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Abstract: Most water bodies are currently used as receptors for pollutants coming mainly from the
industrial and domestic sectors. The Biobío river is subjected to multiple anthropogenic pressures
such as industrial water supply, drinking water, hydroelectric power generation, agriculture, and the
final receptor body of a large amount of industrial and urban waste, pressures that will intensify due
to the decrease in water flow as a result of climate change. In this context, organic contamination has
been found mainly from sewage discharges and oxidizable waste discharges generated by industrial
processes. In this sense, the objective of this research is to determine the Biological Oxygen Demand
Loading Capacity (LC) in a basin with a low density of water quality data subjected to strong
anthropogenic pressures. To estimate the carrying capacity in a section of the Biobío River, the
water quality model River and Stream Water Quality Model- Qual2K version 2.11b8, developed
by Chapra, was used. This model solves the Streeter–Phelps equation, proposing an analytical
expression to relate the dissolved oxygen (DO) and biochemical oxygen demand (BOD5) variables.
These variables were modeled for different critical scenarios of minimum flows in return periods
of 5, 50, and 100 years, determining that the studied section of the Biobío river would have a high
carrying capacity to not be affected by its organic matter pollution.

Keywords: Biobío river; load capacity; water quality; Qual2K

1. Introduction

Global freshwater demand has shown an average growth of 1% per year since the
1980s, mainly due to economic and population growth [1]. The sectors with the highest
global water consumption are: agriculture, accounting for 69% of annual water with-
drawals, the industrial sector with 19%, and domestic consumption with 12%, and this is
expected to increase by 20–30% by 2050 [1]. In this sense, the overexploitation of water
resources has generated severe environmental problems, e.g., water pollution, loss of
aquatic habitat, fragmentation of ecosystems, and others, all associated with the anthropic
pressures reducing the quantity and quality of available water [2–5].

The Latin American and Caribbean region has 31% of the world’s freshwater re-
sources [5]. However, water pollution is a problem that is increasing due to continued
urbanization and economic development [1]. Although the agricultural sector is the largest
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consumer of water, the urban and industrial sectors are the largest emitters of toxic sub-
stances to water bodies, with wastewater discharges being the primary source of pollution
and loss of water quality [3,5,6].

The quality of water bodies depends on natural processes such as climatological
conditions (e.g., precipitation, temperature), soil types, vegetation cover, erosion, runoff,
and the loss of water due to anthropogenic pressures; exploitation of water resources,
changes in land use (agriculture), industrial activities, and urban settlements [7–9].

Additionally, the main effect of climate change in freshwater bodies is to increase
the frequency of extreme events, especially droughts, increasing the concentrations of
pollutants present in surface water bodies [10,11]. Droughts, reduced flow rates and
increased water temperature cause a decrease in dissolved oxygen, altering the dilution
and self-purification capacity in rivers expressed as an increase in suspended biochemical
oxygen demand [12].

Dissolved oxygen is an indicator of the quality and health of aquatic ecosystems [13–21],
as well as of the self-purification processes of natural systems [17,18,22–24]. Self-purification
is a slow process, which depends on the: (a) flow rate, (b) water movement, and (c) depth
and surface area of the water body. In this sense, if the concentration of the pollutant is
very high, the water flow is required to travel long distances before achieving acceptable
concentrations [22,24–26].

Load capacity (LC) is a concept frequently used in river water quality management,
which is defined as the maximum quantity of a particular substance that can exist in a
receptor body without altering the ecological characteristics of the system [27,28]. The
US EPA, through the Clean Water Act (CWA), proposes the Total Maximum Daily Load
(TMDL) as an indicator of LC [29–31]. This concept is defined as the maximum daily
concentration possible to discharge into a water body to meet specific environmental
quality standards at a given location. Additionally, it is possible to quantify this load in
other temporal scales such as monthly, seasonal, or annual [29,30,32–35].

Over the years, water quality models have been developed as a fundamental tool in
the prediction and control of pollutants due to their ability to represent biological, chemical,
and physical processes and changes in aquatic ecosystems [32,36]. The most used models
are QUAL2K [16,32], MIKE11 [37], HEC-RAS [38,39], and SWAT [40,41], which predict the
behavior of river water quality using hydrology and hydraulics variables and pollutants
characteristics [42]. However, the application of these models faces significant challenges
due to the large amount of detailed and spatialized data required, e.g., land use, time series
of pollutant concentration, daily flows series, and samples along the river. Information
frequently is not available in developing countries, which are often limited and can have
significant uncertainties [42–45].

In this context, the objective of this research is to determine the Biological Oxygen
Demand LC in a basin with a low density of water quality data subjected to strong an-
thropogenic pressures. The Biobío river basin in Chile was selected for this purpose, due
to its low density of information and the multiple anthropogenic pressures to which it is
subjected, such as industrial water supply, drinking water, hydroelectric power generation,
agriculture, and final receptor body of a large amount of industrial and urban waste.

2. Study Area
Study Basin

The Biobío river basin is located in south-central Chile, specifically between coordi-
nates 36◦45′–38◦49′ S and 71◦00′–73◦20′ W (Figure 1). It covers an area of 24,260 km2, being
the third largest basin in the country. The main channel is 380 km and is the second-longest
river in Chile [46]. It is also located between two political–administrative regions: the
Biobío Region (72% of the total area) and the Araucanía Region (28%) [47]. The hydrolog-
ical regime of the Biobío basin is pluvio-nival, with an average flow at its source being
30 m3/s [47] and average flow at its mouth being 960 m3/s, with a maximum and minimum
flow average of 1600 m3/s (July) and 160 m3/s (March) [48]. In addition, it is subject to the
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influence of different environments and geographical factors, causing the dynamics of the
system to be highly variable from the beginning of its course to its mouth [47–49].
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Figure 1. Location of the Biobío river basin.

This study considers a 159.6 km of the Biobío River between the cities of Rucalhue and
Hualqui (Figure 1). The selection of the section considered the existence of different point
sources (sewage treatment plants and industrial effluents). The fluviometric and water
quality records were obtained from the Chilean Water Authority (DGA) [50] and the Biobío
River Monitoring Program (PMBB) of the EULA (European-Latin America) Center—Chile.

3. Water Quality Legislation in Chile

In 2004, Chile began issuing Secondary Environmental Quality Standards (NSCA) to
ensure the protection and conservation of aquatic ecosystems of inland surface waters and
reduce pollution and maintain their quality as much as possible. Currently, five Secondary
Standards have been issued, two for lake bodies (Lago Llanquihue and Lago Villarrica),
and three for river basins (the Serrano river basin, Maipo river basin, and Biobío river
basin) [51].

The secondary environmental quality standard for the Biobío river basin aims to
conserve or preserve aquatic ecosystems and their ecosystem services by maintaining or
improving water quality in the basin. Therefore, environmental quality standards were
established for 19 pollutants, including DO and BOD5. Fourteen monitoring areas were
implemented to comply with the standards, six along the Biobío River and eight in its main
tributaries [51,52].

4. Water Quality Model

The most widely used method for determining the variation of DO, BOD, and loading
capacity concentrations in a river course is the Streeter and Phelps (1925) model [53]. The
empirical equations proposed by these researchers have been widely used to evaluate the
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impact of waste discharges on dissolved oxygen concentrations and assimilative capacity in
rivers [14,16,53–59]. Currently, a large number of water quality models solve the equations
developed by Streeter and Phelps, the most widely applied being the River and Stream
Water Quality Model- Qual2K [16,17,32,35,60,61]. This one-dimensional mathematical
model assumes complete mixing of the flow in both vertical and transverse directions
and divides the reach of interest into a specific number of computational elements with
homogeneous hydraulic characteristics [62–65].

In the study section, the 159.6 km river reach was divided into seven sections with
similar hydraulic characteristics, i.e., slope, width, and elevation (Figure 2). For this
purpose, ArcGis 10.1 software was used with a 30 × 30-m-resolution digital elevation
model (DEM) that was obtained from the Shuttle Radar Topography Mission [66]. Given
the complexity of the system, the average velocity and depth of water flow in the study
section were determined using the River Analysis System (Hec-Ras) 4.0 model developed
by the Hydrologic Engineering Center of the U.S. Army Corps of Engineers [16].
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The calibration and validation of the model were carried out with data from the
monthly DO concentrations of the PMBB water quality stations. The calibration process
was performed for March 2009, calibrating the parameters ka (Reaeration Coefficient), kd
(Deoxygenation Coefficient), and the temperature correction coefficients θa and θd [65].
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The validation period was for March 2012. The goodness of fit (GoF) indicators Coefficient
of Determination (R2), Nash–Sutcliffe Efficiency (NSE), Percent Bias (PBIAS), and the
Agreement Index (d) [19,67–69] were used for calibration and validation periods. Finally,
The LC of BOD5 was evaluated for the extreme drought flows with return periods of 5, 50,
and 100 years. The fluviometric record of the Biobío River Station in Rucalhue (BNA code
08317001-8) [50] from 1960 to 2013 was used for this analysis [70].

To determine the maximum BOD concentration that can be purified by the Biobío
River in extreme minimum flow scenarios, a minimum DO concentration of 5 mg/L was
considered. This value is determined in Chilean Standard NCh 1.333 [71], which establishes
water quality criteria according to physical, chemical, and biological aspects, depending on
the user assigned to the water body.

5. Results and Discussion

Table 1 shows the GoFs indicators results in the calibration and validation phases.
The model performance during calibration can be classified as very good, in the case of
R2, NSE, and d indicators, and satisfactory in the case of PBIAS, according to Moriasi
et al. (2015) [68]. In the validation period, R2 decreases to good and PBIAS changes to
underestimation; according to Moriasi et al. (2015) [68], the other GoF remained in the
same category. These results show that the efficiency criteria of the model are high, which
indicate that the Qual2K acceptably represents the behavior of the variables studied for
the study section of the Biobío River but tends to underestimate the DO concentration.
Finally, Table 2 shows the values obtained for the parameters ka, kd, θa, and θd for the
seven sections used.

Table 1. Statistical indicators for the calibration and validation processes for the Biobío River
study section.

Statistical Indicators Calibration Validation Correlation

R2 0.999 0.845 Optimum value 1
NSE 0.987 0.832 Optimum value 1

PBIAS 0.225 −0.291 Optimum value 0
d 0.998 0.985 Optimum value 1

Table 2. Values obtained by calibration for the Reaeration Coefficient, Deoxygenation, and Tempera-
ture Correction Factor that govern the system in the studied section of the Biobío river.

Section ka (d−1) kd (d−1) θa θd

1 0.51 0.34 1.024 1.047
2 0.47 0.32 1.024 1.047
3 0.20 0.32 1.024 1.047
4 6.90 0.25 1.024 1.047
5 5.96 0.23 1.024 1.047
6 5.54 0.38 1.024 1.047
7 1.56 0.31 1.024 1.047

Values obtained by calibration for the different governing parameters for the system
(Table 2) show that the ka coefficient presents a high range of variation among the seven
sections of the studied reach. This is because the surface reaeration process is one of
the primary and variable sources of oxygen in the river system and directly affects DO
concentrations. Langbein and Durum (1967) [72] and Bowie et al. (1985) [73] indicated
that defining a range for this coefficient is very complex since it depends on factors such
as wind speed, temperature, and hydraulic parameters. Similarly, Langbein and Durum
(1967) [72] estimated that ka variations are mainly attributable to changes in the hydraulic
characteristics of rivers, e.g., width, slope, area, and length of the riverbed, which generate
variations in depth and flow velocity, causing the river ecosystem to adopt the conditions
for DO concentrations to increase or decrease. They also note that in rivers with high depths,
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the ka value is lower than rivers with shallow depths, concluding that the higher the ka
coefficient, the more intense the reaeration process. On the other hand, Link (1998) [74]
determined that wastewater discharge into rivers decreases their capacity for reaeration
since contaminated water causes the diffusion of DO to be lower. Therefore, the wide
range obtained for this coefficient is not surprising since the Biobío River has significant
hydraulic differences along its course.

The kd coefficient presented lower variations between sections. However, this pa-
rameter did not show significant effects within the DO modeling. This behavior is due to
the high dilution capacity of the Biobío River, which is why BOD5 is diluted very quickly
when it encounters the water layer, generating a lower oxygen consumption due to BOD
degradation. It should also be considered that effluent treatment decreases the oxidizable
fraction of BOD, causing its oxidation in the water body to be slower. The temperature cor-
rection factor θa was the same for all sections. This factor presented a high incidence in the
DO concentrations, which shows that the DO is sensitive to temperature. The temperature
is a factor that affects the reaeration process; increasing the factor decreases the oxygen
concentration. As in the previous case, the factor θd had the same value for all the sections.
This factor had a low incidence on dissolved oxygen concentrations since it affects oxygen
consumption by BOD degradation, specifically the kd coefficient.

To determine the extreme drought flow scenarios for return periods of 5, 50, and
100 years, a frequency analysis was performed (Figure 3) for a series of minimum monthly
flows available at the Biobío River Station in Rucalhue. The Anderson–Darling goodness
of fit test was applied with a 95% confidence interval [75], as shown in Table 3, using
as a criterion the smallest difference between the critical value and the A2 test statistic.
The probability distribution that best fit the data series of minimum monthly flows was
the Generalized Extreme Value, which gives as results a flow of 82.59 m3/s for a 5-year
return period, 66.82 m3/s for a 50-year return period, and of 64.32 m3/s for a 100-year
return period.
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Table 3. Indicators of fit provided by the Anderson–Darling test.

Distribution

GEVM Pearson III Log-Normal (3P) Log-Pearson (3P) Weibull Log-Normal (2P) Gumbel

A2 0.36 0.36 0.44 0.57 1.03 1.04 1.63
Critical Value 2.50 2.50 2.50 2.50 2.50 2.50 2.50

Approve Yes Yes Yes Yes Yes Yes Yes

Figure 4 shows the simulations made with Qual2K by the three extreme minimum
flow scenarios. Figure 4a shows the DO and BOD concentrations by minimum flow with
a return period of 5 years (82.59 m3/s). The BOD concentration increases downstream,
reaching its maximum concentration at 46.3 km, and is equivalent to 1.49 mg/L, while
the dissolved oxygen concentration decreases downstream, reaching its minimum con-
centration at 46.3 km, equal to 8.63 mg/L. Figure 4b shows the concentration of DO and
BOD for a minimum flow with a return period of 50 years (66.82 m3/s). It shows that the
concentration of dissolved oxygen decreases downstream, reaching a minimum concentra-
tion of 8.617 mg/L. The BOD concentration increases downstream, reaching a maximum
concentration of 1.55 mg/L at 46.3 km. Figure 4c shows the DO and BOD concentration
for a minimum flow with a return period of 100 years (64.32 m3/s). BOD concentration
increases downstream, reaching a maximum of 1.56 mg/L at 46.3 km, while dissolved
oxygen concentration decreases, reaching a minimum concentration of 8.615 mg/L at
46.3 km.

The results show that the highest BOD purification capacity is reached for a minimum
flow with a return period of 5 years, equivalent to 82.59 m3/s with a concentration of
2078 mg/L. As the return period increases, the BOD concentration that can be purified
decreases, reaching the lowest purification capacity in a return period of 100 years, with a
minimum flow of 64.32 m3/s, filtering a maximum concentration of BOD of 1580 mg/L.
For the three simulated scenarios, the minimum DO concentration is reached at 104 km
(Table 4). The high load capacity of the Biobío river can be attributed to its high flows,
which means that it has a high DBO dilution capacity without considerably altering the
aquatic ecosystem, in agreement with reported by [76].

Table 4. Minimum flows for different return periods and maximum BOD concentrations that can be
treated by the study section of the Biobío river.

T (Years) Q (m3/s) BODmax (mg/L) Distance (km)

5 82.59 2078 104
50 66.82 1679 104

100 64.32 1580 104

When comparing the results presented in Figure 4 with the environmental quality
levels established in the Secondary Environmental Quality Standard for the Protection
of Surface Continental Waters of the Biobío River Basin, in the section from Rucalhue to
upstream of the Vergara River (191 to 106.5 km) the DO and BOD concentrations obtained
for the return periods of 5, 50, and 100 years comply with the environmental quality levels
established by monitoring station BI-30, setting a minimum DO concentration of 9 mg/L
and a maximum BOD concentration of 2 mg/L. From upstream of the confluence of the
Vergara River to upstream of the confluence with the Gomero River is the BI-40 monitoring
station, which establishes a minimum DO concentration of 9 mg/L and a maximum BOD
concentration of 2 mg/L. Therefore, from 106.5 to 66.3 km, the DO concentrations obtained
for the return periods do not comply with the environmental quality levels, unlike the
BOD concentrations, which comply with the levels established by the regulations. Finally,
upstream from the Gomero River to the mechanical bridge is the monitoring area of station
BI-50, which establishes a minimum DO concentration of 8.7 mg/L and a maximum
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BOD concentration of 2 mg/L. Therefore, from 66.3 to 54 km, the environmental quality
standards for DO and BOD are met; however, from 54 to 32 km, the standard levels for DO
concentrations are not met. The combination of these types of tools is useful in designing
water quality management plans and developing decontamination plans to understand
the local situation and control surface water pollution in multiple-use watersheds.
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6. Conclusions

According to the efficiency criteria used, the predictions made by the Qual2K model
are satisfactory, both in the calibration and validation phases, so this model is a good
approach by estimated the Biobío River BOD load capacity.

It was found that the most influential parameters in the model response were the ka
coefficient and the θa factor, demonstrating that the reaeration process and temperature
determine the DO concentrations in the river.

Based on the different extreme minimum flow scenarios, the model response indicates
that the section studied has a high loading capacity for BOD, due principally to its high
flows in the summer months. Therefore, under the modeled conditions, the Biobío River
does not present organic matter pollution and has a high available capacity for BOD
assimilation. According to the values obtained, the highest BOD loading capacity is reached
in the 5-year return period for a minimum flow of 82.59 m3/s and a BOD concentration
of 2078 mg/L, and the lowest loading capacity is obtained in a 100-year return period,
equivalent to 1580 mg/L of BOD and minimum flow of 64.32 m3/s.

This study shows that the Qual2K model coupled to Hec-Ras is an effective tool for
calculating the permissible BOD load capacity in the Biobío River section. The application
of these models can be extended to similar problems with other contaminants such as
nitrogen and phosphorus.

The results of the present investigation demonstrate that the calibration and validation
of this type of tool can be of great use in the future in the planning and control of water
pollution in the Biobío River, in addition to providing information on the size of BOD
concentrations that may have future discharges into this receiving water body.
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