies
all the raster cells with probability values greater than the user-defined FPT value. The
result is a binary raster map, where the cells with probability of instability higher than FPT
are assigned the value 1; all the other cells are assigned the value 0.

Afterwards, the tool Tabulate Area overlays the aforementioned binary raster with the
watershed shapefile and defines how unstable raster cells are located within each watershed.

A field is added to the table and the R Index, which represents the ratio R, is calculated
and converted to a percentage, between the number of cells with a value of 1 and the total
number of cells included in the watershed. The R index is calculated for each watershed.

Step 2: Set up the Instability Diffusion Threshold (IDT)

Another field is added to the table and therein a field calculator is launched to compare
the R index of each basin with the user-defined IDT. As a result, table elements with a
spatial diffusion of instability greater than IDT are assigned a value 1, otherwise they are
assigned value 0.

A join is added to connect the modified table to the watershed shapefile. In this way,
watersheds modeled as stable (thus, considered safe) are distinguished by those modeled
as unstable (thus, to be warned).
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Figure 3. Model builder of the double-threshold validation tool (DTVT).
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Step 3: Create Validation Maps (Output #1)

The model overlays the landslides’ shapefile with the watershed and a series of
“select by location” operations is performed. The two layers are intersected, and the
modeled instability is validated by comparison with the known landslide inventory. As a
result, the watersheds are classified as TP (true positive—watersheds modeled as unstable
where landslides have been reported), FN (false negative—watersheds modeled as stable
where landslides have been reported), TN (true negative—watersheds modeled as stable
where landslides have not been reported), or FP (false positive—watersheds modeled as
unstable where landslides have not been reported) (Figure 4a). The four instances are
saved in separate shapefiles, which in turn are used to draw the resulting validation map
(Figure 4b).

Figure 4. (a) Contingency matrix defining true positives, false positives, true negatives, and false
negatives and (b) graphical representation, with the same set of colors, of the validation outcomes
obtained setting FPT = 75% and IDT = 10%.

Step 4: Create Contingency Table (Output #2)

With a series of “get count” and “calculate field” operations, the TP, TN, FP, and
FN instances are counted, and a contingency table is built and saved as an .xls file. The
results of the contingency table can be easily imported in a spreadsheet or other software
to design graphics and to calculate state-of-the-art skill scores, which are commonly used
to quantitatively assess the performance of a model after a validation procedure.
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Step 5: Reset the Model

Joins are removed and all active selections are cleared. The model is ready to be used
again with new input data and/or with a different couple of threshold values.

In summary, the system automatically performs a validation of the probabilistic
outputs generated by distributed slope stability models by comparison with an inventory of
reported landslides. The validation output is twofold and includes a map and a contingency
table. Thanks to the implementation of the procedure in the ArcGIS Model Builder tool
(Copyright © 1995-2017 ESRI), the workflow can be tested repeatedly and quickly after
changing the input data or the user-defined settings.

2.5. Tool Application

In this work, the DTVT tool was also applied in a series of tests with a twofold
objective: (i) to explore the sensitivity of the model outputs to the validation criteria and (ii)
to define some interpretation criteria of the probabilistic outputs to be used in operational
application to issue warnings.

Using the same set of input data, the DTVT tool was used repeatedly to perform
several validation procedures, each time changing the criteria (i.e., threshold values) used
to discriminate stable and unstable watershed. The modeled event was the one occurred in
April 2009, because this meteorological event produced a severe and representative impact
in terms of triggered landslides. The following FPT and IDT values were tested—60, 70,
75, 80, 85, and 90% and 3, 5, 10, and15%. Each pair of FPT-IDT values defines a specific
configuration of the DTVT, which was used to automatically validate the results of the
landslide modeling performed by HIRESSS. For each of the 24 DTVT configurations, the
validation maps were saved, and the contingency matrixes were imported into a spread-
sheet to calculate and compare the skill scores that are commonly used as quantitative
indicators of model performance [48].

3. Results
3.1. DTVT Outputs and Sensitivity Analysis

The results of the validation were visually rendered with a series of shapefiles that
were automatically loaded in the opened ArcMap project and “dressed” according to a
default symbology (Figures 4 and 5).

True-positive watersheds are colored in red, to stress the high hazard level correctly
captured by the model (in a hypothetical warning system, those watersheds should have
been warned and the warning would have been successful because a landslide occurred
there). False negative watersheds are colored in orange—a high hazard level was present
there (a landslide was reported), but the slope stability model output, reaggregated with
the DTVT at hand, has not adequately captured it. The watersheds where no landslides
have been reported are colored in light colors—light yellow if the model correctly returned
a safe condition (true negatives) and light blue it the model overestimated the hazard level
and returned a false positive.
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Figure 5. Example of outputs of the DTVT tool, according to four different configurations:
(a) 85%/3%, (b) 85%/5%, (c) 85%/10%, and (d) 85%/15%; pixels and watersheds are considered
unstable (colors are explained in Figure 4) and the resulting contingency matrixes are shown to
highlight the sensitivity of the results to the approach used.

The maps are completed by the landslide catalog and by the binary raster map created
in the first steps of the DTVT procedure, which visualizes in red the pixels considered
unstable by the FPT of the current configuration. In this way, a compete overview of the
validation result can be visually acquired and used to understand and interpret the results.

The contingency matrixes consist of a simple count of the TP, FP, TN, and FN instances.
This raw output of the DTVT can be visualized as a table in the ArcMap project, together
with the maps (Figure 5).

Figure 6 reports a summary of all the contingency matrixes obtained in our application,
grouped by IDT values.

The contingency matrixes clearly show that depending on the criteria used for vali-
dation, the same model may get very different results. For instance, in the configurations
tested, the count of true positives ranged from 68 to 105 as the IDT parameter grew. At the
same time, the false positive count showed an inverse trend, diminishing from 182 to 21.
This result shows the large sensitivity of the output of the contingency matrixes to the crite-
ria used to validate the results of a slope stability model. Moreover, if the stability model
has to be used for operational purposes in an EWS, the decision about which configuration
produces the most desirable forecasts is not trivial and involves the selection of a tradeoff
between errors of omission (false negatives) and errors of commission (false positives). In
our application, we investigated two different possible criteria to select the optimal DTVT
configuration to be implemented and used in a warning system to reaggregate and manage
the slope stability model outputs from a pixel scale to a watershed scale.
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Figure 6. Contingency matrixes resulting from all the DTVT configuration tested.

3.2. Identification of the Most Balanced Prediction

The contingency matrix tables were imported in a spreadsheet to calculate some skill
scores that are commonly used as quantitative indicators of model performances [48,49].
The complete set of skill scores can be found in the Supplementary Materials. Here, for
reasons of space, we present as an example the calculation of the Efficiency, defined as

Efficiency = (TP + TN) / (TP + TN + FP + FN) (1)

Among all possible skill scores, we considered the efficiency because it can be conve-
niently used to describe the overall behavior of a model and measure its balance between
errors of omission (false negatives) and errors of commission (false positives) [48,49]; it
accounts for all four instances of the contingency matrix and it is easily understandable as
it is expressed as a percentage ranging from 0 (no correct predictions obtained) to 1 (perfect
prediction in all occurrences). By comparing the efficiency score reported by the 24 DTVT
configurations tested (Table 1), the 80%−15% configuration can be considered as the most
desirable one, because it led to the prediction outcomes that were most balanced between
false alarms (FP) and missed alarms (FN). Of course, this is just an example of application
and other criteria could be based on a different skill score (or on a combination of two or
more skill scores), as can be seen on the next section.
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Table 1. Comparison of the efficiency skill score of all the 24 DTVT configurations tested and
identification of the configuration providing the most balanced outcomes.

Efficiency FPT 60% FPT 70% FPT 75% FPT 80% FPT 85% FPT 90%

IDT 3% 0.650 0.673 0.696 0.725 0.740 0.767

IDT 5% 0.708 0.735 0.754 0.788 0.817 0.823

IDT 10% 0.804 0.821 0.837 0.852 0.858 0.873

IDT 15% 0.850 0.875 0.871 0.890 0.877 0.888

3.3. Identification of the Operational Warning Criterion

Since one of the objectives of this work was to identify a DTVT configuration to be
operated in a warning system for the interpretation and reaggregation of the probabilistic
outputs of HIRESSS, we performed another analysis to identify an “operational warn-
ing” criterion. In this case, the criterion used to identify the optimal configuration was
driven by legal, operational, social, and political constraints which, in countries like Italy,
tend to consider a missed alarm much worrying than a false alarm [11,50,51]. Conse-
quently, the operational warning criterion was identified with a double-step procedure:
first, the DTVT configurations that minimize missed alarms (FN) and thus, at the same
time, maximize correct warnings (TP) should be identified. Afterwards, among them,
the configuration leading to the lowest number of false alarms (FP) is selected as the
operational warning criterion.

The result of the data processing showed that the IDT value of 5% returned the best
cases. Figure 7 shows that an IDT value of 5% with FPT thresholds from 60% to 85%,
allowed the forecast of all nine landslides. These configurations were considered for the
subsequent step (while the 90% threshold was discarded because it generated a missed
alarm). Among them, the operational warning criterion was selected by identifying DTVT
5–85% as the configuration with the lowest possible number of false alarms.

Figure 7. Double-step procedure applied to the IDT 5% outcomes to identify the optimal operational
warning criterion: identification of the configurations maximizing true positives (TP) (red cylinders)
and, among them, selection of the configuration minimizing false positives (FP) (blue cylinders).

It is important to remark that with respect to the criterion proposed in Section 3.2,
the operational warning criterion has two main differences. First, true positives are based
on the count of the landslides instead of on the number of the watersheds affected by
landslides. Second, the definition of the “optimal” configuration is not based on the
balance of the prediction between missed alarms and false alarms, but it is biased towards
the priority of avoiding as many missed alarms as possible. False alarms are considered as
well, but their reduction is, in this case, of secondary importance.
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4. Discussion

The DTVT tool proved effective in automating a long series of operations (32) to get a
complete validation of the results of a probabilistic distributed slope stability model. These
operations are traditionally performed manually by operators in GIS programs, therefore
the DTVT allows for saving a relevant amount of time and efforts.

The proposed tool is highly replicable. It should be stressed that it can be applied to
any distributed slope stability model that provides probabilistic outputs at the pixel scale
that need to be aggregated on wider spatial units (e.g., watersheds or municipal areas). The
specific application presented here involves the HIRESSS model and sub-watersheds as
spatial aggregation units, but any other slope stability model with a similar output could be
used, and the spatial aggregation of the results could be performed based on any polygonal
shapefile provided in the input data (wider or smaller watersheds, municipalities, slope
units, and so on). To ensure the widest possible applicability, the tool was created in
the form of a model builder in ArcGIS ESRI, which is the most widespread GIS software
globally. The tool can be obtained upon request by contacting the corresponding author
and contains a “help” section to guide the user.

The results of the tests also showed that the outcomes of the stability model can change
greatly depending on how the probabilistic values are interpreted and reaggregated. As
FPT and IDT threshold values are changed, watersheds can become stable or unstable,
changing the count of correct and wrong predictions and, ultimately, the validation scores.
As the thresholds are raised, the modeled instability is reduced and the count of missed
alarms may consequently drop, but usually this happens at the cost of a lower amount of
correctly predicted conditions of instability. Conversely, if thresholds are lowered, instabil-
ity conditions are met more frequently, thus producing a higher count of correct hits and
false alarms as well. It is also interesting to highlight that, since the validation procedure is
based on two thresholds, it is possible to get intermediate results as one threshold is raised
while the other is lowered, opening a wide range of possible intermediate outcomes.

This feature highlights once more the high sensitivity of the results to the key used to
interpret and reaggregate them but could be also used as a point of strength to fill an existing
gap in the landslide literature. No standard has been established yet to validate the results
of probabilistic distributed slope stability models; thus, the tool can be used to investigate all
the possible options with contained efforts. In our application, we tested 24 configurations
obtaining quantitative performance indicators. These indicators can be used to define the
best approach to interpret the stability model outcomes. For instance, if a balanced result
is desired, the model configuration with highest efficiency could be selected. In our case,
that would correspond to the 85%/15% configuration. Conversely, in preparation to an
operative application in a warning system, a more precautionary configuration could be
desirable (e.g., the minimization of missed alarms could be considered more important
than the minimization of false alarms) and, in our case study, that would correspond to the
85%/5% configuration. It should be stressed that these values are expected to be highly
site-specific, depending on the slope stability model used and on the characteristics of the
case of study. However, these terms being equal, the operational warning configuration
has proven to be quite stable. Indeed, it was further verified against another landslide
event following the rainstorm occurred in June 2010, in the warning zone B. During this
event, a single landslide event was reported in the warning zone B, in a location slightly
different from the one used to calibrate the DTVT tool (Figures 1 and 8).



Water 2021, 13, 2313 14 of 18

Figure 8. (a) Double-step procedure applied to the IDT 5% outcomes to verify (against the event
of June 2010) the optimal operational warning criterion. The 85%/5% DTVT configuration was
confirmed as the most effective one as, true positives being equal, false positives were minimized
and (b) the resulting map.

The outputs of the HIRESSS model were processed using the DTVT tool until contin-
gency matrixes were obtained for all configurations. Figure 8 shows that, as in the first
series of tests, the optimal DTVT configuration for the operational warning was the one
composed by a FPT of 85%, combined with an IDT of 5%. This combination allowed the
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prediction of all landslides, returning the lowest number of false alarms (Figure 8a). The
resulting validation map is portrayed in Figure 8b.

This test performed against another meteorological event produced further evidence
about the promising potential of the operational warning criterion. However, before being
implemented in an early warning system and used to reaggregate probabilistic outputs
to get warnings, more tests on a larger number of landslide events are necessary. From
the point of view of operational use, the outcomes presented in this work represent a
preliminary result; nevertheless, they are a first important step to automate, standard-
ize, and validate the interpretation of the results of probabilistic distributed physically
based models.

5. Conclusions

This work introduces a tool that automates the validation procedure for physically
based distributed probabilistic slope stability models and translates the pixeled outputs in
warnings released over larger spatial units. The tool is named DTVT (double-threshold
validation tool) because it uses a warning criterion on the basis of two threshold values: the
probability of failure above which a pixel should be considered stable (failure probability
threshold, FPT), and the percentage of unstable pixels needed in each spatial unit to
consider the hazard level enough widespread to justify the issuing of an alert (instability
diffusion threshold, IDT). The tool is based on a series of GIS operations organized in a
model builder.

To test its efficiency, the DTVT tool was applied to the results obtained by Salvatici
et al. [45] with the distributed physically based model HIRESSS [29] in two past landslide
events that occurred in the Valle d’Aosta region (northern Italy), for which a reliable
landslide inventory is available. The spatial units used to consider the IDT are small
watersheds. A series of tests demonstrated that the results of the validation procedure
are very sensitive to the criterion used to consider a watershed stable or unstable—24
configurations were tested, and a series of skill scores commonly used in the literature
were automatically calculated to quantify the effectiveness of the approaches used. We
discovered that the value of the skill scores was very sensitive to the two thresholds used
to consider a watershed unstable.

A sensitivity study was also carried out to define the most effective DTVT configura-
tion to be used in operational procedures to post-process raw pixel-based failure probability
maps to release warnings on a watershed level—in the selected test site the 85%/5% double
threshold minimized both missed alarms and false alarms.

The application showed the promising potential of DTVT in terms of (i) computational
time, since the tool was able to automatically carry out in limited time (less than one
minute) a series of 32 GIS operations usually carried out manually by researchers and
(ii) potentiality of applicability in other test areas—the DTVT tool was conceived to be
applied rapidly and widely, thus ensuring the possibility of easily getting a proper applica-
tion in other test sites, tuned to the user needs, to automate the validation procedures of
distributed slope stability models or to calibrate the derived warning models.
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