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Abstract: Current water demands are adequately satisfied in the United Arab Emirates (UAE) with
the available water resources. However, the changing climate and growing water demand pose
a great challenge for water resources managers in the country. Hence, there is a great need for
management strategies and policies to use the most accurate information regarding water availability.
Understanding the frequency and the short- and long-term trends of the precipitation by employing
high-resolution data in both the spatial and temporal domains can provide invaluable information.
This study examines the long-term precipitation trends over the UAE using 17 years of data from
three of the most highly cited satellite-based precipitation products and rain gauge data observed at
18 stations. The UAE received, on average, 42, 51, and 120 wet hours in a year in the 21st century
as recorded by CMORPH, PERSIANN, and IMERG, respectively. The results show that the areal
average annual precipitation of the UAE is significantly lower in the early 21st century than that of the
late 20th century, even though it shows an increasing trend by all the products. The Mann–Kendall
trend test showed positive trends in six rain gauge stations and negative trends in two stations out
of 18 stations, all of which are located in the wetter eastern part of the UAE. Results indicate that
satellite products have great potential for improving the spatial aspects of rainfall frequency analysis
and can complement rain gauge data to develop rainfall intensity–duration–frequency curves in a
very dry region, where the installation of dense rain gauge networks is not feasible.

Keywords: remote sensing; climate; precipitation frequency; precipitation trends; UAE; IMERG;
CMORPH; PERSIANN

1. Introduction

The United Arab Emirates (UAE) is located in a region characterized by high tempera-
tures and very low precipitation [1]. Thus, the freshwater resource of the country, which
is mainly available as groundwater, is very limited, but the water demand continues to
soar due to the improvement in the living standard, population increase, and economic
growth. The water shortage is exacerbated by excessive withdrawal for municipal and
agricultural use. Rainfall is very scarce with an annual average of 110 mm and sporadic
spatial distribution [2,3]. The extremely scant surface water resources are too unreliable to
be considered in water resources planning and management, because of the high rate of
evaporation and prolonged drought conditions [3]. To meet the increasing water demand
of these sectors, the UAE deploys several conventional and non-conventional sources of
water within its water supply management system. However, strikingly low availability
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of natural water resources has encouraged the UAE to meet its requirements through
desalination plants, which account for 22% of the water produced in the UAE [4]. Although
current water demands are adequately satisfied with the available water resources, the
UAE is set to face challenges in the future owing to the depletion of natural water sources,
population growth, increasing urbanization, and the impacts of global warming [5].

The stress on water resources of the UAE is increasing as the gap between demand
and resource amount diverges. Hence, there is a great need to update and optimize the
water resource management strategies that are currently in place with the most recent
and reliable data. Understanding the short- and long-term trends of the precipitation
by employing high-resolution data in both spatial and temporal domains can provide
invaluable information for regulating and managing agricultural and municipal water use.
The goal of updating water resource management strategies is to protect the groundwater
aquifers from being over-pumped to an irreversible state and to mitigate aquifer salinity.
In-land aquifers located in Al Ain and Al Dhaid cities are depleting rapidly and coastal
aquifers are experiencing seawater intrusion attributed to the oil industry and agricultural
activities [6]. Sherif [3] states that seawater intrusion is the most critical issue to the
freshwater aquifers and is highly related directly to pumping, especially for coastal aquifers.
The decline of water resources in the UAE is captured by the Gravity Recovery And
Climate Experiment (GRACE), twin satellites used to detect a change in groundwater
quantity by examining the change in gravity [7,8]. Other advantages of data-informed
water resource management include improvement of the water quality, enhancement of
the overall health of aquifer systems, and water conservation [6]. Moreover, Ahmed [9]
reported that agricultural activities caused a negative impact on water resources in the
UAE, and the sector of agriculture needs significant improvement. Implementation of
methods that minimize water consumption such as using advanced irrigation technologies,
construction of groundwater-recharge dams, and growing salt-tolerant crops will need
accurate hydrometeorological data.

Furthermore, studies have shown that there is a strong link between different ecosys-
tem variables and precipitation trends. Stefanidis [10] showed that the soil erosion de-
creased significantly as the precipitation decreased by 15% and temperature increased by
5% over two decades over mountainous catchment in central Greece. Zhang [11] employed
satellite-based evapotranspiration (ET) estimates and precipitation to assess the regional
water balance over the pan-Arctic basin and Alaska. They reported that the ET exhibited
positive trends over most of the region; however, areas (32%) occupied by boreal forests
showed negative ET trends.

In general, there are fewer hydrometeorological studies conducted over arid and
semi-arid regions than over other regions of the world due to the scarce amount of rainfall
and the very limited distribution of rain gauges. A number of studies examined the rainfall
trends in the UAE using rain gauge data (e.g., Ouarda [12], Merabtene [13], and Donat [14]).
Ouarda [12] found that the rainfall time series data of four rain gauges in the UAE showed
a significant downward shift in 1999 with increasing trends before and after the shift. This
observation was also supported by Merabtene [13] who found a significant breakpoint
in the time-series of another rain gauge in Sharjah in 1998. These studies also found that
the amount of average annual rainfall in the early 21st century was much lower than the
average annual rainfall of the final decades of the 20th century in all the stations. This
reduction was attributed to the significant drop in winter rainfall. These studies highlighted
a need for reevaluating the current status of the water resources and the urge for developing
an integrated framework for water resources planning. From a regional perspective, the
spatial distribution of the trend of extreme precipitation events indicates that the eastern
Middle East and North Africa (MENA) region is projected to have a drier climate whereas
the western region is expected to experience wetter conditions [14]. Most of the studies
conducted over the MENA region indicated that precipitation was decreasing in most of
the rain gauges during the 20th century. Sixty-seven percent of the 145 rain gauges studied
by Modarres [15] showed a decreasing trend in annual precipitation even though only 19%
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showed a significant negative trend. Törnros [16] found that only 14% of the 37 stations
displayed a statistically significant negative trend in the southeastern Mediterranean region,
and Kwarteng’s [17] analysis of data from 31 stations revealed a decrease in rainfall over
Oman but no significant negative trend. Another study conducted in the mountainous
range of Central Pindus (Greece) indicated that the annual precipitation showed a negative
trend on average in nine rain gauges over the last half-century [18]. Analysis of the spatial
and temporal distribution of 559 stations spanning from 1917 to 2006 in southern Italy
revealed a significant reduction of precipitation in the winter months while showing a
relatively smaller rate of increase in summer months [19]. These and other studies indicate
that the water resources in the region are declining.

In the last two decades, remotely sensed precipitation products have played a vital
role as reliable input for weather forecasts and hydrologic models. The products helped to
improve the outcome and accuracy of the models because of their spatial and temporal
coverage and resolution. Moreover, the quality of remotely sensed products has been
improving over time [1,7]. Their temporal and spatial resolutions have become finer and
have emerged as competitors to the conventional methods i.e., rain gauges. Currently, there
are two main techniques of remotely sensed precipitation estimation, namely weather radar
measurements and satellite estimates [20]. Satellite-based products have an advantage
over radar data as they are not susceptible to obstruction caused by topography or other
physical barriers, and due to their global coverage, uniform spatial distribution can be
achieved (not range-dependent). Hydrologic application of these products includes flood
forecasting and mitigation, designing hydraulic structures, emergency response systems
(during extreme events), and many other applications [21]. Sorooshian [22] emphasized
the importance of precipitation remote-sensing products and predicted that the resolutions
of 4 km and 30 min with reasonable accuracy could be attained in the near future. All of
the validation studies conducted on satellite-based precipitation lauded their potential.
However, they all agreed that the accuracy of the precipitation products was not consistent
for different regions and climatic conditions.

The Integrated Multi-Satellite Retrievals for the Global Precipitation Mission (GPM)
algorithm (IMERG), one of the most highly cited satellite-based precipitation products,
was identified by many researchers as one of the most accurate data products. Li [23]
concluded that the IMERG product performed best after examining five satellite-based
precipitation products over mainland China using a gridded, ground-based precipitation
product compiled from 2400 rain gauges as a ground reference. A similar study over the
same region (China) by Tang [24] found that the latest IMERG product was outperforming
all other eight products assessed in the study. The climate prediction center Morphing
technique (CMORPH), another highly cited precipitation product, was found to be the
second-best product. Alsumaiti [25] concluded that IMERG had a slightly higher corre-
lation with ground records of 71 stations in the UAE than the CMORPH. In a few other
studies, the conclusion was the opposite, citing that CMORPH was outperforming IMERG,
especially the latest version of CMORPH. Li [20] reported that the correlation between
a rain gauge network and CMORPH was the highest amongst the four satellite-based
products (CMORPH, PERSIANN, IMERG, and TRMM Multi-satellite Precipitation Anal-
ysis (TMPA)) over the Yangtze River in China. Duan [26] also noted that CMORPH was
the best product over the Adige Basin in Italy. Precipitation Estimation from Remotely
Sensed Information using Artificial Neural Networks (PERSIANN), another widely used
satellite-based precipitation product, tended to overestimate the rain events in arid and
semi-arid regions in some studies [27,28]. IMERG products apparently show a significant
improvement in detecting and capturing the storms over time as noted by Asong [29] in
Southern Canada; Sungmin [30] in Southeastern Austria; Khodadoust Siuki [31] in Iran;
and Wang [32] in South China. This advancement is attributed mainly to the improvement
of the algorithms, the finer resolution, and the integration of ground measurements.

Arid and semi-arid regions lack comprehensive high-resolution spatial and temporal
analysis of precipitation. The advancement in remote-sensing-based precipitation products
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and the accumulation of long enough records trigger the question of how useful the prod-
ucts are in time-series analysis. The main objectives of this research are to (1) investigate
the long-term (2003–2019) trends of precipitation over the UAE; (2) assess the ability of
satellite-based precipitation products to detect trends compared to ground observation;
(3) explore the spatial distribution of precipitation frequency using satellite-based precip-
itation products; and (4) evaluate the seasonal variability of the precipitation quantity
and frequency over the UAE. The products used in this research are the latest versions of
the GPM-IMERG, CMORPH, and PERSIANN-Cloud Classification System (PERSIANN-
CCS). Statistical analysis of single-time change-point detection is carried out using Pettitt’s
change-point detection test. The existence of trends and their significance are also investi-
gated using the Correlated Seasonal Mann–Kendall Trend Test. Lastly, Theil–Sen’s slope
test is employed to estimate the magnitude of the trends in the precipitation data.

2. Study Area and Dataset
2.1. Study Area

The study area (Figure 1) is the entire UAE, an oil-rich country, located in the South-
eastern part of the Arabian Gulf, which encloses the country from the north. The rest of the
country is bounded by the Kingdom of Saudi Arabia to the South and the West, and Oman
to the North and the East. The country covers an area of 83,600 km2 with a coastal stretch
of 650 km along the Arabian Gulf and 90 km stretch along the Gulf of Oman [33]. The
climate of the entire country is categorized as an arid desert with hot air (BWh) according
to Köppen climate classification. The average monthly temperature reaches its maximum
of about 40.3 ◦C in August, as reported by the National Centre of Meteorology (NCM). The
mountainous areas experience relatively cooler temperatures with near-freezing tempera-
tures during the winter. Humidity can reach as high as 95% during late summer due to
humid southeasterly winds. The topography of the UAE consists of flat plains in the coastal
and the Western portions and Al Hajar Mountain chains that run along a North-South
direction extending to Oman with a peak altitude of 1800 m [34]. The rainy season in the
UAE begins in November and ends in April. UAE’s precipitation has a sporadic spatial
distribution ranging from 40 mm in the Southern desert region to 160 mm in the North-
eastern mountains [35]. However, recent studies reported that the annual rainfall of the
country experienced a downward shift in 1999, and the average rainfall has decreased when
compared to annual rainfall before the shift [9,12,36]. The country’s aquifers are composed
of interior heterogeneous sand aquifers, gravel aquifers in the Eastern and Western plains,
and coastal and limestone aquifers [37]. The limited UAE agriculture industry is largely
dependent on groundwater and the major arable land is located in the northeastern region.
Data downloaded from the Gravity Recovery and Climate Experiment (GRACE) satellite
mission data portal (https://grace.jpl.nasa.gov/data/get-data/monthly-mass-grids-land/
Accessed on 20 March 2021). show that the groundwater resource is depleting at an alarm-
ing rate across the Arabian Peninsula (Figure 1). The UAE alone experienced a decline
rate of more than 2.1 cm on average in water equivalent thickness per decade over the
last one-and-a-half decades. This depletion alone warrants revisiting the current water
resources management practices and conducting research that can inform viable updates
before irreversible damage is done to aquifers health.

https://grace.jpl.nasa.gov/data/get-data/monthly-mass-grids-land/
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Figure 1. Maps showing the study area, the location of the stations, and the spatial distribution of change of groundwater 
in water thickness equivalence from 2003 to 2019 obtained by GRACE over the Arabian Peninsula (resolution of 0.5°). The 
time-series shows the average GRACE anomalies over the UAE over the study period. 

2.2. Data 
2.2.1. Rain Gauge Observations 

The datasets used in this study include precipitation data that are collected by both 
conventional and non-conventional methods. The time frame of the study spans from Jan-
uary 2003 to December 2019. A network of 18 rain gauges obtained from the National 
Center of Meteorology agency of the UAE were employed. The gauges report rainfall 
measurements electronically with a threshold of 0.2 mm and with a temporal resolution 
of 15 min. The rain gauges automatically log the data to a central database where the qual-
ity of the dataset is verified by the NCM. The spatial distribution of the rain gauge stations 
over the country can be seen in Figure 1. The rain gauge product is usually disseminated 
as daily and monthly gauge accumulations. Monthly data were used in the trend analysis. 
The annual rainfall time series of the rain gauges show that rainfall follows a three- to 
four-year cycle (Figure 2A), and rainfall has been increasing in the later years of the study 
period. The monthly average distribution of the rainfall from the rain gauges reveals that 
the rainy season in the UAE starts around October and continues all the way to April 
spanning about six months (Figure 2B). The average annual rainfall from all 18 rain gauges 
was around 63 mm with a median of 47 mm. The maximum annual rainfall was observed 
by a station located in Khatam Al Shaklah (located on the Al Hajar Mountain chains) with 
an annual average rainfall of 128 mm. The lowest annual rainfall was reported in Alqlaa 
(located on the west coast) with average annual cumulative rainfall of only 23 mm over 
the last 17 years (2003–2019). Surprisingly, there were only three stations that reported an 
annual average rainfall of more than 100 mm out of 18 stations. 

Figure 1. Maps showing the study area, the location of the stations, and the spatial distribution of change of groundwater
in water thickness equivalence from 2003 to 2019 obtained by GRACE over the Arabian Peninsula (resolution of 0.5◦). The
time-series shows the average GRACE anomalies over the UAE over the study period.

2.2. Data
2.2.1. Rain Gauge Observations

The datasets used in this study include precipitation data that are collected by both
conventional and non-conventional methods. The time frame of the study spans from
January 2003 to December 2019. A network of 18 rain gauges obtained from the National
Center of Meteorology agency of the UAE were employed. The gauges report rainfall
measurements electronically with a threshold of 0.2 mm and with a temporal resolution of
15 min. The rain gauges automatically log the data to a central database where the quality
of the dataset is verified by the NCM. The spatial distribution of the rain gauge stations
over the country can be seen in Figure 1. The rain gauge product is usually disseminated
as daily and monthly gauge accumulations. Monthly data were used in the trend analysis.
The annual rainfall time series of the rain gauges show that rainfall follows a three- to
four-year cycle (Figure 2A), and rainfall has been increasing in the later years of the study
period. The monthly average distribution of the rainfall from the rain gauges reveals that
the rainy season in the UAE starts around October and continues all the way to April
spanning about six months (Figure 2B). The average annual rainfall from all 18 rain gauges
was around 63 mm with a median of 47 mm. The maximum annual rainfall was observed
by a station located in Khatam Al Shaklah (located on the Al Hajar Mountain chains) with
an annual average rainfall of 128 mm. The lowest annual rainfall was reported in Alqlaa
(located on the west coast) with average annual cumulative rainfall of only 23 mm over
the last 17 years (2003–2019). Surprisingly, there were only three stations that reported an
annual average rainfall of more than 100 mm out of 18 stations.
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Figure 2. (A) Annual and (B) monthly average precipitation of all 18 rain gauge stations represented by dotted lines with the 
average of all stations is the bold red lines (blue and green dotted lines represent Alqlaa and Khatam Al Shaklah stations). 
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duces the data by calibrating, combining, and appending the microwave-calibrated infra-
red (IR) satellite estimates with the satellite-based microwave estimates [38]. The final run 
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Figure 2. (A) Annual and (B) monthly average precipitation of all 18 rain gauge stations represented by dotted lines with the
average of all stations is the bold red lines (blue and green dotted lines represent Alqlaa and Khatam Al Shaklah stations).

2.2.2. GPM’s IMERG

GPM produces multiple levels of IMERG. The Early run product is near real-time
and has a latency of four hours whereas the Late level has a latency of twelve hours. The
Final run version differs from the other two due to its use of gauge analysis correlation
and a latency period of two months post-observation. The final version is thought to
have the highest accuracy [38]. The IMERG Final run product has a 0.1◦ × 0.1◦ spatial
resolution and a 30-min temporal resolution. The product can be downloaded from http:
//pmm.nasa.gov/data-access/downloads (Accessed on 18 April 2020). IMERG produces
the data by calibrating, combining, and appending the microwave-calibrated infrared
(IR) satellite estimates with the satellite-based microwave estimates [38]. The final run
product has been upgraded to broaden the maximum rainfall threshold fourfold (initially at
50 mm/h, and now at 200 mm/h). This newer version also includes full inter-calibration of
the GPM combined instrument dataset, the introduction of a new rain retrieval algorithm,
and the incorporation of data from the Advanced Technology Microwave Sounder (ATMS).
Starting with the sixth version, IMERG began integrating estimates from the Sondeur
Atmosphérique du Profil d’Humidité Intertropicale par Radiométrie (SAPHIR) instrument.
This study utilizes IMERGV06B. This product operates with total column water vapor
rather than IR data and employs a contemporary time interpolation scheme, which uses
modern-era retrospective reanalysis 2 and Goddard earth observing system model (GEOS)
forward processing (FP) [39]. For more information on IMERG and other GPM products,
refer to the following publications [38–40].

2.2.3. CMORPH

There are two CMORPH multi-satellite precipitation products—CMORPH-V0.x, and
CMORPH-V1.0. CMORPH-V1.0 decreases the substantial inhomogeneity seen in the
CMORPH-V0.x, introduced through the evolving algorithm, by implementing the same
algorithm for the entire timeframe. The older version of the product span 2002 to 2018;
however, the newest version includes data from 1998 to the present. In addition to the raw,
satellite-only precipitation estimates, CMPORPH-V1.0 includes bias-corrected and gauge-
satellite blended precipitation products. For this study, the CMORPH multi-satellite-based
precipitation data were downloaded from the official FTP server of the Climate Prediction
Center of the National Oceanic and Atmospheric Administration (ftp://ftp.cpc.ncep.noaa.
gov/precip/ Accessed on 18 April 2020), and the bias-corrected version of CMORPH V1.0
data with an 8 × 8 km spatial resolution and 30-min temporal resolution were utilized.

http://pmm.nasa.gov/data-access/downloads
http://pmm.nasa.gov/data-access/downloads
ftp://ftp.cpc.ncep.noaa.gov/precip/
ftp://ftp.cpc.ncep.noaa.gov/precip/
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2.2.4. PERSIANN

The PERSIANN system for satellite rainfall estimation is maintained by the Center
for Hydrometeorology and Remote Sensing (CHRS) at the University of California, Irvine.
The PERSIANN precipitation retrieval algorithm was based on geostationary infrared
images (GOSE 8, GOSE 10, GMS, METEOSAT 6, and METEOSAT 7) and low-frequency
instantaneous rain derived from a microwave imager [41]. This was later extended to
include both infrared and visible imagery [42]. The product employs an adaptive neural
network algorithm to integrate information from several satellites. The PERSIANN-CCS
product was used for this study. The PERSIANN-CCS product uses a variable threshold
for cloud categorization while the traditional model uses a constant threshold approach.
The categorization of the clouds is done using cloud height, areal extent, and variability
of texture estimated from satellite infrared images. The individual patches can then
be classified based on texture, geometric properties, dynamic evolution, and cloud top
height. These classifications help in assigning rainfall values to pixels within each cloud
based on a specific curve describing the relationship between rainfall rate and brightness
temperature. PERSIANN-CCS is available at different temporal resolutions starting from
1 h and 0.04◦ spatial resolution with total spatial coverage from 60◦ S to 60◦ N. The timespan
of the product starts in 2003 and is labeled as near-real-time with a latency that ranges
between 1–3 h. The data are available to the public and were retrieved from the CHRS FTP
server at the following link (ftp://persiann.eng.uci.edu/CHRSdata/PERSIANN-CCS/
hrly/ Accessed on 18 April 2020).

3. Methodology
3.1. Precipitation Duration Analysis

Precipitation frequency analysis helps in answering two important questions: How
often does it rain in the UAE and how much? Such knowledge is crucial in water resource
management and the agricultural sector because the amount and timing of irrigation
and fertilization depend on rainfall timing [43]. This will shape policies that affect water
resource management strategies on a long-term basis. The analysis is carried out on an
annual basis, which means that the percentage of rainy hours over the year at a specific
location is calculated from the hourly precipitation data. Analysis over a long period
(17 years) will provide an approximate estimation of the number of hours it rains annually
at a specific location. Moreover, the seasonal rainfall frequency was also estimated using
similar procedures to capture the variability of the rainfall frequency across the seasons [44].
The analysis was carried out at the pixel scale to capture the spatial variability and areal
averaging was used to capture the temporal variability of the annual hourly rainfall
frequency.

3.2. Pettitt’s Test for Change-Point Detection

Pettit’s test, developed by Pettitt [45] for change point detection, is one of the best
tools used to capture a single time change-point in continuous climatic time-series data.
One of its main advantages is that it is non-parametric and can be applied to any time
series without studying its distribution. The null hypothesis for the test is that the series is
homogenous (the data are from the same distribution), and the alternative hypothesis will
be the homogeneity of the series breaks at some point in the series. The ranking function in
the test is implemented as given by Verstraeten [46]. The ranks of r1, r2, r3, . . . .,rn of the
series x1,x2,x3, . . . .,xn are used in the static equation below:

Ut,T =
t

∑
i=1

T

∑
j=t+1

sgn
(
Xi − Xj

)
(1)

ftp://persiann.eng.uci.edu/CHRSdata/PERSIANN-CCS/hrly/
ftp://persiann.eng.uci.edu/CHRSdata/PERSIANN-CCS/hrly/
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The test statistic is the maximum of the absolute value of the series Uk, which is
computed as follows:

KT = max|Ut,T | (2)

The change-point of the series is located at KT, if the statistic is significant. The
approximate probability for a two-sided test is calculated according to the following
equation:

p = 2× exp

(
−

6K2
T

(T3 + T2)

)
(3)

3.3. Correlated Seasonal Mann–Kendall Trend Test

The Correlated Seasonal Mann–Kendall Trend test is an extension of the normal
Mann–Kendall test, which is adjusted for the seasonal correlation of the months due to the
presence of autocorrelation in the dataset. In this study, the adjustment used by Hirsch [47]
and Libiseller [48] is employed. The Mann–Kendall scores are first computed for each
month separately as follows:

Si =
ni−1

∑
k=1

ni

∑
j=k+1

sgn
(
xij − xik

)
(4)

where xij and xik are monthly series values for the periods of k and j, respectively, and i
represent the month. The variance for each month is given by:

Var(Si) =
ni(ni − 1)(2ni + 5)−∑

gi
p=1 tip

(
tip − 1

)(
2tip + 5

)
18

(5)

where gi is the number of tied groups for the ith month and ‘tip’ is the number of observa-
tions in the pth group for the ith month. Then the Mann–Kendall score (S′) and variance
(Var

(
S′
)
) for the entire series are computed as follows:

S′ =
m

∑
i=1

Si (6)

Var
(
S′
)
=

m

∑
i=1

Var(Si) (7)

where Si is the Mann–Kendall score of the individual month and m is the number of
months, which is 12 for this case (the number of months per year). Similarly, Var

(
S′
)

is
the variance of individual months and m is the number of months. Finally, the Seasonal
Adjusted Mann–Kendall test statistics for the series (ZMK) is given by:

ZMK =


S′−1√
VAR(S′)

i f S′ > 0

0 i f S′ = 0
S′+1√
VAR(S′)

i f S′ < 0
(8)

3.4. Theil–Sen’s Slope Estimator

Theil–Sen’s slope test is used to investigate the null hypothesis that the slope (i.e.,
the linear rate of change) is not significantly different from zero against the alternative
hypothesis that states the slope is significantly different from zero. This slope estimator
is relatively resistant to outliers because it uses the median slope. The magnitude of
the slope was estimated using a method from Theil [49] and Sen [50]. This trend test
was employed in detecting trends in precipitation, temperature, evapotranspiration, and
groundwater [12,51–53].
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The Theil–Sen method considers a series of x1, x2, x3, . . . , xn and the rate (slope) bk,
can be calculated as:

bk =
xj − xi

j− i
(9)

For 1 ≤ i < j ≤ n, where bk is the slope, x is the variable, n is the number of the series.
Then sen’s slope is estimated to be the median of the bk series.

4. Results and Discussions
4.1. Annual Cumulative Precipitation

The annual areal average of rainfall over the UAE and its linear trend from all satellite
products and rain gauges can be seen in Figure 3. The areal average from all products
shows a positive linear trend with the highest rate of increase observed in the rain gauge
observations (Figure 3D). However, this result might be biased because most of the rain
gauges analyzed are located in the Eastern region of the country, which happens to be the
wettest part of the study area. The CMORPH product reveals the lowest rate of increase
with an increase of 6 mm in annual precipitation per decade (Figure 3A). The lowest
countrywide annual average rainfall is estimated by CMORPH with only 37 mm over
the 17 years of study whereas the highest annual average was registered by IMERG at
66 mm. This supports the conclusion made by Alsumaiti [25] suggesting that the CMORPH
product underestimates precipitation over the UAE. All of these estimates of the annual
precipitation from all the products were relatively lower compared to the annual rainfall
averages reported in the literature. Even the combined average annual precipitation from
all the satellite-based products i.e., 51 mm, is less than half of the previous estimates by
Sherif [2] and Sherif [3], which is 110 mm. The reasons for these significant discrepancies
could be (1) previous studies were conducted using rain gauges records and uneven
distribution of the rain gauges results in an overestimation of rainfall (because many rain
gauges are located in the relatively wetter and urbanized areas); (2) the precipitation of
the UAE is declining especially when compared to the previous decades as reported by
Ouarda [12] and Donat [14]. The increasing trend shown in all the products is in line
with the conclusions from Ouarda [12] stating that the rain gauge time-series of the UAE’s
rainfall showed an increasing trend even though it experienced a significant downward
shift in 1999. The root mean square error (RMSE) of the areal average annual data of the
products (compared to rain gauge observations) suggested that IMERG is the best product
relatively with the lowest error of 18 mm/year followed by PERSIANN and CMORPH
with an error of 26 mm/year and 35 mm/year, respectively. Similarly, a normalized
root mean square error (nRMSE) revealed that the IMERG product has the smallest error
(16 mm/year), and the CMORPH product has the largest error (30 mm/year). Percentage
bias (pBIAS) also confirmed that the IMERG is the most accurate product with only 5%
of overestimation. However, both PERSIANN and CMORPH underestimated rainfall by
about 20% and 40%, respectively.
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Figure 3. Areal average total annual rainfall and its annual trend with a 95% confidence interval (gray) for (A) CMORPH, 
(B) IMERG, (C) PERSIANN, and (D) rain gauges. 

The spatial distribution of the average annual rainfall (Figure 4) echoes the aforemen-
tioned findings. Generally, the coastal areas were wetter than the in-land areas and the 
Eastern regions receive significantly higher rainfall than the rest of the country. For spatial 
comparison, a quarter (25%) of the country received annual precipitation of more than 80 
mm as estimated by IMERG whereas only 5% and 0% are estimated to get more than 80 
mm by CMORPH and PERSIANN, respectively. The highest spatial variability was also 
shown in the IMERG product with an inter-quartile range of 35 mm and the lowest vari-
ability was estimated by PERSIANN with an inter-quartile range of only 13 mm and a 
total range of 50 mm (max = 75 mm and min = 25 mm) across the country. The linear model 
fit of the 18 stations shows that CMORPH and IMERG had a better correlation with a slope 
of 0.85 and 1.13, respectively. Thus, CMORPH tends to underestimate precipitation. This 
finding is also in line with the findings of the study of the Alsumaiti [25] that was con-
ducted using 71 stations over the UAE. The PERSIANN product had the weakest align-
ments with the rain gauges and significantly underestimated the rainfall with a linear 
model fit slope of 0.72. 
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(B) IMERG, (C) PERSIANN, and (D) rain gauges.

The spatial distribution of the average annual rainfall (Figure 4) echoes the aforemen-
tioned findings. Generally, the coastal areas were wetter than the in-land areas and the
Eastern regions receive significantly higher rainfall than the rest of the country. For spatial
comparison, a quarter (25%) of the country received annual precipitation of more than
80 mm as estimated by IMERG whereas only 5% and 0% are estimated to get more than
80 mm by CMORPH and PERSIANN, respectively. The highest spatial variability was
also shown in the IMERG product with an inter-quartile range of 35 mm and the lowest
variability was estimated by PERSIANN with an inter-quartile range of only 13 mm and a
total range of 50 mm (max = 75 mm and min = 25 mm) across the country. The linear model
fit of the 18 stations shows that CMORPH and IMERG had a better correlation with a slope
of 0.85 and 1.13, respectively. Thus, CMORPH tends to underestimate precipitation. This
finding is also in line with the findings of the study of the Alsumaiti [25] that was conducted
using 71 stations over the UAE. The PERSIANN product had the weakest alignments with
the rain gauges and significantly underestimated the rainfall with a linear model fit slope
of 0.72.
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Figure 4. Spatial distribution of annual average rainfall for (A) CMORPH, (B) IMERG, (C) PERSIANN, and (D) rain gauges. 

4.2. Monthly Rainfall Variability 
The areal average monthly rainfall follows a similar pattern in all the products in-

cluding the data from the rain gauges (Figure 5). The rain gauge observations show that 
the wettest month over the last 17 years was March. As shown in Figure 5A,B, a similar 
pattern of the rain gauges (Figure 5D) is revealed by CMORPH and IMERG. However, 
PERSIANN presented a completely different picture, showing April to be the wettest 
month with a significant overestimation of the average monthly rainfall. June is the driest 
month according to rain gauges, IMERG and CMORPH, but according to PERSIANN, 
October was the driest month. There is a significant amount of rainfall estimated by PER-
SIANN in August (12 mm) that is not seen in the rest of the products even though a small 
hump in August relative to the summer months was observed. The RMSE of the monthly 
average shows that GPM is the best product with an RMSE of 1.4 mm/month followed by 
CMORPH at 3.0 mm/month and PERSIANN at 6.5 mm/month. These results support the 
outcomes from previous studies reported by Alsumaiti [25] and Wehbe [33], which indi-
cated that IMERG was better than CMORPH. Overall, slight overestimation and slight 
underestimation are observed for IMERG and CMORPH, respectively, with similar dis-
tribution compared to the rain gauges. However, PERSIANN shows a significant overes-
timation with a completely different monthly distribution. For example, the product esti-
mates a significant amount of rainfall in June and August whereas, in reality, the country 
is very dry in these months according to rain gauge observations (Figure 5C). 
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4.2. Monthly Rainfall Variability

The areal average monthly rainfall follows a similar pattern in all the products includ-
ing the data from the rain gauges (Figure 5). The rain gauge observations show that the
wettest month over the last 17 years was March. As shown in Figure 5A,B, a similar pattern
of the rain gauges (Figure 5D) is revealed by CMORPH and IMERG. However, PERSIANN
presented a completely different picture, showing April to be the wettest month with a
significant overestimation of the average monthly rainfall. June is the driest month accord-
ing to rain gauges, IMERG and CMORPH, but according to PERSIANN, October was the
driest month. There is a significant amount of rainfall estimated by PERSIANN in August
(12 mm) that is not seen in the rest of the products even though a small hump in August
relative to the summer months was observed. The RMSE of the monthly average shows
that GPM is the best product with an RMSE of 1.4 mm/month followed by CMORPH at
3.0 mm/month and PERSIANN at 6.5 mm/month. These results support the outcomes
from previous studies reported by Alsumaiti [25] and Wehbe [33], which indicated that
IMERG was better than CMORPH. Overall, slight overestimation and slight underesti-
mation are observed for IMERG and CMORPH, respectively, with similar distribution
compared to the rain gauges. However, PERSIANN shows a significant overestimation
with a completely different monthly distribution. For example, the product estimates a
significant amount of rainfall in June and August whereas, in reality, the country is very
dry in these months according to rain gauge observations (Figure 5C).
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shows a positive trend in all three satellite products similar to what is observed for the 
annual average accumulations (Figure 6). The rate of increase of the precipitation fre-
quency for CMORPH and PERSIANN is around 0.21 percentage points per decade (Fig-
ure 6A,C). This means that the annual precipitation frequency will increase at a rate of 18 
wet hours per decade. However, the rate of increase estimated by the IMERG product is 
more than double that rate. The average number of wet hours from CMORPH suggests 
that the UAE receives, on average, 42 wet hours in a year, whereas according to PER-
SIANN, the estimate rises to 51 wet hours per year. The highest wet hour estimation was 
reported by IMERG with an average of 120 wet hours annually. The precipitation fre-
quency estimate by all products is quite small compared to the frequency experienced in 
other dry regions of the world such as West Texas [44]. This meager amount of rainfall 
with a very high evaporation rate suggests that the rate of recharge of the aquifers was 
insignificant over the last two decades as observed from GRACE data (Figure 1). The trend 
shows that the situation is improving at a very slow rate; however, well-thought-out and 
sustainable water resource management practices are still necessary. 
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4.3. Precipitation Frequency

The products were used to conduct precipitation occurrence frequency analysis and
assess their spatial variability. The areal average rainfall occurrence (wet hours) frequency
shows a positive trend in all three satellite products similar to what is observed for the
annual average accumulations (Figure 6). The rate of increase of the precipitation frequency
for CMORPH and PERSIANN is around 0.21 percentage points per decade (Figure 6A,C).
This means that the annual precipitation frequency will increase at a rate of 18 wet hours
per decade. However, the rate of increase estimated by the IMERG product is more than
double that rate. The average number of wet hours from CMORPH suggests that the UAE
receives, on average, 42 wet hours in a year, whereas according to PERSIANN, the estimate
rises to 51 wet hours per year. The highest wet hour estimation was reported by IMERG
with an average of 120 wet hours annually. The precipitation frequency estimate by all
products is quite small compared to the frequency experienced in other dry regions of the
world such as West Texas [44]. This meager amount of rainfall with a very high evaporation
rate suggests that the rate of recharge of the aquifers was insignificant over the last two
decades as observed from GRACE data (Figure 1). The trend shows that the situation is
improving at a very slow rate; however, well-thought-out and sustainable water resource
management practices are still necessary.
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timated that only 8% and 3% of the country receives more than 32 wet hours (1.5% fre-
quency) in winter and spring, respectively. This may indicate that the IMERG product is 
overestimating light precipitation and the PERSIANN product suffers from underestima-
tion. This finding somewhat corroborates the conclusion that CMORPH’s latest version 
data (CMORPH X1.0) are significantly better in detecting the precipitation over the UAE 
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The seasonal component of the frequency analysis indicated that winter and spring
are the rainy seasons of the UAE. Additionally, according to all three satellite products, the
coastal regions experience significantly higher rainfall frequency in both seasons (Figure 7).
Moreover, the Northeastern region (e.g., Ras Al Khaima) receives a relatively higher rainfall
frequency in the autumn (Figure 7(IIIA–C)). According to the GPM and PERSIANN, the
Southeastern region (border with Oman) experiences a relatively higher number of wet
hours in summer (Figure 7(IIB)). The statistical summary of the seasonal frequency over
the country is presented in Table 1.

Table 1. Seasonal distribution of the precipitation frequency satellite-based precipitation products (1st quartile, 2nd quartile,
3rd quartile, and the mean).

Season
CMORPH (Wet h/90 Days) IMERG (Wet h/90 Days) PERSIANN (Wet h/90 Days)

1st 2nd 3rd Mean 1st 2nd 3rd Mean 1st 2nd 3rd Mean

Spring 13.0 14.4 18.9 16.6 34.2 42.9 58.3 46.9 21.4 24.1 26.6 24.1
Summer 1.3 2.0 3.1 2.4 7.7 10.0 12.2 10.5 4.7 5.7 6.7 5.8
Autumn 3.0 3.5 6.1 5.2 9.6 12.6 21.8 16.8 3.3 4.0 5.0 4.3
Winter 10.2 13.3 20.9 17.1 30.6 41.2 56.9 45.6 13.5 16.1 18.9 16.5

The average wet hours reported by IMERG in spring (47 h) is more than double
the number reported by CMORPH (17 h) and PERSIANN (24 h). The largest seasonal
spatial variability across the country is observed by IMERG with an inter-quartile range of
26 wet hours in the winter. Another interesting finding from the seasonal analysis is that
PERSIANN showed very little spatial variability across the country in all four seasons. The
maximum inter-quantile range by PERSIANN is observed in the winter with only 5.4 h. As
expected, summer is the driest season with very small spatial variability while spring is
the wettest season as revealed by all three satellite products when considering the mean
and median (2nd quartile) values. The highest variability is also observed in the winter for
all products based on the inter-quartile range.

IMERG shows significantly higher values of the rainfall duration, especially in winter
and spring. IMERG suggested that 70% and 82% of the country receives more than 32 wet
hours (1.5% frequency) in winter and spring, respectively. On the contrary, CMORPH esti-
mated that only 8% and 3% of the country receives more than 32 wet hours (1.5% frequency)
in winter and spring, respectively. This may indicate that the IMERG product is overes-
timating light precipitation and the PERSIANN product suffers from underestimation.
This finding somewhat corroborates the conclusion that CMORPH’s latest version data
(CMORPH X1.0) are significantly better in detecting the precipitation over the UAE with a
relatively low False Alarm Rate (FAR) compared to GPM’s IMERG [25]. The improvement
in the algorism may have played a significant role in detecting rainfall by CMORPH and
reducing overestimation, which has been the main problem with satellite-based precipita-
tion estimation as documented by Wehbe [33] and Furl [54]. The overestimation could be
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due to the detection of the high moisture in the region as precipitation by satellite-based
precipitation products, especially IMERG. PERSIANN failed to capture the variability of
the precipitation frequency across all the seasons. This could be due to the smoothing and
merging of data from multiple sensors with coarse spatial resolutions even though the res-
olution of the final product (0.04◦) is finer relative to the other products. Coarse-resolution
(0.25◦) data, if used for a relatively small area, have the tendency to even out the variability
by using the average value for the entire cell.
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4.4. Precipitation Trend Analysis

A primary objective of this research as stated above is to assess the performance of the
satellite-based precipitation products over a relatively long period (17 years). The annual
precipitation data show that IMERG slightly overestimated the precipitation compared
to the ground data in most of the stations. However, a linear model fit of the monthly
data versus the products shows a slope of 0.64, 0.62, and 0.51 for IMERG, PERSIANN,
and CMORPH, respectively, indicating that IMERG is the closest to the rain gauge with
an R2 of 0.60. The weakest fit is found between PERSIANN and rain gauges with an R2

of 0.40. Table 2 shows the performance of monthly data of the satellite-based precipita-
tion products relative to rain gauges. IMERG had the highest correlation coefficient and
the lowest average error (RMSE and nRMSE). However, IMERG showed a positive bias
(overestimation) of 26%, which is in line with the findings of Alsumaiti [25]. CMORPH
is close behind IMERG in terms of the correlation coefficient, RMSE, and nRMSE with a
negative (underestimation) bias of 16%. The PERSIANN product had a large bias and a low
correlation coefficient. The annual time-series of four representative stations from different
regions of the country are shown in Figure 8. The increasing trend of precipitation is only
seen in the Eastern region where the Al Hajar mountain chain is located. Moving from
the West (drier region) to the East (wetter regions), the trend of the annual precipitation
increases.
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Table 2. Performance metrics of monthly data of the satellite-based precipitation products relative to rain gauges over the
UAE.

Product RMSE (mm) nRMSE (mm) pBIAS (%) CC

CMORPH 13.04 11.74 −15.65 0.62
IMERG 12.48 11.56 26.41 0.71

PERSIANN 18.92 18.24 68.19 0.41

Note: RMSE = root mean square error, nRMSE = normalized root mean square error, pBIAS = percentage bias, CC = correlation coefficient.

Prior to the trend analysis, the monthly time-series is tested for possible change-point
in the time-series via Pettitt’s test for every satellite pixel. The results of the test revealed
that the majority (more than 85%) of the area did not experience a change-point in their
rainfall time-series. IMERG product shows the largest number of pixels that exhibited
a change-point in their time-series while the smallest number is detected by CMORPH
(Table 3). The majority of pixels with a significant change-point in their time-series detected
by CMORPH and PERSIANN are located within the coastal areas. Nevertheless, the
change-point pixels according to IMERG are located mainly in the southern region of the
country (Figure 9). When a similar analysis was conducted on the rain gauge data, only
two out of the eighteen stations showed a significant change-point in their time-series, one
in 2013 and the other in 2015.
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The results of the trend analysis using the Correlated Seasonal Mann–Kendall test
indicated that most of the country is experiencing a significant positive trend according
to the IMERG data (Table 3). The rest of the products show a much smaller area with a



Water 2021, 13, 2376 17 of 22

significant positive trend (Figure 10). In agreement with the result of the IMERG, eight
out of the eighteen stations show a significant trend. The spatial distribution of the rain
gauges with significant positive trends also reveals that all of the stations with a significant
positive trend are located in the Eastern half of the country (Figure 10D). This supports the
earlier visual observation on the annual rainfall time-series that shows the trend increases
from west to east (Figure 8).

Table 3. The fraction of the area that experiences a significant change-point (Pettitt’s test), a significant trend (Correlated
Seasonal Mann–Kendall test), and the years with the largest change point for the different precipitation products.

Product Area with Significant
Change-Point

Year with Largest
Change-Point

Area with Significant
Trend

Part of UAE with
Significant Positive Trend

CMORPH 6.61% 2010 (2%) 15.30% 10%
IMERG 15.37% 2012 (11%) 66.56% 63%

PERSIANN 09.61% 2015 (08%) 5.10% 5%
Rain Gauge 2 stations 2013 & 2015 (1 each) 8 Stations 6 stations

Water 2021, 13, 2376 17 of 22 

to the IMERG data (Table 3). The rest of the products show a much smaller area with a 
significant positive trend (Figure 10). In agreement with the result of the IMERG, eight 
out of the eighteen stations show a significant trend. The spatial distribution of the rain 
gauges with significant positive trends also reveals that all of the stations with a signifi-
cant positive trend are located in the Eastern half of the country (Figure 10D). This sup-
ports the earlier visual observation on the annual rainfall time-series that shows the trend 
increases from west to east (Figure 8). 

Table 3. The fraction of the area that experiences a significant change-point (Pettitt’s test), a significant trend (Correlated 
Seasonal Mann–Kendall test), and the years with the largest change point for the different precipitation products. 

Product Area with  
Significant Change-Point 

Year with Largest 
Change-Point 

Area with  
Significant Trend 

Part of UAE with  
Significant Positive Trend 

CMORPH 6.61% 15.30% 10%
IMERG 15.37% 66.56% 63%

PERSIANN 09.61% 5.10% 5%

Figure 10. Locations with a significant (green color) and not-significant (brown color) trend according to the Correlated 
Seasonal Mann–Kendall test for (A) CMORPH, (B) IMERG, (C) PERSIANN, and (D) rain gauges. 

In comparison with the result from the rain gauges, IMERG is the best product as it 
captures the outcome of 12 stations accurately with six of the stations showing a signifi-
cant trend. The second-best product was PERSIANN agreeing with the trend of 11 stations 
but only one of them shows a significant trend. CMORPH is the least accurate product by 
predicting the significance of the trend of eight stations with only one station having a 
significant trend. 

Figure 10. Locations with a significant (green color) and not-significant (brown color) trend according to the Correlated
Seasonal Mann–Kendall test for (A) CMORPH, (B) IMERG, (C) PERSIANN, and (D) rain gauges.

In comparison with the result from the rain gauges, IMERG is the best product as it
captures the outcome of 12 stations accurately with six of the stations showing a significant
trend. The second-best product was PERSIANN agreeing with the trend of 11 stations
but only one of them shows a significant trend. CMORPH is the least accurate product
by predicting the significance of the trend of eight stations with only one station having a
significant trend.
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Theil–Sen’s slope estimation test was employed on the annual rainfall to estimate the
slope of the trend for the pixels that show a significant trend using the Correlated Seasonal
Mann–Kendall test. In all of the products, including the rain gauge data, the majority of
the area that showed a significant trend has a positive trend. In the case of CMORPH, 65%
of the total area has a significant positive trend (i.e., almost 8500 km2 out of 13,200 km2)
(Figure 11A). The highest rate of increase is observed by PERSIANN with an average and
median increase of 25.5 mm per decade (Figure 11C). The areas that show a significant
trend according to IMERG have an average trend of around 8.6 mm and a median of
7.6 mm per decade (Figure 11B). The lowest average rate is observed by CMORPH. Out
of the eight rain gauges that demonstrate a significant trend, two rain gauges indicate a
negative (decreasing) trend (Jabal Hafeet and Alwathbah with a slope of−5.6 and−7.5 mm
per decade, respectively). Comparing the spatial distribution of the slope with the slope
obtained from the ground observations, IMERG appears to be the best product to match the
spatial pattern with reasonable accuracy as shown in Figure 11. CMORPH and PERSIANN
failed to capture the spatial pattern of the slope and the trend significance. Ouarda [12]
stated that the eastern part of the UAE had a significant increasing trend supporting the
results of the rain gauges and the IMERG product. However, the amount of the annual
rainfall was affected significantly by the downward shift that occurred in 1999. Overall,
IMERG emerges as the best product in estimating the significance of the trend and its
magnitude than the other products. Thus, it can reliably be used to assess the long-term
evolution of the precipitation and its impact on water resources, especially groundwater.
When the length of the records is substantial, both IMERG and CMORPH have the potential
to be used for intensity–duration–frequency (IDF) analysis over the study area.
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5. Conclusions

This study examines the long-term precipitation trends over the UAE using three
of the most highly cited satellite-based precipitation products. We analyzed 17 years
(2003 to 2019) of data from the IMERG, CMORPH, and PERSIANN-CCS products and
compared them with rain gauge data observed at 18 stations. The analysis included an
assessment of the performance of satellite-based precipitation products in comparison to
ground observations. The use of high-resolution satellite precipitation products revealed
information on the spatial distribution of the precipitation trends and frequency at multiple
temporal resolutions. The results show that the areal average annual precipitation of the
UAE is significantly lower in the early 21st century than that of the late 20th century, even
though it shows an increasing trend by all the products including rain gauges over the
study period (2003–2019). The spatial distribution of the annual precipitation suggests
that the coastal regions receive significantly higher precipitation relative to the inland as
reported by all the products.

The rainfall frequency analysis based on hourly precipitation data shows that the UAE
received an average of 120 wet hours annually according to the IMERG product. CMORPH
and PERSIANN estimated much lower numbers of wet hours (42 and 51, respectively). The
seasonal distribution of the rainfall frequency indicates that IMERG products overestimate
the occurrence of rainfall in the spring and winter seasons. In general, the PERSIANN
product was not able to capture the spatial variability of the rainfall frequency over the
country for all seasons. In terms of capturing the precipitation frequency with its spatial
and seasonal variability, the CMORPH product seems to match the rain gauge observations
slightly better than the other satellite products.

Pettitt’s change-point test indicated that the majority of the country did not experi-
ence a significant change-point in their rainfall time-series throughout the study period
(2003–2019). Only two rain gauge stations (out of 18) and less than 15% of the country,
according to the satellite-based products, demonstrated a change point. The Correlated
Seasonal Mann–Kendall trend test indicates positive trends in six rain gauge stations and
negative trends in two stations (out of 18 stations), all of which are located in the wetter
Eastern part of the UAE.

Overall, the IMERG product showed good agreement with the rain gauge data in
describing the monthly trends. However, IMERG tends to overestimate light precipita-
tion and, as a result, over-detects the occurrence of rainfall in the country (higher false
positives), especially in the spring and winter seasons. On the other hand, CMORPH
seems to reasonably capture the rainfall frequency but fails in the trend analysis. Lastly,
PERSIANN failed to capture the spatial variability of the rainfall amount and frequency
across the country.

In conclusion, satellite products have great potential for improving the spatial aspect
of rainfall frequency analysis. Moreover, thanks to their very fine temporal resolution,
they can complement rain gauge data to develop rainfall intensity–duration–frequency
(IDF) curves in very dry regions, where an installation of dense rain gauge networks is not
feasible. This can be done in the near future as more satellite data are collected and the
records become long enough for in-depth statistical analysis. The results also show that
satellite precipitations products can be very useful for several water resources planning and
management applications in water-stressed countries. However, more research is needed to
verify whether the apparent overestimation and over-detection of light rainfall by satellite
products are real or related to the well-known rainfall under-catchment by rain gauges in
dry and warm conditions. More future research is needed to understand the uncertainty
of satellite precipitation products and their interaction with the uncertainty of rain gauge
observations used in calibration and validation. Future research can also evaluate the
potential application of semi-real time satellite products in hydrometeorological prediction
as well as water resources planning and management.
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