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Abstract: Although river discharge is essential hydrologic information, it is often absent, especially
for small rivers and remote catchment areas. Practical difficulties frequently impede the installation
and operation of gauging stations, while satellite-sensed data have proved to be relatively useful only
for discharge estimation of large-scale rivers. In this study, we propose a new methodology based on
UAV-sensed data and photogrammetry techniques combined with empirical hydraulic equations for
discharge estimation. In addition, two different riverbed particle size distributions were incorporated,
to study the effect of fine sediment inclusion (or exclusion) in the estimation process. Accordingly,
17 study sites were selected and six different approaches were applied in each. Results show that at
75% of sites at least one approach produced an accurate discharge estimation, while in 10 out the
17 sites (58.8%) all six approaches produced accurate estimations. A strong correlation between a
threshold value for the hydraulic radius (Rh = 0.3 m) of cross-sections and high estimation errors for
sites exceeding it was also observed. The fine sediment inclusion improved only the performance
of certain approaches and did not have a consistently positive effect. Overall, the relatively high
percentage of sites with satisfactory discharge estimates indicates that using UAV-derived data and
simple hydraulic equations can be used for this purpose, with an acceptable level of accuracy.

Keywords: unmanned aerial vehicles; remote sensing; discharge estimation; shallow rivers; fine
sediment; particle size distribution; manning; Pix4D; basegrain

1. Introduction

River discharge is one of the most important variables in hydrology and constitutes
fundamental information [1,2] in the fields of environmental monitoring and in water
management operations. However, measurements of discharge are often absent as con-
ventional gauging methods are expensive and impractical as well as hard to deploy and
maintain [3,4]. These limitations are particularly true for water bodies located in remote
locations, for rivers and streams with ephemeral flow and for small catchment areas. This is
of great concern, since the latter are impacted from flash floods, one of the most significant
natural hazards, known to cause serious loss of life and economic damage [5], especially in
Mediterranean regions [6].

In the last decades, remote sensing has been extensively used as a source of primary
data in environmental studies, as it can overcome the aforementioned limitations. Encom-
passing a wide range of temporal and spatial extents, remotely sensed data can be the
product of satellite missions [7], airborne laser scanning [8], multibeam echo sounding
methods [9], terrestrial laser scanning [10] and finally UAVs. Remote sensing of river dis-
charge has been the scope of numerous scientific studies and experimental setups, but until
now, no remote sensing platform has the ability to directly measure river discharge [11].
As a result, discharge is usually estimated via proxies, including remote sensing obser-
vations of water surface elevation, river width and water surface slope [12], combined
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with some discharge equation. The Manning equation has been noted to produce positive
results on discharge estimation in numerous studies with quite diverse data sources, from
satellite [13,14] to UAVs [15,16]. The outcomes of such studies suggest that the Manning
equation is a rather credible solution for similar research projects. In the last two decades,
many studies have experimented in the field of river discharge estimation from satellite
data [17–20]. Yet, satellite remote sensing platforms have serious limitations on temporal
and spatial scales, making this approach unsuitable for medium and small scale rivers
(narrower than 100 m) [21]; the low spatial resolution data lead to critical scale discrepancy
between data sources and the models used [22], while the lack of control on the revisiting
period of the sensor over the selected site [23] is another significant constraint. Moreover,
the overall operation and data delivery of satellite platforms are under the auspices of large
organizations or agencies [24].

The demand for fine scale remote sensing has led to the introduction of Unmanned
Aerial Vehicles (UAVs), which have proven to be efficient in a vast range of applications in
environmental monitoring and management [25]. Given the advantages of low cost, ease
of use, full operational control to the user and high-resolution spatial data, low-altitude
UAVs have been filling the gap between satellite-born data and ground monitoring. As a
result, UAVs are increasingly being used in new studies, covering a wide range of different
methodologies and adapted sensors.

Detert et al. [26] recently demonstrated the use of low-cost UAVs for the estimation of
river flow measurements. In that research, the recorded airborne video was used to deter-
mine flow velocities and surface flow fields via particle image velocimetry (PIV) and river
bathymetry through the application of photogrammetry methods. Similarly, using large-
scale particle image velocimetry (LSPIV) on video captures from UAV, Lewis et al. [27] man-
aged, through a basic setup, to produce accurate estimates of discharge over ten streams
and small rivers in East-Central Illinois, USA. In an innovative study, Zhao et al. [28]
proposed a new framework for estimation of streamflow in medium-to-small rivers where
ground measurements are limited, with the pairing of high-resolution UAV imagery and
the introduction of a new virtual hydraulic radius (VHR) method to provide the initial
values of the AMHG (at-many-stations hydraulic geometry) parameters. Dealing with
non-uniform flow modelling, Kang et al. [29] estimated streamflow with the aid of optical,
infrared and microwave sensors on a UAV.

Using a different set-up, Kinzel and Legleiter [30] proposed a combination of a thermal
infrared camera and a PIV algorithm to approximate surface flow velocity combined with
a polarizing LiDAR for bathymetry measurement, in order to estimate discharge in the
Blue River, Colorado, USA. Fulton et al. [31] presented the coupling of a Doppler radar
mounted on a UAV with alternative algorithms for the estimation of discharge in ungauged
basins. An innovative approach for the determination of river discharge, proposing the
combination of the Manning equation with data acquired from UAV and satellites alike,
has been the subject of very recent studies [13,32]. UAV photogrammetry has also been
used to monitor river morphology dynamics such as bank erosion [33,34] and riparian
vegetation [35,36]. In a recent study, Kim et al. [37] worked on the bathymetric mapping of
shallow streams from UAV-assisted RGB imagery, to acquire accurate and high resolution
bathymetric data in order to enhance the performance of river model.

The aim of this study is to identify the optimal methodological approach for river
discharge estimation, by combining UAV produced Digital Surface Models (DSM), or-
thophotomaps and classical hydraulic equations (Manning). At first, all stages of the
developed method for calculation of the necessary hydraulic parameters from UAV-sensed
data are presented in detail. Then, three empirical equations for roughness coefficient
estimation are examined and combined with two sets of different riverbed particle size
distributions, resulting in six different approaches for discharge estimation per site. The
results of each approach are evaluated and compared to each other, to identify the better
performing one.
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2. Materials and Methods
2.1. Study Area & Data Used

Incorporating the European Framework Directive 2000/60 (WFD), which established
action in the field of water policy, Greece has created the National Monitoring Water
Network (NMWN) to systematically and consistently gauge and monitor the quantitative
and qualitative status of surface water and groundwater (http://nmwn.ypeka.gr) (accessed
on 12 August 2021). The Hellenic Centre for Marine Research (HCMR) has been contracted
for the monitoring of rivers and transitional and coastal waters and has been operating
a large number of gauging sites across Greece. In parallel to the monitoring program,
an experimental initiative has proceeded with the 3D capturing of a smaller number of
selected sites [38]. Following a screening process on this shorter list of river bodies, for
which both in-situ discharge measurements and 3D captures were available, 17 sites were
selected and examined in this study.

The 17 selected sites are shown in Figure 1, they exhibit a considerable spatial distri-
bution, occupying a big part of mostly mainland Greece, except for one site (Fonias), which
is located on the island of Samothrace. A cluster of five sites is located in the north-western
part of Greece while another cluster of four sites is located in Central Greece. Six more sites
are distributed over the Peloponnese region, in southern Greece, and the other two sites
are located in the north-eastern part of Greece.
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Notable variations are expected in their flow regimes and other characteristics (Table 1),
as the study sites include streams and bigger rivers alike. These variations are reflected in
the measured discharge values, collected over the periods of July to August 2018 and May
to August 2019 (Table 1), which range from 0.05 to 11.7 m3/s with an average of 3.2 m3/s.
Considerable variations are also observed in their elevation, as values range from 1.7 to
807.6 m with an average of 248.3 m. Sites located at higher elevations comprise the first two
clusters, of north-western and central Greece, since they are distributed along the Pindus
mountain range and are located in fairly mountainous areas. The average elevation of these
sites alone is 343.2 m. The remaining sites, located in the Peloponnese and north-eastern
Greece, are located at lower elevations, with an average value of 95.8 m.

Table 1. General information on the 17 selected sites (name, geographic position in WGS’ 84, elevation, measured discharge
and date of measurement).

Study Site Name River/Stream Name Latitude Longitude Elevation
(m)

Discharge
(m3/s)

Date of
Measurement

40 Poros Sarantaporos 40.11158 20.72377 416.3 1.83 Jul-2019
Arta Aracthos 39.16543 20.99305 21.1 9.4 Jul-2019

Fonias Fonias 40.49137 25.65514 15.0 0.05 Aug-2018
Gef_Baldumas Dipotamos 39.69724 20.99341 437.9 0.87 Aug-2019

Gef_Plakas Aracthos 39.45803 21.03130 230.3 11.76 Jul-2019
Kossynthos Kossynthos 41.10172 25.02614 21.3 2.39 May-2019

Krikeli Krikeliotis 38.77596 21.84881 827.6 0.18 Jul-2018
Krios Krios 38.14006 22.35951 1.7 0.74 May-2019
Ladon Pineios (Peloponnese) 37.87127 21.53456 64.2 0.48 Jul-2019
Matesi Alfeios 37.54373 21.94867 124.2 5.0 Jul-2019
Melisso Aoos 40.06035 20.59203 359.6 4.0 Jul-2019
Mornos Mornos 38.60376 22.19012 487.5 1.5 Jul-2018

Paparousio Tavropos 38.93268 21.67211 272.1 3.0 Jul-2018
Piros Piros 38.12771 21.62715 7.7 4.35 May-2019
Spilia Aroanios 37.84978 22.15801 418.3 2.61 Jul-2019

Trikfara Krikeliotis 38.79830 21.64779 379.5 3.55 Jul-2018
Vrodamas Evrotas 36.97452 22.58057 136.8 2.0 Jul-2019

In-situ discharge measurements and UAV flights for image capturing were conducted
concurrently on each site, in the spring and, for the most part, the summer months of
2018–2019. All the collected data as well as the method implemented for in-situ discharge
measurement concern river segments with shallow water conditions.

2.2. UAV Flights and Photogrammetry Software

Concerning the image capturing, the Phantom 4 pro v2.0 UAV of DJI (Shenzhen,
China) was used at a certain flight altitude depending on each site’s obstacles ranging from
70 to 80 m above take off point, overall (the same altitude was maintained throughout the
entire flight). The Pix4D capture mission planner (Pix4D SA, Prilly, Switzerland) was used
to plan the flights above river corridors along the river course, with an 80% longitudinal
and transverse image overlap and a cell size of about 2 cm/pixel. For the development
of the areas’ orthophotomap and Digital Surface Model (DSM) through photogrammetry,
the Pix4D mapper was used, which is a software widely applied for this purpose [39].
The relative accuracy of the produced DSM according to the software quality report was
three times the cell size of the images (approximately 6 cm) while the analysis of the UAV
image sensor was 20 Mpixels. The flights were recorded during the low flow periods when
most of the Greek rivers have very shallow waters, and in most cases the water depth and
transparency was at such levels that allowed estimation of the DSM even below the water
surface. This approach provides satisfactory results when the water is very shallow and
transparent [40,41].
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2.3. Methodology

To begin with the proposed method, a UAV flight was performed in each site to
capture the high-resolution images required. Subsequently, the images were processed
to develop the orthophotomap and Digital Surface Model (DSM) of the areas. Following,
a suitable river cross-section was identified on the orthophotomap and selected on each
study site, for which the parameters for the Manning equation would be specified.

In a gradual process, first the geometric characteristics of a cross-section were acquired
from ArcGIS utilizing both DSM and orthophotomaps produced by UAV images. Then, the
UAV images of the selected cross-section were also used to estimate the riverbed particle
size distribution through an automated photosieving process, which made available the
initial set of distribution values. A recalculation process was also introduced, in order to
account for the small size particles that were not captured in the images, and as a result,
another particle size distribution was also produced. Both particle size distribution sets
were examined and used in the roughness coefficient (n) estimation.

However, given that the Manning equation is especially sensitive to the roughness co-
efficient (n value, it was decided to use three different empirical equations for its estimation
and subsequently evaluate them to define the most suitable one.

Each step incorporated in the process is separately described in the following subsections.

2.3.1. Cross-Section Geometry

At first, a visual examination of the orthophotomap for each site was performed, to
locate a suitable river segment. After numerous trial and error efforts, the suitability condi-
tions for the selection of a representative cross-section were identified: (a) shallow water,
(b) absence of vegetation covering the riverbanks, (c) image clarity, (d) water clarity and
(e) cross-section positioning within a homogeneous and straight river segment. Selecting a
cross-section, on which the measurements would be extracted was a challenging task as
river segments that did fulfil the above set of criteria were limited in most examined cases.

Subsequently two points at the edge of the riverbanks, that would constitute a vertical
section to the river flow, were selected. The elevation profile of this line was then acquired
through the Pix4D platform and imported to ArcGIS software as a set of x, y points with
elevation information. The resulting elevation graph was then examined to correct possible
elevation discrepancies between the two points (Figure 2); the correction was always
performed to the point with the highest elevation, trimming off the outreaching parts.
Information on the area (A) and the wetted perimeter (P) of the cross-section created
through that process could then be easily obtained via ArcGIS.
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2.3.2. Slope

Measuring the gradient slope of a river can be a challenging task as its value may
vary spatially and temporally to a considerable extent [17]. To overcome this difficulty, the
slope value was estimated for river segments, in which uniform and steady flow conditions
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were assumed. In order for this assumption to be valid, an effort was made so that the
selected river segments were reasonably homogeneous, non-sinuous and also long enough
to make credible slope estimations. In such conditions, the water-surface slope could be
approximated by the topographic slope [18,29].

These segments were represented by 2-D polygons whose vertices were selected on
the edge of the riverbanks, in order to get a close approximation of the water surface
(Figure 3). The one edge of the polygon was defined by the selected cross-section in each
river and the other was set at a meaningful reach upwards. Depending on the specific
conditions of each river, the length of this polygon varied, but in all examined sites it was
never shorter than 50 m or greater than 100 m. Elevation information for the four vertices of
the polygon was then extracted from the DSM, and subsequently, an interpolation method
was implemented in order to acquire the slope value of the polygon.
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2.3.3. Manning Roughness Coefficient

The Manning roughness coefficient (n) accounts for frictional resistance of the channel
to the flow. For the estimation of n, three empirical flow dependent equations were
incorporated, which make use of the measured channel substrate in natural channels.
Given that each of these equations makes use of a different bed particle percentile, they
were all used to estimate n, in order to examine the difference in the estimated values and
define the better performing one. All three equations correlate n values with hydraulic
radius and varying bed sediment sizes. Those are (for SI units):

New Zealand:

n =
d90

1/6

26
(

1 − 0.3595x0.7
) (1)
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Limerinos:

n =
0.1128 Rh1/6

1.16 + 2.0log
(

R
d84

) (2)

Griffiths:

n =
0.1128 Rh1/6

0.76 + 1.98log
(

R
d50

) (3)

where R is the hydraulic radius, d50 the particle diameter of the 50th percentile of particles,
d84 the particle diameter of the 84th percentile of particles, d90 the particle diameter for the
90th percentile of particles and x = (R/d90)(d50/d90).

Equation (1) is the result of a modification of the Meyer-Peter and Muller equation
for the determination of n, based on a detailed analysis of stream data from New Zealand
conducted by Witheridge [42]. Equations (2) and (3), developed by Limerinos [43] and
Griffiths [44] respectively, are well established relationships and have been widely used for
the estimation of the roughness coefficient [45–47].

2.3.4. Riverbed Particle Size Distribution

The size-frequency characteristics used in the roughness coefficient equations are
d50, d84 and d90. Grain size distribution of bed particles was calculated with the use
of the Basegrain software tool (ETH, Zurich, Switzerland) for granulometric analysis of
top-view photographs of fluvial gravel beds [26]. At first, a top-view image was taken
from a shallow submerged area at the selected cross-section. This image was subsequently
imported and processed in Basegrain software and the bed particles size distribution was
acquired through an automated photosieving process [48].

As stated above, the selected flight altitude and image sensor capabilities resulted in a
resolution of approximately 20 mm/pixel. As a direct result it should be expected that the
photosieving method would only be able to detect particles equal to or coarser than 20 mm.
By contrast, particles classified as fine gravel and coarse sand in the images, from now
on defined as fine sediment, would go undetected. Moreover, the photosieving process
was influenced by additional factors such as the depth of each particle in the image, the
presence of black colour or shades, etc. As a result, it is expected that, to a considerable
extent, the fine sediment would not be included in the sieving analysis.

Cross-examination of the automated photosieving outcomes with the images of the
orthophotomaps of river segments that in certain cases did not produce corresponding
results, added to that assumption. For example, particle size distribution results proposed
coarse gravel or cobble in certain study sites where a visual examination suggested that
the riverbed was predominantly sand or fine gravel. Therefore, a recalculation technique
was implemented to account for the fine sediment particles that went undetected. The
log report of the granulometric analysis that is the output of the Basegrain procession
gives the percentage of the image that was considered as grains as well as the remaining
“area total void”. For the recalculation process, it was assumed that the latter percentage
could be interpreted as the unaccounted-for fine sediment. Therefore, the “area total void”
percentage was considered as the percentage of the particles that were below the 20 mm
threshold, and on that basis, the particle size distribution of each top-view image was
manually recalculated.

2.3.5. Discharge Estimation

The discharge estimations were based on the Manning formula [49], which is an
empirical equation for the calculation of flow velocities in open channel flow. Discharge
values were the product of the calculated flow velocity and the area of the cross-section.
The Manning equation used for calculating river discharge is:

Q =
1
n

R
2
3 S

1
2 A (4)
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where Q is the estimated discharge in m3/s, n is the Manning roughness coefficient in
s/m1/3, R is the hydraulic radius in m, S is the channel slope in m/m and A is the cross-
section area in m2.

Eventually, the combination of the two sets of particle size distributions with the three
equations for n calculation resulted in six different approaches for discharge estimation in
each examined site (Figure 4).
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2.4. Statistical Analysis

A statistical analysis of the results was performed to identify which combination of
riverbed substrate coefficient equation and practice regarding including/excluding the
fine sediment portion would produce better discharge estimations (through the Manning
equation) with respect to the actual measurements. The in-situ discharge measurements
were captured through the use of typical flow meters and follow the methodology described
by Rantz [50]. The performance measures used were the correlation coefficient (r), root
mean square error (RMSE), relative error and percentage error, along with boxplots and
correlation matrices. These metrics are calculated as:

r =
n ∑n

i=1(xiyi)− (∑n
i=1 xi)(∑n

i=1 yi)√[
n ∑n

i=1 x2
i − (∑n

i=1 xi)
2
][

n ∑n
i=1 y2

i − (∑n
i=1 yi)

2
] (5)

RMSE =

√
∑n

i=1
(yest,i − yobs,i)

2

n
(6)

relative error =
yobs,i − yest,i

yobs,i
(7)

percentage error =

∣∣yobs,i − yest,i
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where yest,i are estimated values, yobs,i are observed values, xi, yi are individual sample
value and n is the number of observations.

3. Results
3.1. Channel Features

Acquired values concerning the area of the cross-sections illustrated significant vari-
ations depending on the river/stream type, ranging from 0.19 to 16.5 m2 with a median
value of 2.5 m2 (Table 2). Respectively, wetted perimeter values fluctuated from approxi-
mately 3 to 47 m with a median value of 11 m. Similar variations were recorded for the
hydraulic radius (from 0.06 to 0.43 m) and slope (from 0.006 to 0.08 m/m), indicating the
great hydromorphological and hydraulic differences in the examined river bodies (Table 2).

Table 2. Chanel features and statistics of study sites.

Study Site A (m2) P (m) Rh (m) Slope (m/m)

40 Poros 1.46 9.71 0.151 0.072
Arta 5.18 21.3 0.243 0.018

Fonias 0.18 2.95 0.063 0.067
Gef_Baldumas 2.48 12.75 0.195 0.008

Gef_Plakas 16.45 46.84 0.351 0.036
Kossynthos 2.57 6.85 0.375 0.064

Krikeli 0.80 6.51 0.123 0.016
Krios 0.80 5.06 0.158 0.036
Ladon 0.93 10.92 0.085 0.006
Matesi 3.08 11.58 0.267 0.08
Melisso 13.01 30.30 0.429 0.018
Mornos 1.42 10.60 0.135 0.051

Paparousio 3.41 18.00 0.190 0.012
Piros 2.29 7.71 0.298 0.018
Spilia 3.28 7.95 0.413 0.08

Trikfara 3.49 16.62 0.210 0.011
Vrodamas 1.33 12.40 0.107 0.045

Minimum 0.18 2.95 0.063 0.006
25th percentile 1.33 7.71 0.135 0.016

Median 2.48 10.92 0.195 0.036
75th percentile 3.41 16.62 0.298 0.064

Maximum 16.45 46.84 0.429 0.08

3.2. Particle Size Distribution

Results of the initial photosieving (excluding fine sediment) indicate that size param-
eter d50 occupies values in a price range from 0.088 up to 0.215 m with a median value
of 0.146 m (Table 3). Recorded values for the d84 parameter vary from 0.137 to 0.377 m
with a median of 0.240 m, while the respective values for the d90 parameter range from
0.164 m to 0.451 m with a median of 0.233 m. Following the implementation of the recalcu-
lation process, which aimed to account for the fine sediment, the photosieving results were
significantly modified and values concerning all examined particle size parameters were
decreased considerably (Figure 5). Size parameter d50 recorded values as low as 0.010 m
and up to 0.151 m with a median of 0.055 m (62.3% decrease). Considerable alteration
resulted also in both the d84, which fluctuated from 0.112 m up to 0.242 m with a median
of 0.157 m (24.5% decrease), and the d90, which ranged from 0.129 m to 0.282 m with a
median of 0.184 m (21.0% decrease). The value range was also considerably decreased after
the recalculation process, especially for the d84 (from 0.24 to 0.13 m) and d90 (from 0.287 to
0.153 m) parameters.
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Table 3. Statistics of the two riverbed particle size distributions; initial set acquired from photosieving
analysis (left column) and new set from recalculation process applied (right column) to account for
fine sediment.

Initial Distribution
(Excluding Fine Sediment)

Recalculated Distribution
(Including Fine Sediment)

d50 (m) d84 (m) d90 (m) d50 (m) d84 (m) d90 (m)

Minimum 0.088 0.137 0.164 0.010 0.112 0.129
25th percentile 0.122 0.179 0.208 0.039 0.135 0.157

Median 0.146 0.208 0.233 0.055 0.157 0.184
75th percentile 0.176 0.291 0.334 0.067 0.180 0.207

Maximum 0.215 0.377 0.451 0.151 0.242 0.282
Range 0.127 0.24 0.287 0.141 0.13 0.153
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3.3. Discharge Estimation

Discharge estimations in the study sites indicated that Limerinos and New_Zealand
approaches performed slightly better, regardless of including or not the fine sediment
portion, while the Griffiths method indicated relatively good performance in approximately
50% of the sites and had significant errors in the rest (Table 4, Figure 6). Three approaches,
the L_a, G_a and NZ_b, estimated most of the discharges within the 0–5 m3/s range, similar
to the range of the measured discharges. However, all three methods produced some
significant overestimations in certain sites. The three remaining approaches, NZ_a, L_b
and G_b, produced estimations within a wider range (0–10 m3/s) as well as more extreme
overestimation values. In addition, the higher overestimations were produced when the
fine sediment was included for all three (Limerinos, Griffiths and New_Zealand) methods.
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Table 4. Measured discharge (Qobs) versus the estimated discharge values for all six different approaches, in m3/s.

Qobs Initial Distribution
(Excluding Fine Sediment)

Recalculated Distribution
(Including Fine Sediment)

Estimation
method New_Zealand Limerinos Griffiths New_Zealand Limerinos Griffiths

Minimum 0.05 0.07 0.01 0.00 0.04 0.06 0.13
25th percentile 0.87 0.78 0.62 0.61 0.75 0.83 1.12

Median 2.39 1.63 1.34 1.35 1.46 1.85 2.58
75th percentile 4.00 4.68 4.23 5.00 4.91 6.19 8.11

Maximum 11.70 17.43 18.00 20.89 26.81 24.31 28.39
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charge in m3/s, where Qest = estimated discharge, nz = New_Zealand, L = Limerinos, G = Griffiths,
a = initial particle size distribution and b = recalculated particle size distribution.

There are 12 sites (75% of total) for which the discharge estimation is satisfactory (less
than 50% estimation error) using at least one of the approaches tested and four sites with
significant deviations (more than 50% estimation error) from the in-situ measurements for
all methodological approaches (Figure 7). Additionally, there are 10 sites for which the
discharge estimation is pretty accurate for all six methods applied.
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In all methodological approaches applied in this study, four sites (Melisso, Spilia,
Kossynthos and Gef_Plakas) were found to always have significant errors in their estimated
discharge values compared to the in-situ discharge measurements. In order to identify a
potential justification of their underperformance, further examination of these high-error
sites through a statistical analysis of the geometric and hydraulic characteristics of their
cross-sections was conducted. Results illustrated a significant correlation, of r = 0.72
with a p-value of 0.001, between the Rh and the percentage error values (Table 5). The
results suggest that a threshold in the Rh value exists, approximately at 0.3 m or slightly
above this value; sites with Rh reaching over that threshold value produced high errors
in the estimated discharge. The four high error sites are all, to a smaller or greater extent,
above the Rh threshold of Rh = 0.3 m, with an average value of 0.392 m. The remaining
13 sites, in which at least one approach of the implemented discharge estimation produced
good results, have a significantly lower average Rh of 0.171 m. The rest of the examined
features of the four sites (A, P, S) did not show any considerable correlation to the average
percentage error (Table 6).

Table 5. Correlation coefficient matrix of different cross-section physical characteristics as an average
of the percentage error per site of the six discharge estimation approaches.

A (m2) P (m) Rh (m) Slope (m/m)

Average Error (%) 0.44 0.22 0.72 0.19

Table 6. Estimated RMSE for all six approaches for discharge estimation, where RMSE_T1 is calcu-
lated for all 17 sites, RMSE_T2 is calculated without the four high error sites, nz = New_Zealand,
L = Limerinos, G = Griffiths, a = initial particle size distribution and b = recalculated particle
size distribution.

NZ_a L_a G_a NZ_b L_b G_b

RMSE_T1 4.14 3.98 4.31 5.21 5.49 7.41
RMSE_T2 1.99 2.02 1.95 1.77 1.52 1.56

The RMSE was estimated twice for each of the six approaches, using two different sets
of discharge values in each case (Table 6). The first method (RMSE_T1) included discharge
values from all 17 sites, while the second (RMSE_T2) omitted discharge values from the
four high error sites (Melisso, Spilia, Kossynthos, Gef_Plakas). For RMSE_T1, Limerinos,
excluding fine sediment had the lower RMSE value (3.98 m3/s), while the higher RMSE
value was observed at Griffiths including fine sediment (7.4 m3/s). However, it should be
noted that, as a whole, these RMSE values have a considerably high range (4.0–7.4 m3/s)
in comparison to the range of the discharge values from the in-situ measurements. For
RMSE_T2 the new error values were significantly better overall; for all six approaches they
ranged from 1.5 to 2.0 m3/s, while the better performing method proved to be Limerinos
including fine sediment (1.52 m3/s).

With respect to error percentages (% deviation from measurement) Griffiths and
Limerinos methods had the absolute lowest values when fine sediment was excluded from
the analysis while New_Zealand and Limerinos had the lower median and 75th percentile
errors (Table 7). When the fine sediment portion was included in the analysis, New_Zealand
and Griffiths methods had the lower minimum and 25th percentile errors while Limerinos
and Griffiths had the lower median and 75th percentile errors. Including the fine sediment
portion in the analysis improved results and decreased percentage errors in more than
50% of the rivers but increased the errors significantly in approximately 25% of the rivers
with the highest deviations between discharge estimates and measurements. Taking into
account all sites, no specific approach could be distinguished as better performing overall.
However, it can be stated that the worst performing approach is Griffiths including fine
sediment, which scored the two highest estimation errors (409.3% and 609.7%). When
the four high error sites (mentioned in the above paragraph) were excluded, Limerinos
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and New_Zealand including the fine sediment had the lowest average error percentages,
scoring 34.6% and 38.0%, respectively. Yet, the impact of including or excluding the
fine sediment portion in the discharge estimation is not very obvious in terms of errors
because it is contradictory from one method to the other, but in the best performing method
(Limerinos) including fine sediment in the analysis has a positive effect.

Table 7. Percentage error of discharge estimations, with and without fine sediment particle distribution.

Initial Distribution
(Excluding Fine Sediment)

Recalculated Distribution
(Including Fine Sediment)

New_Zealand Limerinos Griffiths New_Zealand Limerinos Griffiths

Minimum 16.8% 10.9% 2.0% 0.7% 7.8% 1.2%
25th percentile 35.9% 37.8% 21.4% 30.4% 35.2% 27.3%

Median 54.2% 60.6% 62.2% 58.7% 44.9% 58.4%
75th percentile 79.5% 76.6% 84.6% 116.4% 69.4% 107.1%

Maximum 326.9% 330.0% 286.7% 353.2% 380.4% 609.7%

By using the New_Zealand method, underestimation of discharge was observed in
9 out of the 17 rivers, while the percentage error exceeded +100% in 4 sites (24% of total).
Including the fine sediment portion in the estimation process improved the results by
reducing percentage error in 7 sites (42% of the total) (Figure 8a). The highest errors were
observed in Melisso and Spilia rivers, followed by Gef_Plakas and Kossynthos. With the
Limerinos method (Figure 8b), slight underestimation of discharge was observed in 11 out
of 17 sites (65% of total), while errors higher than 100% were observed in 4 sites (24% of
total). Including fine sediment in the analysis increased the estimation accuracy in 11 sites
(65% of total), which is a significant improvement in the results. The highest errors were
again recorded in Melisso and Spilia sites. Griffiths’ method (Figure 8c) illustrated the
highest errors with 5 out of 17 sites (29% of total) exceeding the 100% error margin while
in 10 sites (59% of total) underestimation of discharge was observed. Moreover, in 9 out
of 17 sites (53% of total) including fine sediment in the analysis improved the results by
decreasing errors.

The correlation matrix of the hydraulic characteristics and the discharge measurements
and estimations according to the various methodological approaches indicate that both
estimated and measured discharge are strongly correlated with the cross-section area
and wetted perimeter (Table 8). Hydraulic radius is also strongly correlated with the
estimated discharges but not with the measured ones on all approaches, while slope values
present very low correlation coefficients with all estimated and measured discharges. The
observed discharges are better correlated (r = 0.729) to discharges estimated with the
New_Zealand method including the fine sediment portion (RMSE = 1.77 m3/s), while
the lowest correlation with the measured values comes from estimates using the Griffiths
method, including fine sediment (RMSE = 1.56 m3/s) (Table 8).
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Table 8. Correlation matrix of hydraulic characteristics, discharge measurements and discharge
estimations.

A
(m2)

P
(m)

Rh
(m)

Slope
(m/m)

Qobs
(m3/s)

P (m) 0.948
Rh (m) 0.653 0.456

Slope (m/m) −0.161 −0.289 0.147
Qobs (m3/s) 0.764 0.804 0.529 −0.07

Qest_nz_a (m3/s) 0.9 0.757 0.826 0.153 0.645
Qest_L_a (m3/s) 0.901 0.767 0.81 0.149 0.664
Qest_G_a (m3/s) 0.932 0.812 0.779 0.108 0.696
Qest_nz_b (m3/s) 0.915 0.817 0.729 0.115 0.729
Qest_L_b (m3/s) 0.943 0.82 0.784 0.095 0.695
Qest_G_b (m3/s) 0.919 0.773 0.809 0.083 0.611

4. Discussion
4.1. Discharge Estimation

The results of this study showed that in most cases (almost 75% of sites) at least
one of the six methods used for discharge estimation produced good results (less than
50% estimation error). Four sites were found to always produce significant estimation
errors independently of the approach implemented. Further examination proposed that
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the errors should rather be attributed to the selected cross-section characteristics than the
estimation methods used. Moreover, 10 out of the 17 study sites (58.8%) produced accurate
discharge approximation for all six approaches alike. These accounts imply that the process
proposed for discharge estimation, incorporating UAV images combined with empirical
hydraulic equations, can offer a credible alternative for discharge measurements under
specific conditions, primarily shallow water conditions.

As a general rule, Limerinos and New_Zealand proved to have better performances
in most sites, with small estimation errors and small RMSE values. The New_Zealand
approach excluding fine sediment had good estimations (less than 50% error) in 8 sites.
The fine sediment recalculation had a positive effect especially for the Limerinos approach,
in which the estimation accuracy was increased in 11 sites (65% of total) and proved to be
the best performing method. Contrarily, the worst performing method was Griffiths after
the fine sediment recalculation, which produced the highest average error (1171%) and the
highest RMSE (7.41 m3/s) for all sites combined and the highest error of an individual site
(6097% for Melisso), for all six approaches and sites examined. Nevertheless, amongst the
six different discharge estimation approaches tested in this study, no single one proved to
significantly outperform the others. Their performance was to a considerable extent site
specific, proposing that different equations have better applicability on certain sites, most
likely a matter related to the sites’ physical characteristics. In addition, the recalculation
process of particle size distribution, which was implemented in order to account for the fine
sediment, did not have a consistent positive impact on all approaches and throughout every
study site. Finally, a strong correlation between average error in discharge estimation and
Rh was highlighted. Results propose that a threshold value of 0.3 m exists; sites equalling
or exceeding it are expected to produce high errors.

Regarding the RMSE (Table 6), when all sites were included in its calculation (RMSE_T1)
all six approaches scored high error values, suggesting that no single approach can be
uniformly and indiscriminately used in all examined sites. It was presumed that the RMSE
metric was getting significantly distorted from the four high error sites, for which the
discharge estimation process proved not applicable. Therefore, new error values could be
calculated from the sites in which the estimation method was at least applicable, even if it
did not produce good (below 50% estimation error) results. From that perspective, it was
decided that the four high error sites should be omitted from the new RMSE calculation
process. The RMSE_T2 produced considerably better results, ranging from 1.5 to 2.0 m3/s,
closer to the order of magnitude of the discharge values in most of the examined sites.
It is also interesting to note that when all sites were used in the RMSE calculation, the
smaller values were scored by the approaches that excluded fine sediment. Contrarily,
when the four high error sites were omitted from the calculation process, the smaller RMSE
values were scored for the three approaches including fine sediment. This observation
could suggest that, for sites where the proposed method of discharge estimation is applica-
ble (not exceeding 100% estimation error), the fine sediment recalculation process has a
positive impact.

The results of this study are comparable to those from Yang et al. [15] who made use
of UAV-acquired data as well as three different equations of the slope-area method for
discharge calculation and produced an overall qualification rate of 70% for the calculated
discharge. Similarly to this study, there was not a specific equation outperforming the
others; the applicability of each equation was rather dependent on the discharge character-
istics of each site. Quite alike, Yang et al. [15] also highlighted the importance of Rh in the
discharge estimation process. Furthermore, Zhao et al. [28] proposed a new framework
coupling the virtual hydraulic radius (VHR) with the modified global at-many-stations
hydraulic geometry (global-AMHG) method and UAV imagery, through which it was pos-
sible to yield significantly higher accuracy for streamflow estimation of medium-to-small
scale rivers. Recently, Eltner et al. [51] followed an automated workflow on UAV imagery
for surface flow velocity calculation combined with photogrammetry-derived cross-section



Water 2021, 13, 2808 16 of 20

geometry to estimate discharge in rivers, with deviation from measured discharge up
to 31%.

4.2. Recalculating Particle Size Distribution

Implementation of the recalculating process significantly affected the particle size
distribution, in most study sites. The effects of the recalculation were more evidently mani-
fested in the case of the d50 parameter. Having an initial median size (0.151 m) according to
which d50 was classified in the cobble category, this parameter was considerably decreased
after fine sediment inclusion (new median size of 0.055 m) and was reclassified into the
gravel category (Table 3). For d84 and d90, the recalculation process produced moderate
changes in their median size but was better manifested in their 75th percentile and maxi-
mum values. Judging by their maximum values, both parameters were reclassified by one
order of magnitude, i.e., from boulder to cobble category. As expected, these alterations
had significantly influenced the outcomes of the n value for Equations (1)–(3).

The recalculation process improved the discharge estimation for all methods but to
a different extent for each of them. It proved that the best results were observed for the
Limerinos method, with improved results in 65% of sites, followed by the New_Zealand
method, scoring a respective improvement in 42% of sites. Nevertheless, from site to site
and from method to method, the effects of the recalculation process are not consistent.
Issues with the applicability of each method for every site and the sensitivity of the
discharge estimation to the n value could most likely be reasons for this inconsistency.
However, a solid conclusion on the effect of the recalculation process could not be drawn
and further examination is needed on this matter.

4.3. Additional Sources of Error

Errors in the estimated discharges should not be sought unilaterally on weaknesses
of the proposed method, as different sources of uncertainty also exist. Namely, in the
empirical hydraulic equations used in this study, the discharge estimation is a function of
diverse parameters, such as A, P, S, n. Therefore, it is expected that uncertainties when
estimating their values will introduce errors, sincethe estimates of hydraulic characteristics
of the cross-section extracted by both remote sensing and in-situ measurements often
incorporate relatively high errors, as various studies have indicated [52,53]. Some of the
uncertainties of remote sensing, include factors such as the UAV camera angle, UAV flight
height and light intensity, as well as effects from refraction and irregularities of natural
riverbed under submerged sections. Uncertainties from in-situ measurements are also
expected since field measurements are conducted by different teams under varying river
conditions and equipment (current meters, portable Doppler, radars, etc.).

4.4. Conditions of Applicability

Statistical analysis of the discharge estimations and the hydraulic characteristics
of the cross-sections suggested a strong correlation between high errors and Rh. The
performed analysis defined a threshold value of approximately Rh = 0.3, proposing that
sites equalling or exceeding this value are expected to produce high errors. High Rh
values could result either from high A or low P of a cross-section, both being indicators of
deep-water conditions. This observation is in agreement with the claim that the proposed
method is rather suitable for shallow water conditions. A possible explanation for this
observation could be that deep water conditions hamper the UAV image sensor from
capturing the river bottom and result in reduced precision of the elevation measurements,
ultimately affecting the estimated discharge value. This finding is in accordance with
Woodget et al. [54] who studied submerged fluvial topography using high resolution
unmanned aerial system (UAS) imagery and concluded that DEM error in submerged
river parts is depth-dependent and that the two are positively correlated. Therefore, it
is proposed that the developed method for discharge estimation should be applied in
cross-sections that do not exceed the Rh = 0.3 m threshold.
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Additionally, several trial-and-error efforts demonstrated that the selection of a rep-
resentative river segment as well a suitable cross-section on which the proposed method
would be implemented are of key importance. A set of different parameters seems to
define the suitability of the selected site and cross-section. The first criteria proved to be
water depth; the selected cross-section should be in relatively shallow water, as deep water
conditions add to measurement error [54]. Secondly, river sections with high vegetation
coverage should be avoided since trees or bushes covering the riverbanks impede the
actual terrain measurements. The third crucial parameter was image and water clarity.
As expected, it was observed that turbidity of water affects the accuracy of the riverbed
elevation measurement decisively. Turbidity could be a result of natural processes, such
as sediment transportation, but could also be the result of manmade pollution. However,
even in water clarity conditions, parts of an image could be inadequate for extraction of
elevation information due to surface roughness. For example, riffles or high turbulence
water sections of a river should be avoided as they result in cross-section irregularities and
unrealistic elevation spikes. The same effect was observed in areas with intense sunlight
reflections on the water surface. Finally, to facilitate both the processes of slope determina-
tion as well as the roughness coefficient estimation, another crucial parameter proved to be
the selection of a cross-section at the end of a relatively homogeneous and straight river
segment rather than a sinuous one.

Despite the gains from the growing use of UAVs for environmental remote sensing
in the last few years and their continuous technological advancements, there are still
important limitations related to their operation and processing. Weather conditions such
as strong winds [55], rain [56] and air temperature [57] are major constraints that can alter
the quality of surveys. In addition, the flight time of a UAV and consequently the temporal
resolution of a mission are fundamentally limited by battery capacity and their quick
depletion, an issue addressed by many researchers [58–60]. A set of other shortcomings is
related to the fact that general market digital cameras are used for photogrammetry and
remote sensing, resulting in illumination issues, image classification and relief displacement
problems [61]. Finally, issues such as the data processing being left to the final user [62]
and the high demand on data storage and processing [63] are also significant limitations.

5. Conclusions

Using UAV products and photogrammetric approaches to estimate discharge in shal-
low rivers can provide an efficient solution for monitoring ungauged and difficult to access
rivers, with an affordable and reliable methodology. With a considerably high rate of 75% of
the examined sites, at least one of the implemented approaches produced good results for
discharge estimation. In addition, in 10 out of 17 sites (58.8%) all implemented approaches
had very accurate approximation of the measured discharge. A recalculation process, to
include fine sediment in the estimation process, was also introduced, which proved to
have a positive effect on sites with small estimation error, by significantly reducing the
RMSE. Overall, however, the recalculation process generated diverse results and additional
investigation is needed on the matter. Finally, a strong correlation between high errors for
sites exceeding an Rh = 0.3 m threshold value was observed. Based on the aforementioned
results, it has become obvious that the proposed methodology for discharge estimation is
more suitable for shallow water conditions.

Further research should be conducted to justify and optimize the methodological
approaches for the above task but the potential for acquiring large volumes of crucial
hydrologic data exist and is expected to improve water management and restoration efforts
in the near future.
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