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Abstract: The geometry and the hydraulic properties of the unsaturated zone is often difficult to
evaluate from traditional soil sampling techniques. Soil samples typically provide only data of the
upper layers and boreholes are expensive and only provide spotted information. Non-destructive
geophysical methods and among them, electrical resistivity tomography can be applied in complex
geological environments such as volcanic areas, where lavas and unconsolidated pyroclastic deposits
dominate. They have a wide variability of hydraulic properties due to textural characteristics
and modification processes suh as compaction, fracturation and weathering. To characterize the
subsurface geology below the golf course of Bandama (Gran Canaria) a detailed electrical resistivity
tomography survey has been conducted. This technique allowed us to define the geometry of the
geological formations because of their high electrical resistivity contrasts. Subsequently, undisturbed
soil and pyroclastic deposits samples were taken in representative outcrops for quantifying the
hydraulic conductivity in the laboratory where the parametric electrical resistivity was measured
in the field. A statistical correlation between the two variables has been obtained and a 3D model
transit time of water infiltration through the vadose zone has been built to assess the vulnerability of
the aquifers located below the golf course irrigated with reclaimed water.

Keywords: hydrogeophysics; electrical resistivity tomography; hydraulic conductivity; volcanic
aquifer; Gran Canaria

1. Introduction

Golf courses irrigation using reclaimed water provides a significant and viable op-
portunity to ensure the supply, sustainability and resilience of local water resources [1,2].
There is an enormous potential for treated wastewater use for agricultural irrigation
purposes [3,4] but some barriers exist to widespread adoption due to some potential con-
taminants that have side effects on the earth’s critical zone affecting aquifers, the quality of
soil, and/or public health [5,6].

Generally, precise information about the spatial variation at field-scale soil hydraulic
properties is essential to carry out a careful exploration of the critical zone [7]. The sub-
surface geology guides the water movement specially after large rainfall events. As these
events occur frequently in arid and semiarid zones, subsurface knowledge is a critical
factor to determine water management guidelines. Traditional hydrological methods are
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not typically ideal for estimating these properties of the soil and unsaturated subsurface
and they also perturb the system. Many approaches such as the Bruce-Klute, the one-step,
multistep, and continuous outflow methods are labor-intensive and can only occur in
the lab. Procedures that can be carried out in the field, such as the instantaneous profile
method and constant flux methods are difficult to perform accurately and only provide
point measurements at the top of the subsurface. None of these methods provide the reso-
lution needed to evaluate the hydraulic conductivity variability, as the unsaturated zone is
usually heterogeneous and can extend tens of meters beneath the ground surface [8–10].

Geophysical methods can potentially provide the in-situ information on the required
scale to characterize the subsurface with a high spatial resolution and in a non-invasive
manner. Electrical resistivity tomography (ERT) is a geophysical technique of particular
interest to complement different hydrogeological and improve water reuse projects [11–15].
The geophysical parameter that is obtained, electrical resistivity, is highly correlated with
water content and hydraulic conductivity [16].

Although ERT has been used very limited times for the study of the golf courses, it has
already shown be useful to investigate complex subsurface environments such as volcanic
areas, where lava flows and pyroclastic deposits have a wide range of electrical resistivity
values depending on the degree of fracturing, weathering, porosity and texture.

However, hydrogeophysical methods in general, and ERT in particular, provide indi-
rect assessments of these properties but there is a need for the development of constitutive
relationships and innovative strategies to relate geophysical signals and relevant properties
to characterize the critical zone.

Characterization of the critical zone is crucial to optimize irrigation water manage-
ment and evaluate contaminants in groundwater. In this way, the assessment of aquifer
vulnerability to contamination is an important tool in water management and planning
according to Water Framework Directive (WFD) of the European Union [17,18]. In this
sense, the Bandama Golf Course has been selected for performing a detailed case study
to evaluate the vulnerability to aquifer contamination as a pilot plot in volcanic areas.
Since 1976, the irrigation of the golf course has been carried out in the Bandama’s site with
reclaimed water from the wastewater treatment plant of Las Palmas de Gran Canaria [19].
Aquifer contamination and presence of organic contaminants in reclaimed water used
to irrigate Bandama Golf Course had been evaluated in previous studies, constating the
presence of emerging contaminants and occasional pesticide concentration above European
threshold limits in groundwater 250 m bellow the golf course [6,20,21]. These studies have
induced to suspect the existence of preferential flow phenomena through fissures, that
could point to the intrinsic vulnerability of volcanic aquifers. Two complementary method-
ologies have been applied to achieve the objective: (i) ERT to characterize the shallow
part of the unsaturated zone and to estimate secondary geophysical indices (Longitudinal
Conductance-S Dar Zarrouk) for assessing the aquifers protective capacity of the aquifers
and (ii) measurement of hydraulic conductivity in representative samples of top soils and
volcanic materials in order to define a statistical relationship between both variables.

2. Study Area

The hydrogeophysical study was carried out in a golf course located midlands of Gran
Canaria island’s north-eastern section, at an altitude of between 400 m and 500 m (Figure 1).
The Bandama Golf Course has 18 holes whose fairways and greens cover approximately
14.5 ha and spraying irrigation frequencies vary between winter and summer when doses
reach a maximum rate of 7 mm/day [19]. From the climatological point of view, the
Bandama Golf Course is in an area with an annual rainfall module slightly above 300 mm,
while the average temperature is 19 ◦C (22 ◦C in summer and 16 ◦C in winter).

The rocks that outcrop in the area are Holocene basaltic lava and pyroclasts. These ma-
terials were emitted in the most recent eruption of Gran Canaria (1970 ± 70 Before Present),
where a strombolian cone (Pico Bandama) and a phreatomagmatic caldera (Caldera de
Bandama) arised. Pyroclastic deposits consisted of tephra air fall deposits and pyroclastic
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flows (surges) covering a surface of 50 km2 [22,23]. The Caldera of Bandama, is 900 m in di-
ameter and 250 m deep, and the golf course is located within its western sector (Figure 1a).
Therefore, as Figure 1b shows, the eastern slope of the Caldera allows direct access to
the geology of the unsaturated zone composed by: (1) Miocene phonolithic basement
that includes interbedded alluvial conglomerates of the Las Palmas Detritic Formation,
(2) Pliocene fractured basanitic lava flows and landslide breccia from the Roque Nublo
Group and (3) Holocene pyroclastic deposits emitted in the phreatomagmatic eruption of
the caldera itself.
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Figure 1. (a) Location of the Bandama Golf Course and geology of the Las goteras Basin where simplified piezometry for
2008 data is indicated [24]; (b) Geological cross-section from the golf course (X) to the bottom of Bandama Caldera (Y).

Two main different soil types have been characterized depending on their origin. In
situ soil is a Torriarents (adjacent natural soils are vitriotorrands) and transported soil
corresponds to an Ustalfs dominated zone [24]. The in-situ soil consists of slightly altered
basaltic pyroclasts with a thickness of 0.25–0.5 m, on which a sandy-loam alteration cover
has developed.

The soil transported from agricultural lands of higher elevations of the same slope of
the island was used for the construction of four fairways of the golf course and is identified
as silty-clay nature. Recent studies [21] identified a different behavior of both soils and
have shown that variability of soil parameters are influenced by irrigation management,
soil type, water quality and quantity, and seasonality of sampling.

Since 2002, the installation of a tertiary desalination treatment system has significantly
reduced the salinity of the reclaimed water (1000 µS/cm) and since December 2009, the
quality has further improved to 300 µS/cm. This change in irrigation water quality had
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a direct effect on the parameters measured in the soil and in the water collected in the
lysimeters installed in the field, pointing to the destabilization of soil aggregates [21].

The island hydrogeological conceptual model can be sketched as a unique groundwa-
ter body recharged by rainfall infiltration and discharged into the sea or some discharging
points into springs and ravines. In the area, the aquifer system mainly exploits phonolitic
materials using 2.5–3 m in diameter wells reaching depths in the 15–300 m range [10]. The
water table is located 250 m below the Bandama Golf Course and groundwater flow from
the golf course to the Las Goteras Ravine has been previously defined (Figure 1a). The
setting-up of a monitoring network of water points along the ravine has made it possible
to characterize the groundwater quality and, also, the presence of emerging contaminants
and priority substances in the aquifer [6].

3. Materials and Methods
3.1. Electrical Resistivity Tomography

An electrical resistivity tomography (ERT) survey was conducted to assess the subsoil
properties of the golf course. The method is based on measuring the potentials between
one electrode pair while transmitting DC between another electrode pair (quadrupole).
The depth range increases with increasing space between the current electrodes, whereas
a shorter separation increases resolution [25]. The ERT uses fixed multiple electrodes
in the soil surface that change function automatically according to the acquisition array
previously selected. All possible combinations of quadrupoles are considered, resulting
in a dataset of apparent resistivities at the so-called pseudo-depth at different locations.
The large volume of data gathered by multielectrode systems requires automated data
handling and processing [26].

ERT data was acquired with a Syscal Pro resistivity meter (IRIS instruments, Orléans,
France). The system features an internal 250 W power source and an internal switching
board for 48 electrodes. The quadrupole array chosen was Wenner–Schulmberger be-
cause it is sensitive to both vertical and horizontal structures and has an adequate signal
strength [27]. The array has high performance and stability in high electrical resistivity
environments such as volcanic rocks and it is effective for the characterization of horizontal
or slightly inclined layers that have lateral facies variations and/or verticalized structures,
as is the case of the studied setting [28,29].

RES2DInv was the software used for the inversion of the ERT data and to estimate
the true resistivity of the subsoil [30]. The subsurface is divided into fixed dimensions
cells and the procedure is based on the smoothness-constrained least-squares method.
The resistivity values are adjusted iteratively until a suitable agreement between the raw
data and the model responses is reached, based on a nonlinear optimization technique by
least-squares fitting [31]. During the inversion procedure, the root-mean-square value of
the difference between experimental data and the updated model response is used as a
convergence criterion.

In the present paper, the robust method was selected. The method assumes that
the subsurface consists of limited homogeneous regions with a sharp boundary among
them. The robust scheme is the reasonable choice where the subsurface comprises units
with sharp limits to accurately define both layer boundary locations and layer resistivities.
Indeed, it produces models by minimizing the absolute value of data misfit, becoming
more efficient in removing noise compared to other inversion methods [32].

The design of geophysical surveys has the objective to cover the study area with
a representative grid of the variability of electrical resistivity values. The profiles were
disposed as regularly as possible in the site and their location was conditioned by the
morphology of the fairways and for not disturbing the development of the golf game
during the acquisition procedure (Figure 2).
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As a result, we use 48 electrodes arrays to obtain 2D ERT cross-sections with 94 m
length, reaching an investigation depth close to 20 m and a resolution of two meters apart
between geoelectrical values. The data collection includes 941 quadrupoles for each profile
and rs check resistance between adjacent electrodes always below 10kOhm. To validate
each measurement, we have repeated it, or stacked, from three to five times requesting a
standard deviation for the group of stacked measurements of 3% maximum.

Geoelectrical data was positioning with a differential GRS1 GPS (Topcon, Itabashi,
Japan), and relative relief profiles of the cross-sections were converted into georeferenced
elevation profiles using an earth digital elevation model provided by the Spanish Geo-
graphical Survey (IGN). The elevation model has a 2 × 2 m resolution and the absolute
vertical accuracy corresponds to an average mean quadratic error of 0.15 m in flat and low
vegetation areas.

The subsequent subsurface characterization must consider the overlapping of resistiv-
ity values for different rocks and soils because the resistivity depends on several factors,
such as mineralogy, soil water content, grain size distribution and porosity. For instance,
clayey soil normally has lower resistivity than sandy soil and an air-filled porosity soil type
will have higher resistivity values conversely to a water-filled porosity soil type and it has
been necessary to incorporate soil and geological setting to improve the interpretation of
the ERT results [33].
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3.2. Hydraulic Conductivity

Hydraulic conductivity is the key factor of water flow through the substrate and it
is affected by in-situ structure and pore volume [34]. Particularly, saturated hydraulic
conductivity (Ks) is used to describe the movement of water through saturated soils and
is a critical component in a resource management decision such as water conservation
and irrigation systems [35]. Saturated hydraulic conductivity has been measured from
undisturbed representative soils samples and volcanic deposits taken directly from selected
outcrops. More than twenty soil samples from two described top profiles (both from
lane and rough) were analyzed in each of the two sampling periods. The collection was
carried out by driving a standardized 250 cm3 cylindrical sampler into the soil. Once in
the laboratory, the previously prepared soil cylinders were watered from the bottom until
saturation is reached and then inserted into the measuring capsule of a Ksat instrument
(UMS, München, Germany).

The Ksat permeameter allows the determination of saturated hydraulic conductiv-
ity using two methods, constant-head and falling-head. Both methods are based on the
inversion of Darcy’s law and fulfil the DIN 19683-9 and DIN 18130-1 standardized proce-
dures [36,37]. Darcy’s law defines Ks as a proportionality factor of the amount of water
flow through a defined area and the hydraulic gradient.

Ksat allows automated calculation of Ks in the range of 10,000 cm/day down to
0.1 cm/day. In addition, it performs an integrated calculation of Ks at the defined reference
temperature according to the dependence of water viscosity on temperature and ensures
that there are no water losses due to evaporation during the whole data gathering process.

3.3. Aquifer Vulnerability Index and Longitudinal Conductance

The Aquifer Vulnerability Index (AVI) method was developed in Canada by the
authors of [38] and uses two variables to quantify a vulnerability index: the thickness
of each sedimentary layer above the uppermost saturated aquifer (h) and the estimated
hydraulic conductivity of each of these layers (k). The vulnerability index is the sum of the
hydraulic resistance (c) of each layer and can be calculated as Equation (1):

c =
n

∑
i=1

h
k

(1)

The k-values for sandy sediments (10−5 to 10−1 m/s) are some orders of magnitude
higher than those for fine particle size layers (10−8 to 10−6 m/s); therefore, hydraulic
resistance as defined above is dominated by clayey layers. Hydraulic resistance has the
dimension of time (e.g., years) and represents the flux–time per unit gradient for water
flowing downward through the layers existing between the surface and the aquifer. The
lower the global hydraulic resistance (c), the greater the vulnerability of the underlying
aquifer, in absence of preferential flow paths.

This parameter/Equation (1) has the same form as the longitudinal electrical conduc-
tance defined by [39] as the second Dar Zarrouk parameter. The Dar Zarrouk parameters
were defined to resolve the ambiguity given by the equivalence principle inherent in
electrical resistivity interpretation of horizontally layered models, as the parameter is inde-
pendent of the model chosen. These are easy to compute, and they are related to different
combinations of the thickness and resistivity of each geoelectrical layer in the model [16].
For a sequence of n horizontal, homogeneous and isotropic layers of electrical resistivity ρi
and thickness hi the longitudinal conductance, is defined as Equation (2):

S =
h
ρ

(2)

The relationship between soil parameters (such as clay content, ionic exchange capac-
ity, and vertical hydraulic conductivity) and electrical resistivity enables a vulnerability
assessment based on geoelectrical measurements. The results of the measurements can
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be used to estimate the vertical hydraulic conductivity of the unsaturated zone [40,41].
Generally, clay or fine grain size layers correspond to low resistivities and low hydraulic
conductivities, and vice versa. Hence, the protective capacity of the overburden could
be considered as being proportional to the ratio of thickness to resistivity—longitudinal
conductance (S) [42].

In the present paper, we have calculated the longitudinal conductance parameter from
resistivity cross-section data to estimate the protective capacity of the underlying aquifers
from percolating contaminants.

4. Results
4.1. Electrical Resistivity Tomography

The 17 ERT cross-sections show resistivity data ranging from 20 Ω·m to more than
3000 Ω·m. The results of the mathematical inversion process have been satisfactory, as the
convergence criterion used (root mean square or RMS), has values lower than 4%. From
geoelectrical records, three layers can be distinguished according to their resistivity values.
The shallowest layer is characterized by values from 80–600 Ω·m and can be identified
at the top of cross-sections. The layer has a thickness always identified under 7 m and
is interpreted as weathered pyroclasts and areas with transported soils where have been
placed (Figure 2).

Beneath, the geolectrical cross-sections show a layer of fluctuating thickness from 2 to
12 m thickness characterized by values higher than 600 Ω·m. These values are interpreted
as porous pyroclasts responses. At this unit, there were significant lateral variations in the
resistivity values. The variations reflect a decrease in pyroclast thickness as the distance to
the emission center (Pico and Caldera de Bandama) increases.

The third layer is characterized by low resistivity response mainly in the 20–80 Ω·m
range and is interpreted as volcanic breccias of the Roque Nublo Group (ignimbritc sub-
strate). Similar outcomes have been obtained by other authors in Tenerife island [43].

The variations in thickness and properties of these three characteristic electrofacies
can be clearly seen from the comparison between the cross-sections P1 (Figure 3b) and
cross-sections P3 (Figure 3b). The cross-sections were acquired respectively from west to
center of the site in the direction of the Bandama Caldera, unveiling an increase of the
thickness of the pyroclasts as well as the depth at which the Roque Nublo volcanic debris
layer is located.
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4.2. Hydraulic Conductivity

Hydraulic conductivity results have ranged from minimum values lower than
500 cm/day (consolidated flow pyroclasts) to maximum values above the instrument’s
measurement limit (20,000 cm/day) for coarse-grained fall pyroclasts (bombs to lapilli). On
the other hand, the values of saturated hydraulic conductivity measured by two different
methods, constant-head and falling-head, have been very congruent, although not equal,
as shown in Figure 4a.
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Figure 4. (a) Relationship between measures of hydraulic conductivity constant and variable load; (b) Correlation between
the average values of saturated hydraulic conductivity and electrical resistivity of the Bandama’s site samples.

On average, the values obtained by the constant-head method are between 8 to 30%
higher than those obtained by the falling-head method. The authors of [44] consider the
constant head method more accurate in the range of hydraulic conductivity between 0.1
to 10−5 m/s, while the falling-head is better for soils with hydraulic conductivity in the
range from greater than 1 m/s to 10−3 m/s. Since the Bandama Caldera samples cover
both groups, it was considered more representative to assign to each sample the arithmetic
mean of the two values obtained by each of the methods.

The values of saturated hydraulic conductivity have been compared with the electrical
resistivity measured in the golf course itself from the electrical tomography profiles, or by
parametric soundings using a Wenner array [45] with 0.2 m of electrode spacing on the
same outcrops (Figure 4b).

4.3. Longitudinal Conductance

The 18,000 electrical resistivity values from inverted ERT cross-sections were used to
estimate the longitudinal conductance (S) value from Equation (2). We have considered
h = 20 m—maximum ERT survey penetration depth—and the average of rho values located
at the same X and Y position. The Minimum Curvature interpolator was utilized to generate
a smooth surface and attempting to honor S data [46]. The Dar Zarrouk parameter S varies
from 0.005 Siemens to 5 Siemens. The spatial variation map further infers low S values
(0.005–0.02 Siemens) irregularly distributed at the north-eastern, central and southern parts
(Figure 5). S values greater than 0.1 Siemens were mainly identified in the central and
southern sectors. The results show the highest resolution in areas with ERT data.

The protective capacity is assumed to be directly proportional to the longitudinal
conductance (S). Accordingly, the overburden protective capacity was evaluated using
the total longitudinal unit conductance (S). In the studied area lower S values generally
indicate a relatively weak succession of fine grain size sediments overburden together with
greater proximity to the emission center of the eruption and are given the highest priority
in terms of aquifer protection studies as it implies the potential infiltration of contaminants
into the aquifer [47].
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5. Discussion

The hydraulic conductivity of volcanic formations is a difficult parameter to measure
and usually presents a high anisotropic ratio causing the infiltrating water to prefer the
horizontal flow component while the vertical flow remains as a secondary path. Moreover,
it has a wide variability due to genetics, petrochemical composition and geological history,
including deposition mechanisms, alteration, lithification or the existence of subsequent
fractures and compactions. Consistently, the hydraulic conductivity of volcanic formations
is expressed in wider ranges of values than in other formations [48]. Table 1 presents
hydraulic conductivity of main volcanic formations of the study area obtained by usual
hydrodynamic technics. In general, young and non-welded pyroclasts have high perme-
ability and altered or consolidated pyroclasts have low values [49]. Hydraulic conductivity
values by Ksat equipment are consistent with these cited wide range (Table 1).

Table 1. Hydraulic conductivity values obtained by previous studies [49], and maximum and minimum K values measured
by Ksat equipment for this study in volcanic formations of the zone.

Volcanic Formation Horizontal Hydraulic Conductivity (m/d) K (m/d) Obtained in This Study

Recent basalts 5–1000 200 for coarse-grained pyroclasts fall deposits
Volcanic breccias (Roque Nublo Group) <0.002–0.5 <5 m/d for consolidate pyroclasts flow deposits
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Hydraulic conductivity could be estimated indirectly from electrical resistivity val-
ues [50]. Nevertheless, this correlation must be made based on local tests and with reser-
vations, since electrical resistivity is also a function of the degree of saturation and the
electrical conductivity of the soil water. On golf courses, if resistivity measurements are
made after the irrigation procedure with an excess of water, the subsoil can be considered
to have a moisture content close to field capacity. According to the authors of [51], the
electrical resistivity values tend asymptotically to the saturation value under these condi-
tions both in pyroclastics volcanic soils (Figure 6a) and in volcanic soils with ignimbrites
(Figure 6b).
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Figure 6. (a) Correlation between the electrical resistivity and the degree of saturation of different pyroclastic volcanic soils;
(b) Correlation between electrical resistivity and degree of saturation of different volcanic soils with ignimbrites. Both
correlations have been obtained by the authors of [51].

The preferential infiltration zones have been delimited by correlating electrical resistiv-
ity and vertical hydraulic permeability of the different geological units of the unsaturated
zone that outcrop at the east edge of the golf course (represented as recent volcanoes
and Roque Nublo Group in Figure 1b). The pyroclastic layers with the highest electrical
resistivity have the highest porosity and, in turn, the ones with the highest hydraulic
permeability. Transported soil was measured in P5, P6, P8, P14, P15 and P16 (Figure 7).
Those soils present variable hydraulic properties due to their structure and content in
organic matter and will probably be less deep which explains the need to add transported
soil [19]. Moreover, in this study, its narrow thickness seems not to modify the global aver-
age of electrical resistivity values as we use 20 m for the resistivity assessment presented
in Figure 7. Conversely, we could identify a reduction of resistivity values in the closest
part to the emission point (northeast part) where the high resistivity layer of pyroclasts is
placed deeper (more than 7 m). The existence of water oozes under the lower and thicker
soil layer and a water gallery in the slope of the Caldera in fractured ignimbrite under the
pyroclastic layer corroborates the results [6].
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The pollution of groundwater as a result of different antropogenic activities, including
the irrigation of golf courses with an excess of reclaimed water, is one of the main obstacles
faced by most of the administrations of the European Union member states to achieve
the objectives of the Water Framework Directives [53]. To this end, it is essential to assess
the best reclaimed water irrigation management practices based on the vulnerability to
contamination. It is also necessary to take extreme precautions in vulnerable areas. Both
concepts are based on a better knowledge of the infiltration and migration of contaminants
through the unsaturated zone and the necessity for defining the protective properties
naturally occurring in geologic layers. The variation in reclaimed water quality through
time also supports the use of vulnerability models. As previous studies demonstrated
the desalination treatment implemented in 2002, reduced the electrical conductivity of
irrigation water from 2800 to 1000 µS/cm, affecting the infiltration soil rate of the golf
course [19].

Of particular significance is defining vertical travel times (TTs) through layers located
above aquifers to prevent contamination from cultural activities. Surface geoelectric pro-
vide a fast and economical field method that can be used to assess the protective properties
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of geologic layers. In particular, the TT through unsaturated layers is theoretically linearly
related to the longitudinal unit conductance (S) of the layers with an estimated standard
deviation of 2.9 years by authors of [54].

Nevertheless, it must be considered that the longitudinal conductivity model is con-
sidered a semiquantitative assessment and requires a site-specific classification to rate the
protective capacity of the unsaturated area [55,56].

We have been followed the criteria of the AVI methodology to assign the vulnerability
categories. TTs of more than 3 years have been identified in the southern and eastern
zones of the studied site, these being, a priori, the areas most protected from surface
contamination of the studied area (Figure 8). On the other hand, transit times of less than 1
year, and therefore areas vulnerable to surface contamination, are located mainly in the
north and eastern parts.

Water 2021, 13, x FOR PEER REVIEW 12 of 15 
 

 

properties naturally occurring in geologic layers. The variation in reclaimed water quality 

through time also supports the use of vulnerability models. As previous studies demon-

strated the desalination treatment implemented in 2002, reduced the electrical conductiv-

ity of irrigation water from 2800 to 1000 µS/cm, affecting the infiltration soil rate of the 

golf course [19]. 

Of particular significance is defining vertical travel times (TTs) through layers lo-

cated above aquifers to prevent contamination from cultural activities. Surface geoelectric 

provide a fast and economical field method that can be used to assess the protective prop-

erties of geologic layers. In particular, the TT through unsaturated layers is theoretically 

linearly related to the longitudinal unit conductance (S) of the layers with an estimated 

standard deviation of 2.9 years by authors of [54]. 

Nevertheless, it must be considered that the longitudinal conductivity model is con-

sidered a semiquantitative assessment and requires a site-specific classification to rate the 

protective capacity of the unsaturated area [55,56].  

We have been followed the criteria of the AVI methodology to assign the vulnerabil-

ity categories. TTs of more than 3 years have been identified in the southern and eastern 

zones of the studied site, these being, a priori, the areas most protected from surface con-

tamination of the studied area (Figure 8). On the other hand, transit times of less than 1 

year, and therefore areas vulnerable to surface contamination, are located mainly in the 

north and eastern parts. 

 

Figure 8. Spatial distribution of travel times of the shallowest 20 m (Bandama Golf Course). 

In the case of the study area, the data provided in this work, conveniently cross-

checked with geological data from the Caldera wall, will allow its calculation to be in-

cluded in future models of contaminant transport through the unsaturated zone. 

Figure 8. Spatial distribution of travel times of the shallowest 20 m (Bandama Golf Course).

In the case of the study area, the data provided in this work, conveniently cross-
checked with geological data from the Caldera wall, will allow its calculation to be included
in future models of contaminant transport through the unsaturated zone.

6. Conclusions

The research results show that electrical resistivity tomography is a suitable technique
to investigate quickly and non-destructively the geometry and lithological characteristics
of the subsoil and to assess the best reclaimed water irrigation management practices and
the vulnerability to contamination of groundwater beneath golf courses, even in complex
geological environments, as in the case of the Bandama Golf Course.
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The electrical resistivity values have made it possible to identify each of the lithological
units that make up the subsoil of the golf course, providing a general model that agrees with
the edaphological observations made based on the geological knowledge of the volcanic
structure where the course is located. The model obtained provides detailed information
on the lateral and vertical variability of each of the layers and, based on an empirical
correlation between the values of electrical resistivity and hydraulic permeability, makes
it possible to delimit the preferential zones of subsurface drainage that may represent a
greater risk to the vulnerability of the underlying aquifer.

The AVI method is a quantitative method that allows determining vulnerability in
terms of the transit time of the contaminant through the unsaturated zone. The transit
time can be estimated by indirect methods, based on the information provided by electri-
cal resistivity tomography without affecting the game development and preserving the
playground integrity.
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