
water

Article

Aquifer Parameters Estimation from Natural Groundwater
Level Fluctuations at the Mexican Wine-Producing Region
Guadalupe Valley, BC

Mario A. Fuentes-Arreazola 1,* , Jorge Ramírez-Hernández 2 , Rogelio Vázquez-González 3, Diana Núñez 1 ,
Alejandro Díaz-Fernández 3 and Javier González-Ramírez 3,4

����������
�������

Citation: Fuentes-Arreazola, M.A.;

Ramírez-Hernández, J.; Vázquez-

González, R.; Núñez, D.; Díaz-

Fernández, A.; González-Ramírez, J.

Aquifer Parameters Estimation from

Natural Groundwater Level

Fluctuations at the Mexican

Wine-Producing Region Guadalupe

Valley, BC. Water 2021, 13, 2437.

https://doi.org/10.3390/w13172437

Academic Editors: Evangelos Tziritis

and Andreas Panagopoulos

Received: 4 June 2021

Accepted: 8 July 2021

Published: 4 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Centro de Sismología y Volcanología de Occidente, Centro Universitario de la Costa,
Universidad de Guadalajara, Av. Universidad, No. 203, Delegación Ixtapa, Puerto Vallarta 48280, Mexico;
dianane1982@gmail.com

2 Instituto de Ingeniería, Campus Mexicali, Universidad Autónoma de Baja California, Av. de la Normal S/N,
Col. Insurgentes Este, Mexicali 21280, Mexico; jorger@uabc.edu.mx

3 Centro de Investigación Científica y de Educación Superior de Ensenada, Departamento de Geofísica
Aplicada, CICESE, Carretera Ensenada-Tijuana, No. 3918, Zona Playitas, Ensenada 22860, Mexico;
vrog70@gmail.com (R.V.-G.); aldiaz@cicese.mx (A.D.-F.); Javier-Gonzalez@uan.edu.mx (J.G.-R.)

4 Laboratorio de Oceanografía Física, Escuela Nacional de Ingeniería Pesquera,
Universidad Autónoma de Nayarit, Bahía de Matanchen km. 12 Carretera a Los Cocos,
San Blas 63470, Mexico

* Correspondence: marioafar@gmail.com

Abstract: Determining hydrogeological properties of the rock materials that constitute an aquifer
through stress tests or laboratory tests presents inherent complications. An alternative tool that has
significant advantages is the study of the groundwater-level response as a result of the pore-pressure
variation caused by the internal structure deformation of the aquifer induced by barometric pressure
and solid Earth tide. The purpose of this study was to estimate the values of the physical/hydraulic
properties of the geological materials that constitute the Guadalupe Valley Aquifer based on the
analysis of the groundwater-level response to barometric pressure and solid Earth tide. Repre-
sentative values of specific storage (1.27 × 10−6 to 2.78 × 10−6 m−1), porosity (14–34%), storage
coefficient (3.10 × 10−5 to 10.45 × 10−5), transmissivity (6.67 × 10−7 to 1.29 × 10−4 m2·s−1), and
hydraulic conductivity (2.30 × 10−3 to 2.97 × 10−1 m·d−1) were estimated. The values obtained
are consistent with the type of geological materials identified in the vicinity of the analyzed wells
and values reported in previous studies. This analysis represents helpful information that can be
considered a framework to design and assess management strategies for groundwater resources in
the overexploited Guadalupe Valley Aquifer.

Keywords: hydrogeological properties; natural groundwater fluctuations; semi-arid zones; depleting
groundwater resources; Guadalupe Valley Aquifer

1. Introduction

Water supply for human consumption, agricultural, and industrial activities is a crucial
topic for developing the northwest semi-arid zones of Mexico. Particularly, Guadalupe
Valley in the Ensenada municipality, BC, Mexico, stands out as the region with the highest
wine production in the country. The Guadalupe Valley has had groundwater exploitations
as its primary source of water. However, this intense anthropogenic activity has led to
a recharge-extraction deficit, resulting in an excessive decrease in groundwater levels,
compromising water availability in the region [1–4].

This situation raises the need to conduct interdisciplinary studies that provide tech-
nical and scientific information to design and evaluate new water-resource-management
strategies. In 2007, many institutions established an integrated-management plan for
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the Guadalupe Valley Aquifer [5]. One of the main problems identified was the un-
certainty in the knowledge of the aquifer dynamic. Thus, the urgency to establish a
hydrogeological-measurement network was pointed out. As part of the hydrogeological-
monitoring recommendations, continuous monitoring wells were instrumented by using
pressure transducers [6].

Groundwater records are commonly used to study storage evolution, hydraulic gradi-
ent, and define the groundwater direction flow [7]. However, it has been observed that the
groundwater is sensitive to several natural phenomena (e.g., barometric pressure, earth
tides, and seismic activity) [8–15]. Analyzing the groundwater response to barometric
pressure and solid Earth tide constitutes an alternative, feasible, and inexpensive tool for
hydrogeological parameter estimations. Especially in regions where hydraulic properties’
information is insufficient or null, as a result of that, the sampling density necessary to
describes it may be prohibitively expensive (e.g., drilling and testing core, and pumping
tests) [7,16]. Therefore, this work aimed to estimate some hydrogeological parameters
(specific storage, porosity, storage coefficient, transmissivity, and hydraulic conductivity)
related to the geological materials that constitute the Guadalupe Aquifer based on the
groundwater response to barometric pressure and solid Earth tide. Results of this analysis
represent valuable information that can be considered as a framework to design and assess
management strategies for groundwater resources in the overexploited Guadalupe Valley
Aquifer.

2. Methods
2.1. Aquifer Response to Earth and Atmospheric Tides

Earth and atmospheric tides are natural phenomena throughout the Earth’s crust,
exerting a uniformly distributed surface load that causes a subsurface strain constituted
of superimposed signals of various frequencies and amplitudes. Aquifer formations
experiment compression and extension at their inner structure as a result of the strain
induced. Part of the strain is absorbed by the soil grains, and the rest is transmitted to
the water contained in the porous medium modifying the pore pressure, so water level
fluctuates, and their amplitude is modulated by geologic materials hydraulic properties
that constitute the aquifer [8,10,11,13]. Earth and atmospheric tides utilization is a feasible
and inexpensive alternative tool for hydrogeological parameters estimations [14–17]. The
latter was based on the premise that only three variables are required to compute values for
some aquifer parameters: (i) computed strain-tensor associated to Earth tides, (ii) measured
barometric pressure, and (iii) recorded groundwater heads.

2.2. Groundwater-Level Response to Atmospheric Pressure

Groundwater table (WL) variations show an inverse and proportional correlation to
barometric pressure (BP) fluctuations. WL variations are related to BP changes through
barometric efficiency (BE), which can be obtained according to Rasmussen and Craw-
ford [18] as follows:

BE = −WL
BP

(1)

BP fluctuations generate an evenly distributed strain field on the Earth’s surface. This
latter causes elastic deformation from the rock materials that constitute the aquifer, and
it is also transmitted to the fluid contained into the porous medium [10]. If the aquifer
formation presents high transmissivity or specific yield, a drained condition is favored (i.e.,
mass transfer through flow). Thus, a groundwater response to BP may not be observed [19].
However, it is a common practice to consider the lateral flow negligible as a result of the
vast lateral extension of the aquifer formation and the almost uniform effect of atmospheric
load on the ground surface [20].

WL variations within the borehole can be conceptualized as aquifer pore-pressure
changes, except in wells that are open to the atmosphere, on which the BP also exerts even
pressure to the water surface [17]. Thus, a lag in WL response is often produced due to the
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air contained in the vadose zone. This lag causes pressure differences between the aquifer
and borehole, propitiating in- and out-flows, resulting in WL variations [21].

Several methods have been developed for barometric efficiency estimation. Some of
them consider independence on the frequency domain of WL–BP and calculated it by using
linear regression techniques [18,22–24]. In contrast, other methods consider dependency
on the frequency domain of WL–BP through transfer functions. There also assesses the
simultaneous effect of the solid Earth tide [20,25–27].

2.3. Groundwater-Level Response to Solid Earth Tide

Solid Earth tide (SET) corresponds to small periodic variations in the Earth’s shape
as a result of expansion and compression forces generated by the gravitational attraction
of celestial bodies, mainly the Moon and Sun. These gravitational forces are balanced by
pore-pressure changes in an aquifer that generate WL variations within boreholes drilled
typically in confined and semi-confined aquifers [10,19]. Pore pressure (PP) is related to the
vertical stress (σzz) associated with SET through the tidal efficiency (γe), which is obtained
according to Jacob [8] as follows:

γe = − PP
σzz

(2)

Strictly speaking, the fluid contained in the porous medium responds to a three-
dimensional strain tensor (εv). Nevertheless, considering the induced deformation associ-
ated with SET and tectonic activity, the εv is not well-known as a priori [17,20]. Moreover,
the εzz value measured on the terrain surface is approximately equal to the value of a hori-
zontal strain component but with an opposite sign [20]. Therefore, it is more appropriate to
analyze the WL response to an areal tidal strain (εA) defined by Rojstaczer and Agnew [13]
and calculated as follows:

εA = εxx + εyy (3)

Because εzz has an opposite sign, εA value is higher than εv. Thus, the WL response
may be lower when εv is used rather than εA.

The strain tensor associated with the SET can be estimated from the theoretical gravi-
tational potential, W2 [28]. This differs from the measured gravitational potential due to
geological and topographical local discontinuity effects [28–30]. Geologic and topo-graphic
influence is complicated to define a priori. Thus, in the absence of strain measurements,
the use of the theoretical gravitational strain is appropriate [20].

2.4. Aquifer Parameters Estimation

Jacob [8] derived a mathematical expressions that relate BE and γe with the elastic
properties of the rock materials that constitute the aquifer, and can be written as follows:

BE =
1

1 + βk
ϕβW

(4)

γe =

βk
ϕβW

1 + βk
ϕβW

(5)

where βk is the rock matrix compressibility, ϕ corresponds to porosity, and βW is water
compressibility. If both expressions are added, the result is unity. Therefore, in calculating
any of the previous parameters, it is possible to define the other one (BE = 1 − γe).

In case that the compressibility of the rock materials that constitute the aquifer is not
considered, it is possible to estimate values of specific storage and porosity based on the WL
response as a result of the SET and BP effects. WL variations produced by aquifer dilatation
related to the SET is a function of specific storage (SS) of the rock materials. Bredehoeft [10]
indicated that SS could be calculated from the water-table fluctuations record (dh), and
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assuming a characteristic value of Poisson’s ratio (ν) in undrained conditions. Van der
Kamp and Gale [11] derived an expression to estimate SS as follows:

SS = −
[(

1 − KK

KU

)
·
(

1 − 2υ
1 − υ

)
·
(

2h − 6l
Er·g

)]
dW2

dh
(6)

where KU is the rock matrix compressibility under undrained conditions, h = 0.6031 and
l = 0.0839 are the Love numbers [31]; Er corresponds to the Earth’s radius, and g indicates
gravity acceleration.

The relationship between W2 and dh is equivalent to the relation among the amplitude
of the dominant harmonic components of W2 denoted as (A2 (τ, θ)), and the amplitude of
the dh (Adh (τ)) at the same period (τ). Merrit [14] proposed that the derivatives (dW2 and
dh) can be approximated by a finite differential scheme; thus, Equation (6) can be written
as follows:

SS = −
[(

1 − KK

KU

)
·
(

1 − 2υ
1 − υ

)
·
(

2h − 6l
Er·g

)]
A2(τ, θ)
Adh(τ)

(7)

where A2(τ, θ) is calculated as follows:

A2(τ, θ) = g·Km·b·f(θ), (8)

The general lunar coefficient (Km), the particular amplitude factor (b) for each har-
monic component with a period (τ), and the latitude function (f (θ)) values were determined
by Merrit [14].

The classic method to study W2 is to represent it through a finite set of harmonic func-
tions, sinus, and cosines. Each k-tidal harmonic component has a particular frequency (fTk),
amplitude (ATk), and phase angle (ΦTk) [32]. Amplitude (Adhk) and phase-angle (Φdhk)
estimations from the WL variations at the exact frequencies of the harmonic components of
W2 are calculated from the regression coefficients (adhk and bdhk) obtained as follows [17]:

Adhk =
√

adhk
2 + bdhk

2 (9)

φdhk = tan−1
(
−bdhk

adhk

)
(10)

Similarly, ATk and ΦTk are computed from the theoretical strain-tensor associated to
Earth tides, using Equations (9) and (10). Thus, areal strain sensitivity (ASK) is calculated
based on Adhk and ATk according to Rojstaczer and Agnew [13]:

ASk = −WL
εA

=
Adhk
ATk

≈ A2(τ, θ)
Adhk(τ)

(11)

In case the rock materials that constitute the aquifer are incompressible, the volume
aquifer changes as a result of the deformation induced by SET could be approximated as
a variation on the porosity [33]. This assumption is appropriate for most of the aquifers
studied in hydrogeology; the exceptions are aquifers related to low-porosity rocks [10].
Thus, the porosity can be estimated according to Merrit [14] as follows:

ϕ =
BE·SS

βW·g·ρ , (12)

where ρ is the fluid density, and it is a function of its temperature.
Cooper et al. [9] demonstrated that the WL harmonic response depends on trans-

missivity (T), storage coefficient (Sc), periodicity of disturbance (τ), radius of the well
casing (RWC), and radius of the well screened (RWS). A set of dimensionless parameters
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that relate these hydraulic rock properties and borehole characteristics was derived by
Hsieh et al. [34]:

T·τ
RWC

2 (13)

SC·RWS
2

RWC
2 , (14)

Graphs of the amplitude ratio and phase shift as a function of Equation (13) for
selected values of the parameters in Equation (14) were prepared by Hsieh et al. Figures 2
and 3 [34].

Values of T can be estimated if the phase shift and an order of magnitude estimate of
storage coefficient are known [34]. The phase shift of the kth-tidal harmonic component
(ηk) is determined by Hsieh et al. [34] as follows:

ηk = φdhk −φTk (15)

3. Study Area and Database
3.1. Study Area

The Guadalupe Valley (GV) is located in the Guadalupe River basin (GRB), northwest
region of Baja California, Mexico. The runoff in the basin originates in the Sierra Juarez
and flows in a NE–SW direction trough the Ojos Negros-Real del Castillo, Guadalupe, and
La Mision Valleys up to its discharge in the Pacific Ocean (Figure 1).
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according to the Kopen classification [37]. Mean monthly temperatures vary from 0.6 to 

Figure 1. Macro and regional location of the Guadalupe Valley Aquifer. Monitoring wells (P452, P122, and POP2)
instrumented are shown. Reference wells (P01, P02, and PG02) included as a part of the study (lithology column availability)
are shown. The location of the barometer (P254) is also shown. Geological features are illustrated and described at inset
legend [35,36].

The region’s climate is characterized by a moderate semi-arid Mediterranean cli-
mate, according to the Kopen classification [37]. Mean monthly temperatures vary from
0.6 to 30 ◦C [38]. Rainfall events are generally intense, and mean annual precipitation may
range from 12 to over 750 mm [39]. As a result, streamflow is highly seasonal, with most
of the winter precipitation deriving streamflow from December through February and
corresponds to the major source of recharge of the Guadalupe aquifer [40].

From a geological perspective, in GV, several tectonic processes originated two sub-
basins: Calafia and El Porvenir (Figure 1). These are aligned to a NE–SW direction and
eventually were filled with unconsolidated material from erosion, transport, and sedimen-
tation processes. Intrusive and extrusive igneous rocks delimit the valley and constitute
the hydraulic basement of the aquifer. Granodiorite, Tonalite, and Granite rocks from
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the Upper Cretaceous dominate in the north, east, and south regions. Meanwhile, Rio-
dacite and Andesite rocks from the Upper Jurassic prevail in the west zone. Quaternary
unconsolidated alluvial deposits constitute the Guadalupe Valley Aquifer (GVA) [3].

In a hydrogeological setting, the GVA is considered as a heterogeneous, unconfined
aquifer formation made of three principal hydrogeological units of variable thickness: (i)
highly permeable unit (alluvium, gravel, sand, and silt); (ii) semi-permeable unit (gravel,
sand, and clay); and (iii) low permeability unit (igneous basement). These hydrogeological
units are present in both sub-basins and constitute the main groundwater reservoir in
the GVA (Figure 2a). The El Porvenir sub-basin (EPSB) prevails in the southern region of
the GV and varies in depth from 70 to 100 m. The Calafia sub-basin (CSB) dominates the
northeastern zone of the GV, and its depth varies from 300 to 350 m. The aquifer recharge
is based on two dominant processes: (i) horizontal recharge, as a result of superficial and
subterranean Guadalupe River flows; and (ii) vertical recharge, associated to percolation of
precipitation and agricultural-irrigation excess [2,4–6].
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The available information regarding the hydraulic properties of the rock materials that
constitute the GVA is limited. Only two studies based on pumping tests have been carried
out to estimate hydrogeological properties in the GVA. Andrade-Borbolla [1] determined
that, the transmissivity values vary from 0.34 × 10−3 to 52.40 × 10−3 m2·s−1, prevailing
higher values of 1.00 × 10−3 m2·s−1. CNA [4] estimated transmissivity values ranging
from 0.04 × 10−3 to 60.00 × 10−3 m2·s−1, hydraulic conductivity values between 0.05 to
64.80 m·d−1; and mean values of storage coefficient of 0.00005 and specific yield of 0.065.
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Some previous studies have aimed at determining the spatial distribution of the
groundwater-table elevation, for which, hydrogeological properties values have been
proposed to control the adjusting between field measurements and modeled water-table
elevations. Campos-Gaytan and Kretzschmar [41] developed a groundwater-flow regional
model based on historical water-level measurements for GVA. Moreover, hydraulic conduc-
tivity values for the rock materials that filled the sub-basins were estimated based on the
misfit of the measurement and modeled water-table elevation. A typical value of hydraulic
conductivity for EPSB and CSB was calculated as 5.47 m·d−1. The exception to this was the
southwestern region of EPSB, where the characteristic value determined was 68.49 m·d−1.
Hydraulic conductivity and storage coefficient values ranging from 2.00 to 8.00 m·d−1,
and 0.10 to 0.28, respectively; were used to simulate the groundwater-table response to
extraordinary rainfall events within GV by [3].

On the other hand, Del Toro-Guerrero et al. [40] conducted the water-balance es-
timation in El Mogor sub-basin that derives in GV. As a part of the characterization
activities, 48 soil samples from the vadose zone were analyzed to define its grain size.
As a result, porosity values ranging from 26 to 38%, and hydraulic conductivity val-
ues ranging from 0.50 to 31.85 m·d−1 were calculated by using the Vukovic–Soro and
Kozeny–Carman empirical equations proposed by [42]. Molina-Navarro et al. [38] and
Montecelos-Zamora [43] modeled the Global warming hydrogeological impact on the
northern zone of the Guadalupe River, using a SWAT model. As a result of the simulation,
typical values of hydraulic conductivity, ranging from 2.14 to 2.71 m·d−1, were calculated.

3.2. Data

Vázquez-González et al. [6] established a groundwater monitoring network in the
GVA. The monitoring wells were instrumented by using ten pressure-transducers of semi-
continuous records (Solinst Levelogger and Solinst Barologger). González-Ramírez and
Vázquez-González [3] reported that the monitoring network consisted of up to 17 obser-
vation wells, but the pressure-transducers were installed on the monitoring wells during
different periods. In 2012, the monitoring network only had eight instrumented wells, five
of them located in the CSB, and three in the EPSB. For this study, as a result of the database
continuity inspection, only a relatively short period (1 June 2010 to 31 January 2011) of
simultaneous record on three monitoring-wells was identified. The instrumented wells
were POP2 (SW region of CSB), P122 (N region of EPSB), and P452 (SW region of EPSB).
Additionally, during the same period, well P254 (NE region of EPSB) was instrumented to
record barometric pressure. The location of the monitoring wells is illustrated in Figure 1.
Groundwater-table level and barometric-pressure time-series recorded in each previously
mentioned monitoring wells are shown in Figure 3a. Some design characteristics of the
monitoring-wells considered in this study are presented in Table 1. The three monitoring
wells were drilled into Quaternary alluvial deposits. Unfortunately, there is no information
regarding the drilled lithological column. Nevertheless, establishing a correlation with
near wells described by Campos-Gaytan [2] is feasible (Figure 2b and Table 2).

Table 1. Summary of the characteristics of the three monitoring wells studied. Nomenclature: well
head elevation (WHE, meters above sea level (masl)), borehole depth (BD), water-table elevation
(WTE), radius well-casing (RWC), radius well-screened (RWS), and saturated thickness (B).

Well
ID

Coordinates 1 WHE BD WTE RWC/RWS B
Longitude

X (m)
Latitude Y

(m) (masl) (m) (msnmm) (m) (m)

P452 532,619 3,546,036 301.80 40.00 299.40 0.33/0.10 37.60
P122 536,402 3,550,067 323.07 40.00 307.50 0.30/0.10 24.43
POP2 543,576 3,552,069 345.40 80.00 317.30 0.10/0.10 51.90

1 Projected coordinates, Universal Transversal Mercator UTM. Datum: World Geodetic Systems, year 1984,
WGS-84.
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Table 2. Summary of the characteristics of the reference wells included as a part of this study.

Well ID Name Location
Depth Lithology

(m) Material (Interval)

P01 Porvenir-1
~1000 m

NE-direction
from P452

28.57

1. Sand (0 to 8 m)
2. Sand and gravel (8 to 14 m)

3. Sandy clay (14 to 16 m)
4. Sand, gravel, clay (16 to 24 m)

5. Granite (24 to 30 m)

P02 Porvenir-2
~650 m

W-direction
from P122

41.70

1. Sandy clay (0 to 2 m)
2. Sand (2 to 6 m)

3. Altered granite (6 to 16)
4. Fractured granite (16 to 40 m)

PG2 Guadalupe-2
~400 m

NE-direction
from POP2

83.90
1. Alternating layers of sand and

gravel. The igneous basement was
not drilled.

3.3. Data Processing

The theoretical gravitational potential (W2) and its strain tensor (εA) were calculated at
each well location, using the SPOTL package ver. 3.3.0.2 [44,45]. The geologic–topographic
discontinuities and oceanic tide influence were not considered. The WL, BP, and εA time-
series were processed and analyzed by using a set of MatLab codes written particularly
for this study. The recorded time-series were detrended by using polynomial functions
to represent it in a stationary fashion. A third-degree polynomial better reproduces the
influence of annual and semi-annual cycles. Using the characteristic polynomial equation,
the very low frequency effect was calculated and removed from the measured time-series.
From the detrended data, BE was calculated with the method proposed by Rahi [24].



Water 2021, 13, 2437 9 of 16

This technique estimates BE only considering BP perturbations and filtering the areal
strain effect.

The periodic fluctuations in the time-series were identified utilizing the Discrete
Fourier-Transform technique. The WL response to areal strain was analyzed from the
discrete amplitude spectra. The high-frequency WL variations (>3.00 cycles per day, cpd)
were removed by using a low-pass filter (Chebyshev-I, frequency-cut = 3.00 cpd). Then
the low-frequency WL fluctuations (<0.50 cpd) were eliminated applying a high-pass filter
(Chebyshev-I, frequency-cut = 0.50 cpd).

Amplitudes (Adhk) and phase angle (Φdhk) values were determined at the exact
frequencies of the tidal harmonic components, using the t-tide code [46], and applying
Equations (9) and (10). Similarly, ATk and ΦTk were calculated. Areal strain sensitivity
was calculated based on Adhk and ATk, using Equation (11). Moreover, the phase shift
was estimated based on Φdhk and ΦTk, using Equation (15). Therefore, the transmissivity
magnitude order was estimated by utilizing Equation (13) and considering the values of
RWC and RWS reported in Table 1.

Based on the ASK estimates, the specific storage was calculated by using Equation (7).
For this, gravitational acceleration at a GV representative latitude was calculated as
g = 9.795 [m·s−2]. Moreover, the Earth’s radius of 6,371,000 m and Poisson’s ratio equal to
0.25 [47] were assumed. Using estimations of BE and SS, porosity values were calculated
applying Equation (12). For this βW = 4.40 × 10−10 [Pa−1] and ρ = 998.20 [kg·m−3] were
used.

The saturated thickness (B) was determined relating the well head elevation (WHE),
borehole depth (BD), and water-table elevation (WTE) reported in Table 1. From B, approxi-
mation of the storage coefficient was conducted based on the relation (SC = SS·B). Similarly,
the hydraulic conductivity magnitude-order was estimated from the relation (K = T·B−1).

4. Results and Discussion

This study synthesized methods for estimating hydraulic aquifer properties from
water-level fluctuations measured in a set of monitoring wells at Guadalupe Valley, Mexico.
While this analysis was limited to the response of the well-aquifer system to deformation
induced by Earth and atmospheric tides, similar methods are available to study water-level
fluctuations due to other naturally occurring stresses, such as seismic events (e.g., see
Reference [9]). The major simplifying assumption is that solids grains are incompressible.
In addition, the primary uncertain source was the use of the tidal strain derived from the
theoretical tidal potential. Nonetheless, the methods described in this work showed to be
capable of providing reasonable aquifer properties estimates.

An example of the theoretical areal tidal strain calculated at well P254 reported in
nanostrain units (1 nstr = 1 ppb) is shown in Figure 3b. The discrete amplitude spectra
calculated for WL variations observed in wells P452, P122, and POP2 are shown in Figure 4a.
Moreover, the spectra associated with the recorded BP and theoretical areal strain calculated
in well P254, are shown in Figure 4b,c, respectively. The dominant harmonic components
in the εA were five, two of them are diurnal (O1, Lunar; K1, Lunar-Solar) and three
are semi-diurnal (N2, Lunar; M2, Solar; and S2, Lunar). Its period and nomenclature
also are indicated in inset Figure 4c. The amplitude of the tidal harmonic components
calculated in the three monitoring wells was comparable. On the reference well P254,
amplitudes estimated were O1 = 5.3, K1 = 7.1, N2 = 1.7, M2 = 8.2, S2 = 4.2 nstr. These last
harmonic components are responsible for 95% of tidal potential and play an essential role
in hydrogeological studies [10,48].
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BP periodic fluctuations in well P254 were diurnal and semi-diurnal. Its values were
K1 = 2.6 and S2 = 3.4 mm-WEC (mm of Water Equivalent Column). These fluctuations are
generally associated with the warming and cooling processes of the air column as a result
of solar radiation. Moreover, diurnal and semi-diurnal periodic fluctuations in the WL
spectra were identified. Semi-diurnal variations were dominant in wells P452 and POP2
(S2 = 2.0 and S2 = 3.3 mm-WEC, respectively), while diurnal fluctuations were dominant in
well P122 (K1 = 4.4 mm-WEC).

The tidal harmonic components (K1 and S2) were also identified in the BP spectra.
Therefore, the WL response analysis at these specific frequencies is challenging since
both phenomena simultaneously influence the well-aquifer system. Moreover, the WL
amplitude in the N2 frequency component is typically smaller compared with the other
dominant components. As a result, the signal ratio is low and is often discarded since it
becomes a relevant error source in the analysis [17]. Based on the above, K1, S2, and N2
harmonic components have been ignored in the WL response analysis. Consequently, only
O1 and M2 harmonic components were used to estimate hydrogeological properties of the
rock material in the vicinity of the studied monitoring wells.

The highest amplitude in the WL spectra for the O1 and M2 harmonic components
was identified in well P122 (0.6 and 0.3 mm-WEC, respectively). While in wells P452
and POP2, amplitudes were lower than 0.1 mm-WEC. Bredehoeft [10] and Weeks [19]
mentioned that it is unusual to identify the O1 and M2 harmonic components in the WL
variations from wells drilled on unconfined aquifers, which is the typical conceptualization
of the GVA. However, Rahi and Halihan [21] indicated that if O1 and M2 signatures are
present in the WL spectra, it may be related to a lag of fluctuations K1 and S2 as a result of
passing through the vadose zone, suggesting conditions of a semi-confined aquifer.

Estimation of Adhk and Φdhk at the specific frequencies of the O1 and M2 harmonic
components was carried out from the regression coefficients adhk and bdhk, using Equations
(9) and (10). The highest amplitudes were determined in well P122 (O1 = 1.06 mm-WEC
and M2 = 0.59 mm-WEC). These last values were approximately two times the observed
value on the amplitude spectra. The amplitudes determined from wells P452 and POP2
were minor relative to well P122 and are shown in Table 3. Similarly, values of ATk and ΦTk
at the exact frequencies of O1 and M2 were calculated. The amplitude value for O1 was
10.67 nstr and 19.88 nstr for M2. These last two values are nearly two times the observed
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value on the amplitude spectra. The underestimated amplitude from the frequency spectra
may be related to digital filtering and Discrete Fourier-Transform inherent problems, for
example, the aliasing.

Table 3. Summary of results of the regression analysis, areal strain sensitivity, and barometric efficiency.

Well ID
Adhk·(10−1) Φdhk ATk ΦTk ηk ASk·(10−2) BE

(mm) (◦) (nstr) (◦) (◦) (mm·nstr−1) (%)
O1/M2 O1/M2 O1/M2 O1/M2 O1/M2 O1/M2

P-452 1.61/4.24 −68/−83 10.67/19.89 −81/−44 13/−39 1.51/2.13 41.46
P-122 10.57/5.98 55/−35 10.67/19.88 89/48 −34/−83 9.90/3.01 48.32
POP-2 1.21/2.66 66/78 10.68/19.87 −78/16 −12/62 1.13/1.34 79.79

Areal strain sensitivity values were calculated from the amplitudes and phase angles
determined of the WL variations and the theoretical areal strain (Table 3). Likewise, the
phase shift values were also calculated and reported (Table 3). The highest value of ASK
was calculated in well P122 for the harmonic component O1 = 9.90 × 10−2 mm·nstr−1;
this value was approximately three times the value determined for M2. Added to this,
a negative phase shift was determined in well P122 (ηk-O1 = −34◦, and ηk-M2 = −83◦).
These last results indicate that the WL variations are produced as a result of the areal tidal
strain effect. In wells, P452 and POP2 values of areal strain sensitivities ranging between
1.13 × 10−2 to 2.13 × 10−2 mm·nstr−1 of ASK were calculated. WL variations as a result
of the areal tidal strain effect were determined in wells P452 (M2, harmonic component)
and POP2 (O1 harmonic component). In contrast, a positive phase shift was determined
for the O1 harmonic component in well P452 and for the M2 component in well POP2. In
previous studies, the positive phase shift has been related to the borehole storage effect
and water diffusion processes [18,25,26,49].

Barometric efficiency values were calculated and reported for each monitoring well
(Table 3). In wells P452 and P122 located on the EPSB, the estimated BE values were
similar, 41.46% and 48.32%, respectively. In contrast, for well POP2 located on the CSB,
the value calculated was 79.79%, this value is higher in relation to those calculated for the
monitoring-wells on EPSB. BE is related to the rock materials that constitute the aquifer and
is also an indicator of the confinement conditions. The BE represents the fraction of induced
stress held by the rock materials; the remaining fraction is transmitted to the fluid [50].
Typically, a BE value of zero implies that the pressure perturbation is entirely held by the
fluid contained in the porous media. While a unit BE value signifies that the pressure
perturbation is held by the grains of the rock materials. Based on the above, the rock
materials (gravel, sand, clay, and altered/fractured granite) that characterize the EPSB hold
up 40–50% of the pressure perturbation related to BP fluctuations. While the sand/gravel
alternating layers of the CSB support almost 80% of the stress related to BP fluctuations,
this last hydraulic behavior may be explained if the presence of clays (high compressibility)
on the EPSB is considered. It is contrasting with the relatively low compressibility of the
sand and gravel that constitutes the CSB.

Added to this, in an ideal unconfined aquifer with shallow water table, the BE value
should be zero. Instead, when the water table is relatively deep or the rock material
generates confinement conditions, the BE value increases. Based on this, the BE values
determined could suggest that in the vicinity of the analyzed wells, the aquifer is semi-
confined. Moreover, the observed O1 and M2 harmonic components in the WL spectra
support that locally the GVA is a semiconfined formation. This result is surprising and
contrasts with the typical conceptualization of the GVA [2,6,51]. Nonetheless, the charac-
teristics of rock materials that constitute the aquifer and the water-table relative depth may
justify the local semi-confined hydraulic behavior of the GVA. Despite this latter, regionally
the GVA is a unique unconfined aquifer formation.

Estimations of SS in the GVA has not been obtained because previously conducted
studies have considered an unconfined aquifer, where the specific yield is much higher
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than SS. Nevertheless, the results of this study suggest local semi-confined behavior in
the GVA. The determined SS values ranged from 1.27 × 10−6 to 2.78 × 10−6 m−1 (Table 4).
The lowest value was calculated for well P122, while the highest value was estimated
for well P452. The comparison between the SS estimations and the expected values as a
function of the rock-materials type is shown in Figure 5. In general, the SS estimations were
two orders of magnitude lower than the expected values related to the rock materials that
dominate the lithologic column of wells P01, P02, and PG2 reported by Campos-Gaytán [2].
However, these stratigraphic columns also showed the presence of clay lens (P01 and P02),
granite (P01), and altered/fractured granite (P02). Based on these last rock materials, the
calculated SS values for wells P452 and P122 are slightly in agreement with the expected SS
values (Figure 5). SS estimations for well POP2 showed relevant discrepancies concerning
the expected SS values as a function of the rock materials observed in the lithologic column
of well PG2 (sand and gravel). Nonetheless, shallow clay layers have been interpreted
on recent electromagnetic surveys (TEMs) conducted in the CSB [52]. This last geological
feature may explain the calculated SS values in well POP2 and support the GVA local
semi-confined hydraulic behavior deduced.

Porosity values were calculated based on estimations of SS and BE. The estimated
porosity values ranged from 14 to 34% (Table 4). The lowest value was calculated for well
P122, located in the EPSB in which a shallow hydraulic basement has been reported. The
highest porosity value was estimated for well POP2 situated in the CSB and is consis-
tent with the expected value associated with the rock materials that constitute the PG2
reference stratigraphic column. Furthermore, calculated porosity values are comparable
with the porosity values (26–38%) determined in El Mogor, GVA’s tributary sub-basin [40].
Additionally, estimated porosity values are consistent with the expected porosity values
reported in the classic hydrogeological literature [50,53]. For practical purposes and in the
absence of local determinations, a representative porosity value for the rock materials in
the CSB is 30%, 20% for EPSB, and 25% for the GVA.

Table 4. Summary of estimations of hydrogeological parameters for the rock materials that constitute
the Guadalupe Valley Aquifer.

Well ID
SS (10−6) ϕ SC (10−5) T (10−6) K (10−2)

(m−1) (%) (m2·s−1) (m·d−1)
O1/M2 O1/M2 O1/M2 O1/M2 O1/M2

P-452 2.78/1.93 26.88/18.60 10.45/7.26 129.46/74.28 29.75/17.07
P-122 1.27/2.53 14.22/28.46 3.10/6.18 32.05/0.66 11.33/0.23
POP-2 1.83/1.52 33.95/28.27 9.49/7.88 12.38/1.99 2.06/0.33

Nomenclature: specific storage, SS; porosity, ϕ; storage coefficient, SC; transmissivity, T; hydraulic conductivity, K.

Storage coefficient values were calculated based on the estimations of SS and B. The
estimated SC values ranging from 3.10 × 10−5 to 10.45 × 10−5 (Table 4). The lowest SC
value was calculated for well P122, and the highest SC value was in well P452; both wells
are in the EPSB. The SC value estimated for well POP2 situated in the CSB was lower than
the calculated value for well P452. The estimated SC values were up to four orders of
magnitude lower in comparison to those used in the water-table simulations by González-
Ramírez and Vázquez-González [3]. Nevertheless, estimated SC values are similar in the
order of magnitude (10−5) with those determined through pumping tests by CNA [4].

Transmissivity values were calculated based on estimations of ηk, the order of mag-
nitude of SC, and Figure 2 from Hsieh et al. [34]. The estimated T-values were ranging
from 6.67 × 10−7 to 1.29 × 10−4 m2·s−1 (Table 4). The lowest T-value was calculated for
well P122, and the highest T-value in well P452, both wells are in the EPSB. Estimated
T-values are comparable with those (3.40 × 10−4 to 52.40 × 10−3 m2·s−1) determined by
Andrade-Borbolla [1], and to those (4.00 × 10−5 a 60.00 × 10−3 m2·s−1) calculated by
CNA [4]. Finally, hydraulic conductivity values were calculated from estimations of T and
B. The estimated K-values ranged between 2.30 × 10−3 to 2.97 × 10−1 m·d−1 (Table 4). The
highest K-value was calculated for well P452 located at the SW of EPSB; a similar hydraulic
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behavior was described by Campos-Gaytán and Kretzschmar [41]. The lowest K-value was
calculated for well POP2 located on the CSB. In general, the estimated K-values were up
to two or four orders of magnitude lower in comparison (Figure 6) to those determined
from water-table elevation modeling [3,38,41,43]. In contrast, the estimated K-values are
comparable with those reported in the classic hydrogeological literature [50,53]. Moreover,
the estimated K-values are pretty similar to those determined from the soil grain-size
analysis by Del Toro-Guerrero et al. [40] and with those calculated from pumping tests in
wells of the GVA by CNA [4].
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5. Conclusions

Based on the analysis of the groundwater response in three monitoring wells to baro-
metric pressure and solid Earth tide, we determined crucial information about the hydro-
geological properties of the rock materials that constitute the Guadalupe Valley Aquifer. In
particular, representative values of specific storage (1.27 × 10−6 to 2.78 × 10−6 m−1), poros-
ity (14–34%), storage coefficient (3.10 × 10−5 to 10.45 × 10−5), transmissivity (6.67 × 10−7

to 1.29 × 10−4 m2·s−1), and hydraulic conductivity (2.30 × 10−3 to 2.97 × 10−1 m·d−1)
were calculated. These results were consistent with previous determinations. Moreover,
based on our literature review, the calculated specific storage values correspond to the first
estimations reported in the Guadalupe Valley Aquifer.

About the hydraulic behavior of the rock materials as a result of the induced stress
tensor related to perturbation of barometric pressure and areal tidal strain, the results
suggested local semi-confined conditions of the aquifer formation. This behavior differed
from the typical conceptualization of the Guadalupe Valley Aquifer. Nevertheless, the
observed clay-lens in lithologic columns, the interpreted electrical-resistivity models, and
the storage coefficient values determined from pumping tests, corroborated the local
conditions of semi-confinement identified in this study.

The main sources of uncertainty of the estimations correspond to using the theoretical
areal strain and the assumed saturated thickness. Nonetheless, the estimated hydrogeolog-
ical values showed consistency with those expected for the rock-materials types reported
in the classic literature. In addition, a notable similarity was defined between the estimated
values and those calculated directly from aquifer stress tests. In the absence of hydro-
geological information, the estimated parameters of this study may be considered as a
benchmark and used to design and assess management strategies for the groundwater in
the Guadalupe Valley Aquifer.

Future research should be focused on integrating water-level records from a broader
set of monitoring wells to extend the hydrogeological characterization of the Guadalupe
Valley Aquifer. Moreover, the investigation should explore hydrogeologic–poroelastic
relationships to determine geomechanical properties associated with the rock materials
that constitute the Guadalupe Valley Aquifer.
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