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Abstract: Groundwater over-abstraction may cause land subsidence (LS), and the LS mapping suffers
the subjectivity associated with expert judgment. The paper seeks to reduce the subjectivity associated
with the hazard, vulnerability, and risk mapping by formulating an inclusive multiple modeling
(IMM), which combines two common approaches of multi-criteria decision-making (MCDM) at
Level 1 and artificial intelligence (AI) at Level 2. Fuzzy catastrophe scheme (FCS) is used as MCDM,
and support vector machine (SVM) is employed as AI. The developed methodology is applied in
Iran’s Tasuj plain, which has experienced groundwater depletion. The result highlights hotspots
within the study area in terms of hazard, vulnerability, and risk. According to the receiver operating
characteristic and the area under curve (AUC), significant signals are identified at both levels;
however, IMM increases the modeling performance from Level 1 to Level 2, as a result of its multiple
modeling capabilities. In addition, the AUC values indicate that LS in the study area is caused by
intrinsic vulnerability rather than man-made hazards. Still, the hazard plays the triggering role in the
risk realization.

Keywords: land subsidence; risk realization; hazard; vulnerability

1. Introduction

Land subsidence (LS) due to groundwater over-abstraction is a man-made problem,
which threatens water availability, the environment, and structures. Risk assessment, as the
first step of risk management, can play a pivotal role in proactively managing or mitigating
LS problems. Risk assessment can be carried out by risk indexing or mapping when histor-
ical records are unavailable, and, consequently, frequency analysis is not feasible. Different
techniques are available in the ongoing research activities to formulate risk indexing or
mapping by incorporating a set of data layers, as discussed in due course. However,
they suffer from subjectivity associated with the data layers due to expert judgment. The
paper aims to delineate risk maps to LS and reduce the subjectivity by incorporating multi-
criteria decision-making (MCDM) and artificial intelligence (AI) techniques, two widely
used approaches in hydrology and environmental studies.

The literature review highlights two different approaches of MCDM and AI in risk
mapping of groundwater issues. MCDM formulates the issue as a decision-making problem
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and aims to estimate the weights of different criteria in a pre-defined procedure. Various
issues are available in the literature that are studied by the MCDM technique, including
groundwater vulnerability to pollution by analytic hierarchy process (AHP) [1] and analytic
network process (ANP) [2], groundwater potential indexing by multi-criteria decision
analysis (MCDA) [3], and fuzzy catastrophe scheme (FCS) [4], groundwater risk to saltwater
intrusion by FCS [5], and LS problem by FCS [6]. Notably, some MCDM techniques rely
on expert judgment, such as AHP, while others, such as FCS, mitigate subjectivity in the
MCDM problem.

The second approach employs the AI technique and formulates a prediction model
to determine a relationship between the criteria affecting the issue (known as input data)
and the measured data (known as target data). Several studies exist in the literature, which
investigates different issues by the AI technique comprising groundwater vulnerability to
pollution by support vector machine (SVM), cubist, random forest, and Bayesian artificial
neural network [7], groundwater potential indexing by using an advanced ensemble ma-
chine learning model that integrates artificial neural networks (ANN) with RealAdaBoost
(RAB) ensemble technique [8], groundwater risk to saltwater intrusion by ANN, Sugeno
fuzzy logic (SFL), neuro-fuzzy (NF) and SVM [9], and LS problem by ANN and genetic
algorithm (GA) [10,11]. The input dataset of the LS problem consists of factors that affect
LS, and the output dataset consists of subsidence values obtained by remote sensing or
field measurement.

Recently, Nadiri et al. [12] introduced ALPRIFT, a GIS-based framework to calculate
vulnerability index to LS. This framework incorporates seven data layers consist of aquifer
media (A), land use (L), pumping of groundwater (P), recharge (R), impacts instigated by
aquifer thickness (I), fault distance (F), and decline of water table (T). A rating value is
assigned to each layer to incorporate local variations, and a weight value is assigned to re-
flect its relative importance. The rates and weights of ALPRIFT frameworks are prescribed
based on expert judgment and suffer from subjectivities inherent in each individual’s
assessment. Notably, there are similar frameworks in the literature [13,14] besides the
ALPRIFT framework, and these frameworks also are reviewed in due course.

The ALPRIFT-related studies can be categorized into different groups, which are
outlined as follows. The first group reduces the subjectivities with prescribed rates and
weights through the MCDM techniques, such as FCS [6] and the AI techniques [15]. Most
published studies calculate the LS index by formulating the multiple AI-based modeling
referred to as inclusive multiple modeling (IMM). Note that MCDM and AI techniques do
not complement each other. The MCDM techniques do not require a target dataset and,
unlike AI techniques, can be applied to areas with the lack of measured LS data. On the
other hand, the results by AI generally have higher performance than MCDM. The second
group treats the vulnerability to LS as a time-variant problem and predicts the LS index in
the near future by AI models [11]. The third group transfers vulnerability indexing to risk
indexing by dividing the data layers into active and passive data layers [6,10].

As discussed earlier, other frameworks exist in the literature to map vulnerability index
to LS that are named with different terminologies, such as subsidence susceptibility [16] or
subsidence hazard mapping [17]. These studies are summarized in Table 1 and compared
in terms of incorporated data layers and approaches. Despite some differences in the layers
of data utilized across the studies in Table 1, ALPRIFT utilizes many of the same data
layers. Additionally, these studies are compared in terms of their approach to calculate the
LS index. Noteworthy, the statistical techniques to calculate the vulnerability index in the
table are similar to the AI techniques.
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Table 1. Summarized studies to calculate the land susceptibility index or LS hazard mapping.

Reference Approach Incorporated Data Layers

[18] Statistical
Altitude, Slope, Aspect, Lithology, Distance from the fault, Distance from the
river, Normalized difference vegetation index, Soil type, Stream power index,

Topographic wetness index, Land use/Land cover

[17] MCDM Cover thickness, Low permeability layer thickness, Distance to losing streams,
Saturated cover thickness

[19] AI
Percentage slope, Slope aspect, Altitude, Profile curvature, Plan curvature,

Topographic wetness index, Distance from river, Lithological, Units,
Piezometric data, Land use, Normalized difference vegetation index

[16] AI
Elevation, Slope angle, Slope aspect, Topographic wetness index, Plan

curvature, Profile curvature, Lithology, Land use, Drainage network, Roads,
Faults, Groundwater table

[20] AI

Geology, Lineament, Land use/Land cover, Rainfall distribution, Slope, Slope
aspect, Coal seam proximity, Curvature, Distance from road, Drainage density,

Drainage proximity, Elevation, Soil, Stream power index, Topographical
wetness index

[21] Statistical
Altitude, Slope aspect, Land use, Distance from the faults, Lithology, Plan

curvature, Distance from river, Slope percent, Piezometric data, Topographic
wetness index

[22] AI
Groundwater drawdown, Land use/Land cover, Elevation, Lithology,

Drainage density, Distance to stream, Distance to road, Slope, Topographical
Wetness index, Profile curvature, Aspect, Plan curvature

[14] AI and MCDM
Altitude, Slope angle, Aspect, Groundwater level, Groundwater level change,

Land cover, Lithology, Distance to fault, Distance to stream, Stream power
index, Topographic wetness index, Plan curvature

[13] AI and MCDM
Lithology, Plan Curvature, Profile Curvature, Slope, Topographical Wetness

Index, Aspect, Elevation, Drainage Density, Distance to road, Distance to
stream, Groundwater, Land Use/land Cover

Both the MCDM and AI techniques require the measure LS values as validation or
target datasets. Generally, LS measurement methods are classified into direct and indirect
methods. In the direct method, global positioning system (GPS) and accurate alignment
are used to detect LS. These methods are accurate but expensive due to installation and
maintenance costs and covering only restricted areas. The indirect method does not have
these limitations and employs interferometric synthetic aperture radar (InSAR) as the
remote sensing technology. Different techniques for the InSAR analysis are available in the
literate including, differential InSAR (D-InSAR) [23], ALOS InSAR [24,25], small baseline
(SB) [26], and persistent scatterer InSAR (PSI) [27,28].

The paper aspires to decrease the subjectivity in LS mapping by combining both
MCDM and AI techniques, which are discussed in the literature review. The paper’s
formulation calculates the vulnerability index based on the MCDM techniques at the first
level. It then incorporates the MCDM results as a target dataset in an AI-based formulation
at the second level. Notably, FCS is used as an MCDM technique at the first level, and
SVM is used as the AI technique at the second level. The paper also transfers vulnerability
indexing to risk indexing by multiplying the hazard and vulnerability data layers.

2. Methodology

In this paper, a multiple modeling strategy, called inclusive multiple modeling (IMM),
is formulated to reduce the subjectivity in rates and weights of the ALPRIFT data layers, and
thereby improve modeling performance. Previous studies have outlined a mathematical
basis that demonstrates the reduced error rate of multi-modeling compared to single-
modeling [29,30]. On this basis, IMM formulates the mapping of hazard, vulnerability, and
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risk to LS. At Level 1, FCS is employed to map the hazard, vulnerability, and risk, using a
set of incorporated data layers, referred to as ALPRIFT data layers suggested by [12]. At
Level 2, SVM is used to map the supervised hazard, vulnerability, and risk. SVM is trained
using ALPRIFT data layers as input data and a data-fused of LS map with Level 1 results
as the target data. The LS map is prepared using interferometric synthetic-aperture radar
(InSAR) processing and data fusion performed by catastrophe theory. The FCS advantages
include the ability to rely on the MCDM technique and SVM takes advantage of artificial
intelligence (AI) models to employ supervised learning capabilities. By combining both
capabilities through IMM, the paper aims to improve modeling performance.

2.1. Basic ALPRIF Framework

The ALPRIFT framework was developed by [12] for mapping the vulnerability of
LS by including seven data layers, such as aquifer media (A), land use (L), pumping of
groundwater (P), recharge (R), aquifer thickness impact (I), fault distance (F), and decline
of water table (T). These data layers are rated and weighted as per prescribed values to
calculate subsidence vulnerability index (SVI) as follows,

SVI = Aw Ar + LwLr + PwPr + RwRr + Iw Ir + FwFr + TwTr (1)

where the subscripts w and r represent weight and rate, respectively.

Transforming Vulnerability to Risk

The risk concept in a system covers both concepts of hazard and vulnerability, in
which hazard refers to actuating factor that triggers a risk; and vulnerability refers to the
system’s resistance. In the LS problem, P and T data layers are time-variant that triggers the
risk, and A, L, R, I, F data layers are time-invariant and refer to the intrinsic vulnerability
of an aquifer. Table 2 presents the required input datasets and GIS-processing steps for
preparing hazard and vulnerability data layers.

Table 2. Required input datasets and GIS-processing for ALPRIFT data layers.

Data Layer Input Dataset Processing

Hazard
Pumping of groundwater (P) Annual discharge at abstraction wells

Draw Thiessen polygon
Interpolate by Inverse Distance
Weighted (IDW) technique

Water Table decline trend (T) GWL time series Calculate trend of decline
Interpolate by IDW

Vulnerability

Aquifer media (A) Geological logs Assign ALPRIFT rates
Interpolate by IDW

Land use (L) Satellite image
(Sentinel-1) Image Processing

Recharge (R)
Slope
Soil permeability
Precipitation

Reclassify
Overlay [31]

Impact of aquifer thickness (I) Geoelectric profiles Interpolate by IDW

Fault distance (F) Fault map Euclidean distance tool

According to the above formulation of risk, the subsidence risk index (SRI) is calcu-
lated by the product of hazard and vulnerability as follows [32]:

SRI = Hazards×Vulnerability (2)

SRI = (PwPr + TwTr)× (Aw Ar + LwLr + RwRr + Iw Ir + FwFr) (3)
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2.2. InSAR Processing

Based on the difference in the phase between two Sentinel-1 SAR observations, InSAR
processes obtain information about the earth’s surface. InSAR processing leverages the
amount of phase change between two consecutive and complete sine wave cycles. In
particular, the phase follows the topography of the terrain. From the images and phase
information in SAR systems, we can determine the strength of radar recognition from the
amplitude information. The study used interferometric wide (IW) swath products with
a spatial resolution of 5 m × 20 m and a swath of 250 km. A total of three sub-swaths
are available here, based on terrain observation with progressive scans SAR (TOPSAR). A
uniform signal-to-noise ratio (SNR) is provided along with a distributed target ambiguity
ratio (DTAR) to produce homogeneous image quality throughout the swath. Several
procedures are necessary to process InSAR data, including co-registration, interferogram
formation, coherence estimation, phase removal from topography, phase filtering, phase
unwrapping, terrain correction, and converting displacement along line-of-sight to vertical
displacement. Further information about this procedure is available by [33].

2.3. Modeling Strategy at Level 1 by Fuzzy Catastrophe Scheme

FCS is used in the paper for mapping hazard, vulnerability, and risk at Level 1, where
FCS reduces subjectivity in rates and weights of APLRIFT data layers. In MCDM, FCS is a
technique developed by [34], bringing fuzzy membership analysis and catastrophe theory
together. In fuzzy logic [35], membership functions, fuzzy sets, and fuzzy inference engines
are used. According to [36], a catastrophe is the result of a set of dependent variables (also
called state variables) and independent variables (also called control parameters). Recently,
FCS was utilized in different fields of water resources, including ecological environment
sustainability by [37], predicting harmful algae blooms by [38], aquifer vulnerability to LS
by [6], and aquifer vulnerability to saltwater intrusion by [5].

As part of the catastrophe theory, a ranked list of functions can be assigned to the data
layers, which include fold, cusp, swallowtail, butterfly, and wigwam. A state variable and
control parameters ranging from 1 to 5 define these functions. Table 3 represents different
types of catastrophe functions and related control parameters.

Table 3. Catastrophe functions [6,34].

Name State Variable Control Parameter Catastrophe Fuzzy Membership Functions

Fold 1 1 xa = 2
√

a

Cusp 1 2 xa = 2
√

a, xb = 3
√

b

Swallowtail 1 3 xa = 2
√

a, xb = 3
√

b, xc = 4
√

c

Butterfly 1 4 xa = 2
√

a, xb = 3
√

b, xc = 4
√

c, xd = 5
√

d

Wigwam 1 5 xa = 2
√

a, xb = 3
√

b, xc = 4
√

c, xd = 5
√

d, xe = 6
√

e

Note that: a, b, c, d, e are control parameters. xa, xb, xc, xd, xe are state variables.

The formulated FCS includes: (i) hazard with two control parameters (PT data layers)
then uses cusp, and (ii) vulnerability with five control parameters (ALRIF data layers)
then uses wigwam. Therefore, FCS specifies the following functions for both hazard,
vulnerability, and risk:

Hazard =
1
2

(
P

1
2 + T

1
3

)
(4)

Vulnerability =
1
5

(
F

1
2 + I

1
3 + R

1
4 + L

1
5 + A

1
6

)
(5)

Risk = Hazard×Vulnerability (6)

where Equations (4) and (5) contains two and five data layers, respectively. Data layers
with higher weight gain the higher power, according to the recommendation of [12]. The
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mean operator calculates the system status based on the complementary principle; the
alternative approach may be the minimum operator, which does not arise in the problem
of LS. Notably, data layers in Equation (3) are normalized between 0 and 1 by linear
membership functions as per the following equations:

Xn
i =

Xi − Xmin
Xmax − Xmin

(7)

Xn
i =

Xmax − Xi
Xmax − Xmin

(8)

where i counts pixels; Xmax and Xmin are maximum and minimum values, respectively;
and Xn

i normalizes particular values at the ith pixels. Notably, Equation (7) normalizes
data layers that are directly proportional to LS (A, L, P, I, T data layers); and Equation (8)
normalizes data layers with inverse proportion (R, F data layers).

2.4. Modeling Strategy at Level 2 by SVM

SVM at Level 2 incorporates the Level 1 results in its structure. The input and target
datasets of SVM is formulated as follows: (i) ALPRIFT data layers are input dataset;
(ii) the data-fused of Level 1 result and InSAR subsidence map by catastrophe theory is
considered as target datasets. Three SVMs are trained and tested for mapping supervised
maps of hazard, vulnerability, and risk by SVM1, SVM2, and SVM3, respectively. Figure 1
summarizes the details in the architecture of SVMs. The target datasets for SVM1–SVM3
are calculated through Equations (9)–(11) based on the cusp catastrophe equation (see
Table 3) as follows:

TargetSVM1 =
[Hazard at Level 1]

1
2 + [InSAR]

1
3

2
(9)

TargetSVM2 =
[Vul. at Level 1]

1
2 + [InSAR]

1
3

2
(10)

TargetSVM3 =
[Risk at Level 1]

1
2 + [InSAR]

1
3

2
(11)

2.5. Performance Metrics

The performance of hazard, vulnerability, and risk indices concerning the InSAR result
is evaluated by the receiver operating characteristic (ROC) curve and the area under curve
(AUC). These criteria were developed by [31] to evaluate the precision of a diagnostic
system, where the diagnosis refers to Earth’s displacement in the LS problem. The events
related to diagnosis are divided into four groups of true negative (TN), true positive (TP),
false positive (FP), and false negative (FN). Concerning the threshold of various settings, the
ROC curve plots FP proportion against the TP proportion. An upper left corner deviation
of the ROC curve corresponds to an undesirable performance. AUC measures the ratio of
the area under the ROC curve compared to the total area ranging from 0.5 to 1. The AUC
values equal to 1 and 0.5 correspond to the perfect and random performance, respectively.

The determination coefficient (R2) and root mean square error (RMSE) metrics eval-
uate the performance of SVM models. A value of R2 close to 1 represents the perfect
performance, and a value close to zero shows unsatisfactory performance. Addition-
ally, RMSE values close to 0 represent the best models, and it has no upper limit for
unsatisfactory performance.
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3. Study Area

This study is being conducted in the Tasuj plain, which lies with the province of
East Azerbaijan in northwest Iran (see Figure 2). Additionally, this plain lies on the
northern shores of Lake Urmia, where water levels have declined by about 15 m since
2000. At Tasuj climatological station, the average annual precipitation is 290 mm from
2008–2018, characterized by [39] as an arid and cold climate. The maximum and minimum
temperatures are 33 ◦C and −11 ◦C during the same period. The area of the plain is about
300 km2 and generally is composed of alluvial sediments. In addition to the sedimentary
deposit, igneous and metamorphosed formations are observable from Precambrian to the
recent era. Figure 2 illustrates the lithological formations and the spatial location of the
fault lines.

The sedimentary deposits form an unconfined aquifer as the primary source of water
supply for agricultural and domestic purposes in the plain. The groundwater and surface
water flow direction is towards Lake Urmia (see the flow direction in Figure 2b). The
surface water is seasonal and is not a reliable source of water supply. The groundwater is
discharged by 144 tube wells, 40 springs, and 70 qanats, which is equivalent to 16 × 106 m3

volume of water annually [40]. The groundwater level (GWL) in the aquifer is monitored
monthly by 28 observation wells. The locations of the observation wells and abstraction
wells are given in Figure 2b,c. The evaluation of the GWL time series in these wells shows
that the GWL declined is 8.6 cm per month, which can trigger environmental problems
such as LS. The paper presents the spatial distribution of subsidence captured by InSAR
from 2017 to 2018 in due course.
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4. Result
4.1. Preparation of ALPRIFT Data Layer

The data layers related to hazard (PT) and vulnerability (ALRIF) are prepared after pre-
processing and GIS-processing as per Table 2. Figure 3 illustrates the spatial distribution of
these data layers. A plot of the P- and T-data layers are depicted in Figure 3a,b based on
pumping volume in abstraction wells and decline trend in observation wells, interpolated
by the inverse distance weighting (IDW) technique.
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In Figure 3c, aquifer media are calculated in geological logs as per aquifer media
rates recommended by [12] and interpolated by IDW. The land use data layer is prepared
by image processing through ENVI software. The required procedures are correcting
the geometric and atmospheric, identifying different land using normalized difference
vegetation index (NDVI), and interpreting images by the supervised classification approach
to classify different land uses based on the maximum likelihood method. Figure 3d
represents the land use data layer within the study area. The recharge data layer is
calculated as per [41] using precipitation, infiltration, and slope data, and the result is
presented in Figure 3e. The thickness of the aquifer in Figure 3f is calculated by geological
logs and interpolated by IDW. In Figure 3g, a fault distance is calculated using the Euclidian
distance toolbox available in the ArcGIS software.

4.2. Results of InSARProcessing, Hazard, Vulnerability and Risk Indices at Level 1

Figure 4a illustrates the result of LS by InSAR processing from 2017 to 2018. The figure
indicates that LS is mainly concentrated in the south-central part of the study area despite
the scattered LS records elsewhere. The result of basic ALPRIFT is given in Figure 4b as
per Equation (1) and the prescribed rates and weights by [12]. The comparison between
Figure 4a,b indicates that the result of basic ALPRIFT is not entirely defensible, and there is
room for improvement. Figure 4c,d represent, respectively, the hazard and vulnerability
indices as per Equations (4) and (5). There are some similarities and differences between the
spatial pattern of hazard and vulnerability indices, which is expected and stems from the
incorporated data layers. The risk index pools together these similarities and differences as
per Equation (6). Notably, hazard triggers a risk in areas with higher vulnerability, and this
issue is illustrated in Figure 4e. A visual comparison between the InSAR result (Figure 4a)
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and the risk index (Figure 4e) indicates higher agreement than basic ALPRIFT, but there is
still room for improvement.

Water 2021, 13, x FOR PEER REVIEW 10 of 15 
 

 

 
Figure 4. (a) InSAR result; (b) basic ALPRIFT; (c) hazard at Level 1; (d) vulnerability at Level 1; (e) risk at Level 1. 

4.3. Hazard, Vulnerability, and Risk Indices at Level 2 
The hazard, vulnerability, and risk indices are calculated as per supervised learning 

by SVM1, SVM2, and SVM3, described in detail in Figure 1. Table 4 presents the perfor-
mance criteria and SVM parameters for the hazard, vulnerability, and risk indices. The 
table evaluates the results regarding R2 and RMSE metrics for training, testing, and total 
datasets. According to the table, the models have similar performance in terms of both 
metrics in the training and testing phases. The spatial distribution of the results is given 
in Figure 5. Although there are similarities between this figure and the corresponding 
results in Figure 4, the results at Level 2 provide evidence that the Level 2 results are more 
compatible with the result of InSAR. The results at Level 2 identify the southcentral part 
of the study area as the hotspot area in terms of hazard, vulnerability, and risk. 

The risk map in Figure 5c represents the hotspots with higher priorities for modifying 
management policies. However, this figure provides a relatively conservative result com-
pared to the results of the hazard and vulnerability because the areas swept by Band 1 
show a marked increase in risk potential. Additionally, some information in the hazard 
and vulnerability indices is not reflected in the risk index. For example, there are areas 
with a higher hazard index but a relatively lower vulnerability index in the north part of 
the plain. Thus, although human activities threaten these areas, they tend to be relatively 
less vulnerable, leading to a lower risk index. 

Figure 4. (a) InSAR result; (b) basic ALPRIFT; (c) hazard at Level 1; (d) vulnerability at Level 1; (e) risk at Level 1.

4.3. Hazard, Vulnerability, and Risk Indices at Level 2

The hazard, vulnerability, and risk indices are calculated as per supervised learning by
SVM1, SVM2, and SVM3, described in detail in Figure 1. Table 4 presents the performance
criteria and SVM parameters for the hazard, vulnerability, and risk indices. The table
evaluates the results regarding R2 and RMSE metrics for training, testing, and total datasets.
According to the table, the models have similar performance in terms of both metrics in
the training and testing phases. The spatial distribution of the results is given in Figure 5.
Although there are similarities between this figure and the corresponding results in Figure 4,
the results at Level 2 provide evidence that the Level 2 results are more compatible with
the result of InSAR. The results at Level 2 identify the southcentral part of the study area
as the hotspot area in terms of hazard, vulnerability, and risk.
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Table 4. Performance criteria for developed SVM at Level 2.

R2 RMSE

Training Testing Total Training Testing Total

Hazard 0.71 0.70 0.71 0.026 0.026 0.45

Vulnerability 0.72 0.72 0.72 0.029 0.028 0.44

Risk 0.74 0.74 0.74 0.027 0.027 0.48
The SVM parameters: γ = 15, σ = 0.2.
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The risk map in Figure 5c represents the hotspots with higher priorities for modify-
ing management policies. However, this figure provides a relatively conservative result
compared to the results of the hazard and vulnerability because the areas swept by Band 1
show a marked increase in risk potential. Additionally, some information in the hazard
and vulnerability indices is not reflected in the risk index. For example, there are areas
with a higher hazard index but a relatively lower vulnerability index in the north part of
the plain. Thus, although human activities threaten these areas, they tend to be relatively
less vulnerable, leading to a lower risk index.

4.4. Evaluation of Results in Terms of ROC and AUC

Figure 6 evaluates the indices of basic ALPRIFT, hazard, vulnerability, and risk at
Level 1 (Figure 6a) and Level 2 (Figure 6b) by the ROC curve and the AUC value. The
figure indicates that the basic ALPRIFT provides noisy signals with the closest distance to
the random classifier (the diagonal line). The AUC value for basic ALPRIFT is 0.56, which
denotes that there is room for improvement. The ROC curve for hazard indices at Level
1 is slightly away from the random classifier line with an AUC value of 0.63. A similar
improvement also is observed for the vulnerability and risk indices at Level 1, respectively,
with AUC values of 0.72 and 0.71. This improvement refers to decreasing the subjectivities
with rates and weights by FCS.
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The results at Level 2 provide considerable improvements compared with the results
at Level 1 as follows: (i) the AUC values for the hazard increases from 0.63 to 0.67; (ii) the
AUC values for the vulnerability increases from 0.72 to 0.80; and (iii) the AUC values for
the risk increases from 0.71 to 0.82. This improvement is expected due to using a learning
technique by SVM. The lower AUC values for the hazard indices compared to vulnerability
at both levels implies that the LS occurrence is more affected by intrinsic vulnerability than
a man–made hazard. However, the hazard has a triggering role to risk since the ROC curve
for the risk is somewhat higher than the vulnerability, and the AUC value for the risk index
is slightly higher than the vulnerability index.

5. Discussion

ALPRIFT and similar frameworks are data–driven, and their results rely on data
and the characteristics of study areas. These frameworks are in their infancy, and further
investigations, such as using different modeling strategies, are required for proofing the
concept. As discussed in Section 1, both MCDM and AI techniques were implemented on
ALPRIFT in the previous studies. However, the paper combined two common approaches,
and, in fact, it extended the MCDM–based study by [6] through considering a new level,
which incorporates the Level 1 result as the target dataset in the formulation of Level 2.

The paper utilized a two–level multiple modeling strategy, referred to as inclusive
multiple modeling (IMM), and the previous studies (e.g., [11]) indicated that IMM could
significantly improve the modeling performance. As discussed earlier, the paper selected
FCS at Level 1 and SVM at Level 2. There is no theoretical basis for model selection at
both levels, and, generally, they are selected by a trial–and–error procedure. The idea for
employing an MCDM technique at Level 1 and an AI technique at Level 2 stems from
different formulations in the literature, which uses only AI approaches at both levels.
However, FCS and SVM can be substituted with other techniques of MCDM and AI in
future studies.

There is a significant difference between the AUC values related to the hazard and
vulnerability maps. The paper identified that LS occurrence is more affected by intrinsic
vulnerability than man–made hazard as per ROC/AUC. However, it should be noted
that the man–made hazard triggers the LS, and it does not occur in the absence of
over–abstraction, even with system vulnerabilities. Sadeghfam et al. [6] identified the
man–made data layers as more effective than intrinsic data layers. This is expected because
this issue is attributable to the characteristics of study areas. However, quantifying the role
of these components provides more insight into risk management. Further investigation
by statistical techniques is highly recommended to be undertaken to precisely identify the
impact percentage of all components by future studies.
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The investigation revealed that the hotspots identified by FCS at Level 1 occupy more
areas compared to the hotspots by SVM. This is traceable to two issues: (i) The extent of
areas with LS records is limited in the study area; and (ii) AI techniques are more powerful
techniques in making a relationship between the input data layers and LS captured by
InSAR even though the target dataset is fused by the Level 1 results. There seems to be
room for investigating the role of others data fusion techniques in preparing target datasets
in future studies.

6. Conclusions

ALPRIFT as a standard framework quantifies aquifers’ vulnerability to land subsi-
dence (LS), but it suffers subjectivity associated with the incorporated data layers. The
paper formulated a methodology based on inclusive multiple modeling (IMM) at two
levels to decrease the subjectivity and increase the modeling performance. IMM also map
the hazard, vulnerability, and risk indices to LS, in which a fuzzy catastrophe scheme as a
multi–criteria decision making (MCDM) technique was used at Level 1; and the obtained
results were feed as the target dataset to the support vector machine as an artificial intel-
ligence (AI) technique at Level 2. Therefore, the formulated methodology combines two
capabilities of MCDM and AI. The formulation was implemented in Tasuj plain, located
in northwest Iran, which suffers from over–abstraction. Results at both levels identify
significant signals as per the receiver operating characteristic and the area under curve
(AUC) performance metrics for the hazard, vulnerability, and risk indices. Additionally,
further improvements were achieved from Levels 1 to 2 for the vulnerability and risk
indices, which is expected due to the capability of IMM. However, there is room for further
improvements in the performance of results by future studies. The higher AUC values for
the vulnerability index on recorded LS compared to the hazard index indicated that the LS
occurrence in the study area is more affected by the intrinsic vulnerability of the system,
but anthropogenic activities play an actuation role in the risk realization.
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