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Abstract: Evaporation from surface water plays a crucial role in water accounting of basins, water
resource management, and irrigation systems management. As such, the simulation of evaporation
with high accuracy is very important. In this study, two methods for simulating pan evaporation
under different climatic conditions in Iran were developed. In the first method, six experimental rela-
tionships (linear, quadratic, and cubic, with two input combinations) were determined for Iran’s six
climate types, inspired by a multilayer perceptron neural network (MLP-NN) neuron and optimized
with the genetic algorithm. The best relationship of the six was selected for each climate type, and the
results were presented in a three-dimensional graph. The best overall relationship obtained in the first
method was used as the basic relationship in the second method, and climatic correction coefficients
were determined for other climate types using the genetic algorithm optimization model. Finally, the
accuracy of the two methods was validated using data from 32 synoptic weather stations throughout
Iran. For the first method, error tolerance diagrams and statistical coefficients showed that a quadratic
experimental relationship performed best under all climatic conditions. To simplify the method,
two graphs were created based on the quadratic relationship for the different climate types, with
the axes of the graphs showing relative humidity and temperature, and with pan evaporation, were
drawn as contours. For the second method, the quadratic relationship for semi-dry conditions was
selected as the basic relationship. The estimated climatic correction coefficients for other climate
types lay between 0.8 and 1 for dry, semi-dry, semi-humid, Mediterranean climates, and between 0.4
and 0.6 for humid and very humid climates, indicating that one single relationship cannot be used to
simulate pan evaporation for all climatic conditions in Iran. The validation results confirmed the
accuracy of the two methods in simulating pan evaporation under different climatic conditions in
Iran.

Keywords: Iran; pan evaporation; genetic algorithm; MLP neural network; experimental relationship

1. Introduction

Evaporation is one of the main components of hydrology, and accurate estimation of
evaporation plays an essential role in estimating the water balance of basins, designing
and managing irrigation systems, and managing water resources [1–5].

There are two types of methods, direct and indirect, for estimating evaporation [6,7].
Pan evaporation is one of the direct methods commonly used to determine evaporation
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from free water surfaces in most parts of the world [8]. Pan evaporation is also used for
determining crop water requirements, irrigation scheduling, rainfall–runoff modeling, and
computation of water balance components [5]. In recent years, numerous methods and
experimental relationships have been developed for indirectly simulating evaporation
[9,10]. Over the years, various studies have sought to identify linear experimental rela-
tionships [11–13] and non-linear experimental relationships [14–20] as indirect methods to
simulate evaporation from free water surfaces. Some of these experimental relationships
are listed in Table S1 in Supplementary Material (SM). Four input meteorological variables
(air temperature, relative humidity [13], wind speed, and vapor pressure) have been used
in most cases [12,13,21,22]. On the other hand, Filimonova and Trubetskova [23] used
two variables (temperature and relative humidity), Poormohammadi et al. [24] used two
parameters (temperature and vapor pressure), and Patra [25] used only temperature in
their experimental relationships. Moreover, copious studies have assessed the sensitiv-
ity of input parameters in simulating evaporation (Table S2 in SM). These studies have
shown that temperature, relative humidity, wind speed, and sunshine hours are the most
sensitive parameters [26,27]. In addition, artificial intelligence has been widely used for
modeling and simulating pan evaporation [28–33]. In recent years, multilayer perceptron
neural network (MLP-NN) has become one of the most useful artificial intelligence tools
in simulating pan evaporation, and its ability for simulation of pan evaporation has been
verified in many studies e.g., Alsumaiei [29]; Pandey et al. [28]; Ashrafzadeh et al. [34];
Patle et al. [35], as listed in Table S3 in SM.

In general, the studies cited above have left four research gaps in the simulation of
evaporation: (i) A limited geographical area has been used to develop these methods,
which can result in errors in applying the methods. (ii) The structure of the experimental
relationships developed does not have the desired simplicity, and users cannot easily
use them. Moreover, using neural networks is not user-friendly and accessible for all
users. (iii) In most proposed relationships, the vapor pressure variable is a required input,
but this parameter is not commonly measured at all weather stations. (iv) The methods
lack the ability to simulate evaporation under different climatic conditions. For instance,
Ivanov’s relationship is suggested for dry and semi-dry climates [25,36,37] and Penman’s
relationship for coastal regions with humid and very humid conditions [38]. In the present
study, Iran was selected as the study region for the development of two comprehensive
and practical methods for simulating pan evaporation under different climatic conditions.
Iran, which is one of the largest countries in the Middle East, has six different climate types.
Potential evaporation is greater than precipitation in the country [39], and simulating
evaporation with high accuracy can play an important role in national water resources
management.

The present study provided several advantages and innovations compared with
previous research, including: (i) The choice of the study region, as Iran covers a vast area
and has six different climate types (dry, semi-dry, Mediterranean, humid, semi-humid,
very humid), (ii) introduction of two practical and simple graphs as the first method
and a simple basic relationship with six climatic correction coefficients as the second
method to simulate pan evaporation for the six climate types in Iran, as both methods
are more comprehensive, yet simpler to apply, than those in previous studies; and (iii)
use of common meteorological data available from all weather stations in Iran in the
comprehensive methods for simulating pan evaporation.

The remainder of this paper is organized as follows: Section 2 describes the study
area, and Section 3 introduces the methodology used to develop evaporation modeling.
Results are presented in Section 4 and discussed in Section 5, while some conclusions are
presented in Section 6.

2. Study Area

Iran is located in West Asia, and in terms of the geographical location lies in the
Northern Hemisphere between 25 to 40 degrees north and 44 to 63.5 degrees east [40]. The
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territory of Iran comprises about 1,650,000 km2, and most regions have dry to semi-dry
climatic conditions [40]. Climatic conditions are affected by two important mountain
chains, Alborz and Zagros, which extend from northwest to eastern and southern regions
of Iran, respectively, and represent a change in altitude from −25 to 5600 m above mean
sea level [41]. Differences in climatic conditions also exist due to the uneven distribution of
precipitation and humidity in the country [41]. The northern part is coastal and humid,
with heavy precipitation due to the Alborz mountains, while central, southern, and eastern
parts are dry with frequent droughts. Most parts in the west, northwest, and southwest
of Iran have a semi-dry climate and above-average precipitation due to the obstruction of
rain-producing air masses by the Zagros mountain chain [42].

A significant proportion of precipitation in Iran is produced by the Mediterranean
system, which moves from west to east through the action of westerly winds. Mean
annual precipitation in Iran is about 240 mm/year, equivalent to one-third of the global
average [43]. Annual precipitation ranges from approximately 1800 mm for the Caspian
Sea coastal plains to 400 mm for the Alborz and Zagros Mountains [44] but is lower than
100 mm following local topology in the internal plains located in Iran’s eastern and central
parts [44]. In terms of temperature, most regions of Iran are affected by the tropical high-
pressure system, which results in very hot and dry summers in much of Iran [44]. In the
cold-season areas in Iran, ranging from 10–70◦ North and 10–80◦ East, important climatic
indices include the Arctic, Central Asia, Western Europe, and Anatolia to north Caspian
indices [45]. The cold temperature areas of Iran lie mainly along the Zagros Mountains, in
the northwest, and in small parts of the northeast. There is a strong spatial distribution
of hot and cold temperature areas in Iran, with an obvious role of greater altitude in cold
areas [46].

Since most parts of Iran experience dry and semi-dry climatic conditions, evapora-
tion is an important meteorological variable [47–49]. Drought is a natural and repeatable
phenomenon that can cause severe crises, and the most critical factors in drought devel-
opment are precipitation and evaporation [50]. In recent years, droughts have become
more frequent and severe in Iran [50–52]. Drought is a growing problem in Iran because
excessive groundwater use during drought conditions causes annual evaporation to exceed
the annual renewable water supply due to precipitation [40].

In this study, pan evaporation in Iran was simulated using the MLP-NN neuron and
genetic algorithm optimization model. For this purpose, observed data from 38 synoptic
weather stations in Iran were selected to represent the six different climate types (dry, semi-
dry, Mediterranean, semi-humid, humid, very humid). Data from six synoptic weather
stations (Semnan, Shahroud, Yasuj, Kermanshah, Sari, and Rasht) were used to develop
experimental relationships, and data from the remaining 32 stations were used to validate
these experimental relationships. The geographical location and climate conditions at the
selected synoptic weather stations are shown in Figure 1. As can be seen, there is a humid
and very humid climate in northern Iran and the coastal region along the Caspian Sea,
while Mediterranean and semi-humid climatic conditions are found mainly in the west
and northwest of Iran, and southwestern regions have a dry or semi-dry climate. The
number of selected synoptic weather stations with dry, semi-dry, Mediterranean, semi-
humid, humid, and very humid climatic conditions were 13, 9, 4, 3, 3, and 6, respectively.
Because significant regions of Iran are located in dry and semi-dry regions, greater number
of synoptic weather stations were selected in these areas.
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Figure 1. Location of the selected synoptic weather stations in Iran from which data were ob-
tained. (For more information about the synoptic weather stations, see Table S4 in Supplementary 
Material.). 
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outputs of these six best-performing relationships were presented in the form of a three-
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(Cୡ) was determined using the genetic algorithm optimization model. (3) Finally, both 
methods were verified using data from 32 synoptic weather stations in Iran, and the re-
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Figure 1. Location of the selected synoptic weather stations in Iran from which data were obtained. (For more information
about the synoptic weather stations, see Table S4 in Supplementary Material.).

3. Materials and Methods

Two methods for simulating pan evaporation were developed. The steps in the
first method were as follows: (1) Six synoptic weather stations were selected in Iran,
that these stations have six different types of climatic conditions (Figure 1). (2) Three
experimental relationships (linear, quadratic, and cubic) were defined using a MLP-NN
neuron. These relationships have two different input combinations (two-parameter and
four-parameter) for each selected synoptic weather station (i.e., type of climatic conditions).
The structure and input combination of these relationships are shown in Table 1. Therefore,
36 experimental relations were defined for the six different climate types considered for
Iran (based on the De Martonne method), and their coefficients were determined using
the genetic algorithm optimization model. (3) The ability of the relationships to simulate
evaporation was compared, and the best relationship was selected for each climate type.
Finally, the outputs of these six best-performing relationships were presented in the form
of a three-dimensional graph to simplify interpretation.

The steps in the second method were as follows: (1) Among the six relationships
selected when developing the first method, that with the greatest ability to simulate
evaporation in its relevant climatic conditions was selected as the basic experimental
relation. (2) Six climatic correction coefficients (Cc) were defined, one for each of six types
of climatic conditions, and evaporation in each climate type was simulated by multiplying
by its coefficient (Cc) in the basic experimental relationship. The value of these coefficients
(Cc) was determined using the genetic algorithm optimization model. (3) Finally, both
methods were verified using data from 32 synoptic weather stations in Iran, and the results
were compared. Figure 2 presents an outline of the steps involved in the work, which are
discussed in more detail in Sections 3.1–3.4.



Water 2021, 13, 2814 5 of 21

Table 1. Input combinations and relationships were applied to simulate pan evaporation.

Combination Number Input Parameter * Equation Type Experimental Equations and
Parameters

1 T-RH 1 E = a× T + b× RH + c

2 T-RH-WS-SSH 1 E = a× T + b×WS + c×
SSH + d× RH + e

1 T-RH 2 E = a× (T)2 + b× (RH)2 + c

2 T-RH-WS-SSH 2
E = a× (T)2 + b× (WS)2 +

c× (SSH)2 + d× (RH)2 + e

1 T-RH 3 E = a× (T)3 + b× (RH)3 + c

2 T-RH-WS-SSH 3
E = a× (T)3 + b× (WS)3 +

c× (SSH)3 + d× (RH)3 + e

* T = temperature (◦C), RH = relative humidity (%), WS = wind speed (knots), SSH = sunshine hours (hours).
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Figure 2. Outline of steps in the research process (popc: created members of children in genetic algorithm, popm: mutated
members in the genetic algorithm).

3.1. The De Martonne Method for Climate Classification

In the De Martonne method, the dryness index is calculated as:

I =
P

T + 10
(1)

where P is mean annual precipitation (mm), T is mean annual temperature (◦C), and I is
dryness (De Martonne) coefficient. Based on the De Martonne drought coefficient values,
climatic conditions in Iran are categorized into dry, semi-dry, Mediterranean, semi-humid,
humid, and very humid (Table 2).
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Table 2. Climatic classification for Iran based on the De Martonne method.

Climate De Martonne Drought Coefficient Range

Dry Less than 10

Semi-dry 10 to 19.9

Mediterranean 20 to 23.9

Semi-humid 24 to 27.9

Humid 28 to 34.9

Very humid More than 35

3.2. Genetic Algorithm Optimization Model

The genetic algorithm is an evolutionary algorithm employed for optimizing and
effectively searching huge spaces based on genes and chromosomes [53]. The search
includes four steps: (i) The initial population containing a set of chromosomes forms is
established; (ii) the value of each member is determined by defining an objective function,
and new members are generated using genetic operators, which include the production of
offspring from selective parents, mutation on the last population members, and gradual
evolution [54]; (iii) selection is conducted considering the fitness level of the members, and
several most fit chromosomes are selected for reproduction; and (iv) genetic operators act
on population members and modify and combine their genetic codes [55].

In this study, the genetic algorithm optimization model was used for two purposes:
determining the optimal weights for each mathematical relationship listed in Table 1,
and determining the climatic correction coefficients to use with the basic experimental
relationship. In the genetic algorithm optimization model used, the number of parents,
number of offspring, number of mutant members, mutation rate, and number of iterations
was 300, 200, 90, 0.04, and 200, respectively. The roulette wheel selection method was
applied to select parents from the parent population [56]. According to the fitness function,
a member of the parent population can be selected if it has a better condition regarding
the fitness function value, i.e., parents whose objective function has a lower value [57].
Equation (2) expresses the probability distribution function applied in the roulette wheel
selection method:

P = e
(−β×cost)
(worst cost) (2)

where P is the selection probability of any member of the parent population, β is the
selection pressure of the parent population, cost represents the objective function value for
the parent population, and the worst cost is the maximum value of the objective function,
i.e., the family with the worst conditions for the parent population. After selecting the
parents, the uniform crossover approach is used for producing the offspring, as expressed
by Equations (3) and (4):

y1i = αi × x1i + (1− αi)× x2i, α ∈ {0, 1} (3)

y2i = αi × x2i + (1− αi)× x1i, α ∈ {0, 1} (4)

where y1i is the first offspring, y2it is the second offspring, x1i is the first selected parent,
and x2i is the second selected parent.

The selection of a member from the parent population to apply the mutation operator
was carried out randomly. The normal distribution was used to apply the mutation operator
to the parent population. Therefore, if xi is the gene to be mutated, the mutant gene is
generated by Equations (5) and (6):

xinew = N
(

xi, σ2
)
= xi + σ× N(0, 1) (5)

σ = 0.1× (xminmax) (6)
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where xinew is the mutant member, N (0, 1) is the standard normal distribution, and σ is the
step-length of normal distribution.

3.3. MLP-NN Neuron

Three different experimental relationships (Table 1) were defined, inspired by the
processes in a MLP-NN neuron. The process inside a MLP-NN neuron is as follows: input
variables are multiplied by a series of fixed weights, the values obtained are summed with
a constant value, the final values are given to an activation function, and the output of the
intended neuron is calculated. The activation functions employed in MLP-NN neurons
include hyperbolic, exponential, Gaussian, and linear functions, and so on. The linear
function is the simplest form of activation function, with the general form Y = X, which
simplifies the experimental relationships suggested. Figure 3 and Equation (7) describe the
process in a MLP-NN neuron.

Output = F(W1 × X1 + W2 × X2 + W3 × X3 + . . . + b) (7)

where F is the activation function, X1, X2, and X3 represent the input variables, and W1,
W2, and W3 represent the weights multiplied by inputs.
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Figure 3. Schematic diagram of a multilayer perceptron neural network (MLP-NN) neuron.

In this study, the MLP-NN neuron was designed to define three experimental rela-
tionships (linear, quadratic, and cubic). In the linear relationship, input parameters were
multiplied by different weights, and then the values obtained were summed with a constant
value. For the quadratic and cubic relationships, the second and third powers, respectively,
of the input data were multiplied by weights, and the values obtained were summed with
a constant value.

3.4. Statistical Indices for Model Evaluation

There are various measures available to evaluate models and algorithms. In the present
study, the experimental relationships and the climatic correction coefficients obtained for
the basic relationship were quantitatively evaluated using statistical correlation coefficient
(r), Nash-Sutcliffe efficiency (NSE), root mean square error (RMSE), and percentage bias
(PBIAS) (Equations (8)–(11)).

r =

 ∑N
i=1

(
obsi − obsi

)(
simi − simi

)
(

√
∑N

i=1 (obsi − obsi)
2
(

√
∑N

i=1 (simi − simi)
2

 (8)

NSE = 1− ∑N
i=1 (simi − obsi)

2

∑N
i=1

(
obsi − obsi

)2 (9)

RMSE =

√
∑N

i=1 (obsi − simi)
2

N
(10)
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PBIAS =

[
∑N

i=1(obsi − simi)× 100

∑N
i=1 obsi

]
(11)

where N is the number of data, obsi is observed daily evaporation (mm/day), simi is
simulated daily evaporation (mm/day), obsi is average observed evaporation (mm/day),
and simi is average simulated evaporation (mm/day). The correlation coefficient shows
the agreement between observed and modeled values, with its value varying from zero to
one (the closer to one, the more acceptable the results). NSE shows the relative difference
between observed and simulated values, and its value ranges from infinitely negative to
one (the closer to one, the more accurate the results) [58]. RMSE indicates the difference
between observed and simulated data. RMSE is non-negative, and a value near zero
shows higher reliability of the model. PBIAS indicates the mean bias in the simulated data
relative to the observed data, and thus the smaller the value, the higher the reliability of
the model [59].

4. Results
4.1. Determination of Weights of Experimental Relationships Used with Two Input Combinations
(First Method)

Observed and simulated pan evaporation at the six selected synoptic weather stations:
Semnan (dry), Shahroud (semi-dry), Kermanshah (Mediterranean), Yasuj (semi-humid),
Sari (humid), and Rasht (very humid) with the two input combinations (two-parameter,
four-parameter) are shown in Figure 4 (Semnan and Rasht) and Figure S1 (other synoptic
weather stations). As can be seen, observed evaporation and evaporation simulated using
all three experimental relationships showed acceptable agreement for the six selected
synoptic weather stations representing different climate types.
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Figure 4. Time series of observed and simulated pan evaporation using linear, quadratic, and cubic
experimental relationships (shown in red, blue, and green, respectively) and two input combinations
(2000–2020, Table 1). (a) Semnan station (dry, two-parameter input combination), (b) Semnan
station (dry, four-parameter input combination), (c) Rasht station (very humid, two-parameter input
combination), and (d) Rasht station (very humid, four-parameter input combination). Observed
evaporation (2000–2020) is shown in black.

The values obtained for correlation coefficient (r), NSE, RMSE, and PBIAS in compar-
isons between observed and simulated evaporation using the three types of experimental
relationships and two input combinations are shown in Table S5 in SM. Based on the values
obtained, there was little difference between the two-parameter and four-parameter input
combinations. Moreover, at all six synoptic weather stations, r and NSE were higher for
the quadratic experimental relationship than for the cubic and linear experimental relation-
ships. On the other hand, RMSE and PBIAS were lower for the quadratic experimental
relationship than for the other two relationships.

Error tolerance diagrams were created for the six selected synoptic weather stations
and the two input combinations to compare the statistical coefficients of experimental
quadratic relationships. In the graph for each climate type, evaporation values were
arranged from low to high on the horizontal axis, and the difference between observed
and simulated evaporation according to the linear, quadratic, and cubic experimental
relationships was plotted on the vertical axis. Figure 5 shows the error tolerance diagram
for Semnan station, while those for the other five synoptic weather stations are shown in
Figure S2 in SM.
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Figure 5. Error tolerance of linear, quadratic, and cubic experimental relationships (shown in red,
blue, and green, respectively) in the simulation of pan evaporation at Semnan station (dry conditions)
for (a) the two-parameter input combination and (b) the four-parameter input combination (see
Table 1 for input combinations).

Based on the error tolerance values in Figures 5 and S2, the error in simulating
high evaporation was greater for the linear relationship than for the cubic and quadratic
relationships with all six types of climatic conditions and both input combinations, while
the error in simulating low evaporation was greater for the cubic relationship than for
the quadratic and linear relationships. Therefore, the higher values of r and NSE and the
lower values of RMSE and PBIAS obtained for the quadratic relationship can be related
to its greater ability to simulate high evaporation than the linear relationship and its
greater ability to simulate low evaporation than the quadratic relationship. The quadratic
relationship was thus the best relationship for simulating evaporation in the six different
climate types in Iran.

The coefficients obtained for the linear, quadratic and cubic relationships are shown in
Table S6 in SM. According to the determined weights of the best (quadratic) relationships,
those for four types of climatic conditions (dry, semi-dry, semi-humid, and Mediterranean)
were similar to each other but different from those for the remaining two climate types
(humid and very humid), which were similar to each other. In Figure 6, the similarities
of the relationship weights of the dry, semi-dry, semi-humid, and Mediterranean climate
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types, and of the humid and very humid climate types, are shown in a bar graph for the two-
parameter input combination, where pan evaporation based on two input variables (relative
humidity in the range 0–100%, the temperature in the range 0–50 ◦C). Pan evaporation was
then simulated using the experimental quadratic relationships, and simulated evaporation
under each climate type was drawn as contour curves. Figure 7a presents the results for
the four synoptic weather stations with dry, semi-dry, semi-humid, and Mediterranean
conditions, and Figure 7b shows the results for the two synoptic weather stations with
humid and very humid conditions. The contours of the evaporation values (dashed lines)
show the approximate values of simulated evaporation for the stations. The average
evaporation values for the groups of four and two stations are shown within bold lines
and can be used to simulate pan evaporation. The two graphs were created using the six
best experimental relationships. The variables temperature (◦C) and relative humidity (%)
must be extended along the horizontal and vertical axes to reach each other at a specific
point, at which the value of the contour indicates pan evaporation.
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Figure 7. Graphs of the six best experimental relationships (quadratic relationships) simulating pan
evaporation with the two-parameter input combination, under (a) dry, semi-dry, Mediterranean, and
semi-humid climatic conditions and (b) humid and very humid climatic conditions.

4.2. Climatic Correction Coefficients for Climate Types Based on the Basic Relationship
(Second Method)

The results in Section 4.1 showed that quadratic relationships were best in simu-
lating evaporation for the six climate types in Iran. Based on the statistical coefficients
(Table S5), the quadratic experimental relationship for the semi-dry climate showed better
performance than those for other climate types and was selected as the basic experimental
relationship. The climatic correction coefficient (Cc) for semi-dry conditions was then set
at 1, and the Cc values for the dry, Mediterranean, semi-humid, humid, and very humid
climate types were determined using the genetic algorithm optimization model for two
input combinations.

Observed evaporation and simulated evaporation values obtained using the basic
experimental relationship with the climatic correction coefficients determined for the
Semnan and Rasht stations, with both input combinations, are presented in Figure 8,
while those for other climatic conditions are shown in Figure S3. The agreement between
observed evaporation and simulated evaporation in the diagrams indicates that the method
is acceptable for use in six different climate types in Iran.
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Figure 8. Time series of observed and simulated pan evaporation using the basic relationship with
six climatic correction coefficients (2000–2020) for: (a) Semnan station (dry, two-parameter input
combination), (b) Semnan station (dry, four-parameter input combination), (c) Rasht station (very
humid, two-parameter input combination), and (d) Rasht station (very humid, four-parameter input
combination).

Table S7 shows the values of Cc and the values of correlation coefficient (r), NSE,
PBIAS, and RMSE obtained on comparing observed and simulated evaporation with
both input combinations for the six selected synoptic weather stations. The statistical
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coefficients confirmed that using the basic experimental relationship with six climatic
correction coefficients is an acceptable approach for simulating evaporation at the six
selected synoptic weather stations. Moreover, according to the statistical coefficients, there
was little difference between two-parameter and four-parameter input combinations. The
Cc values varied between 0.4 to 0.6 for humid and very-humid climates and between 0.8
and 1 for dry, semi-dry, Mediterranean, and semi-humid climates (Table S7). Therefore,
there was a significant difference between the climatic correction coefficients for these two
groups, indicating that the bone experimental relationship cannot be used to simulate pan
evaporation for all different climate types in Iran.

The basic experimental relationship (quadratic experimental relationship for semi-dry
climatic conditions) with the two-parameter input combination was:

Ebasic = 0.015169(T)2 − 0.0001093(RH)2 + 1.004339 (12)

Thus, the following equation can be used to simulate pan evaporation for all climate
conditions:

Epan = Cc(Ebasic) (13)

where T and RH are the two input parameters, daily temperature (◦C) and daily relative
humidity (%), and Ebasic is simulated basic daily evaporation (mm). Daily simulated pan
evaporation, Epan, is simulated by multiplying climatic correction coefficient (Cc) by basic
simulated evaporation. The Cc values used in Equation (12) are presented in Table 3.

Table 3. Climatic correction coefficient (Cc) values obtained with the two-parameter input combina-
tion for different climate types.

Climate Cc

Dry 0.845

Semi-Dry 1

Mediterranean 0.889

Semi-Humid 0.962

Humid 0.476

Very Humid 0.411

4.3. Validation of Selected Relationships and Climatic Correction Coefficients for Simulating
Pan Evaporation

The performance of the best experimental relationships and of the basic experimental
relationship with Cc values was examined by determining statistical indicators for 32
synoptic weather stations in Iran. Table S8 shows the values of r, NSE, PBIAS, and RMSE
obtained using the best experimental relationships and both input combinations for the
32 stations, for which PBIAS was <20%, NSE > 70%, and r > 80%. This confirms that the
experimental quadratic relationships had a very good ability to simulate pan evaporation
for the six climate types in Iran.

Table S9 shows the values of r, NSE, PBIAS, and RMSE obtained using the basic exper-
imental relationship with six climatic correction coefficients and both input combinations
for the same 32 synoptic weather stations in Iran. In this case, PBIAS was <15%, NSE > 70%,
and r > 80%, again indicating very good ability in simulating the pan evaporation for the
different climate types in Iran.

As can be seen from Tables S8 and S9, there were no significant differences between the
results obtained with the two-parameter and four-parameter input combinations, although
the results of the two-parameter combination were better in some cases. Therefore, it is not
economical to use the four-parameter input combination (temperature, relative humidity,
wind speed, and sunshine) and the two-parameter input combination (temperature and rel-
ative humidity) is a better option. Table 4 shows the range of statistical indicators obtained
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in validation of the two methods using the two-parameter input combination for the 32
synoptic weather stations in Iran, while Figure 9 shows box plots of the statistical coefficient
values (r, NSE, RMSE, PBIAS). In this case, r was >0.87, NSE > 0.75, RMSE < 2.75 mm, and
PBIAS < 10% for the dry, semi-dry, Mediterranean, and semi-humid climate types, while
the corresponding values for the humid and very humid climate types were >0.78, >0.62,
<1.75 mm, and <9%, respectively. These results confirm the ability of both our methods to
simulate pan evaporation for the different climate types in Iran, supporting other findings
(first method: two graphs in Figure 7; second method: Equation (12) with the six climatic
correction coefficients in Table 3).

Table 4. Range of values of statistical indicators obtained in validation of the two novel methods with the two-parameter
input combination using data from 32 synoptic weather stations in Iran.

Climate Correlation
Coefficient (r)

Nash-Sutcliffe
Coefficient (NSE)

Root Mean Squared
Error (RMSE)

Percentage Bias
(PBIAS)

Range of statistical coefficients in the validation step in the first method

Dry 0.87–0.92 0.55–0.83 1.971–3.897 mm 3.174–18.97%

Semi-dry 0.87–0.92 0.64–0.84 1.924–3.144 mm 4.604–15.97%

Mediterranean 0.70–0.90 0.75–0.81 1.936–3.144 mm 6.240–17.81%

Semi-humid 0.89–0.94 0.74–0.76 1.884–2.433 mm 13.97–30.21%

Humid 0.78–0.82 0.60–0.64 1.338–1.778 mm 7.324–18.00%

Very-humid 0.79–0.83 0.62–0.65 1.299–1.346 mm 1.58–11.05%

Range of statistical coefficients in the validation step in the second method

Dry 0.87–0.91 0.55–0.83 2.002–3.897 mm 2.518–21.95%

Semi-dry 0.89–0.92 0.67–0.84 1.924–3.144 mm 4.604–17.81%

Mediterranean 0.88–0.90 0.60–0.81 1.737–2.588 mm 1.455–17.97%

Semi-humid 0.89–0.94 0.74–0.76 1.894–2.412 mm 10.90–27.41%

Humid 0.77–0.84 0.57–0.62 1.298–1.845 mm 10.43–22.65%

Very-humid 0.78–0.83 0.60–0.65 1.301–1.368 mm 6.153–14.17%
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Figure 9. Box plots of statistical coefficients obtained in validation of the two novel methods using data from 32 synoptic
weather stations in Iran. (a) Range of correlation coefficient (R); (b) Range of Nash coefficient (NSE); (c) Range of mean
squared error (RMSE); (d) Range of PBIS coefficient.

5. Discussion

Based on the statistical coefficients obtained for the three experimental relationships
(linear, quadratic, cubic) in the first method, the quadratic relationship showed the best
performance under all climatic conditions. This derived from the better ability of the
quadratic relationship to simulate high evaporation than the linear relationship and its
better ability to simulate low evaporation than the cubic relationship. The statistical coeffi-
cients for the quadratic relationship showed that there was little difference between the
values of simulated evaporation for the two- and four-parameter input combinations tested.
Therefore, it is not economical to use the four-parameter combination, which includes
temperature, relative humidity, sundial, and wind speed, since using a combination of
temperature and relative humidity is sufficient to simulate pan evaporation. Examination
of the weights obtained for the quadratic relationships for the six climate types in Iran
showed that the relationships fell into two groups, representing four (dry, semi-dry, semi-
humid, and Mediterranean) and two (humid and very humid) climate types. Therefore, to
simplify this method with the two-parameter input combination, graphs were prepared for
these two groups with relative humidity and temperature on the axes and pan evaporation
drawn as contours.

The statistical coefficients obtained for the six experimental relationships in the first
method indicated that the experimental relationship for semi-dry climatic conditions
had the greatest ability to simulate pan evaporation. Therefore it was chosen as the
basic relationship in the second method. The climatic correction coefficients of this basic
relationship determined for other climate types ranged between 0.8 and 1 for the dry, semi-
dry, semi-humid, and Mediterranean climate types, and between 0.4 and 0.6 for the humid
and very-humid climate types. The significant difference between the range of values show
that one single experimental relationship cannot be used for all different climatic conditions
using the specific input data. Based on this finding, all experimental relationships presented
in previous studies Alazard et al. [9]; Armstrong et al. [10]; Delclaux et al. [60]; Filimonova
and Trubetskova [23]; Granger and Gray [61]; Linacre [36]; Samoilenko [37] need to be
revised for use in different climatic conditions, and climatic correction coefficients need to
be determined.

A review of previous studies modeling pan evaporation using neural networks and
neural fuzzy systems showed that the reported correlation coefficient (r) was between 0.67
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and 0.91 [42,62–65]. In contrast, the values obtained for the two methods developed in this
study for 38 synoptic weather stations in Iran lay between 0.6 and 0.9. Only one MLP-NN
neuron with a simple activation function (y = x) was used in this study, yet there was little
difference in the range of r values obtained for the two simple methods developed, and for
neural networks and fuzzy neural systems in previous studies. Therefore, use of complex
relationships will not necessarily improve performance in simulating pan evaporation and
is not economical.

6. Conclusions

Access to a comprehensive but simple method for simulating pan evaporation can
play a significant role in estimating the water balance of basins, designing and managing
irrigation systems, and managing water resources. In this study, we developed two
simple and practical methods for simulating pan evaporation under the six types of
climatic conditions found in Iran. In the first method, six experimental relationships (linear,
quadratic, and cubic, with two- and four-parameter input combinations) were determined
for each climate type in Iran, inspired by the MLP-NN neuron approach and the genetic
algorithm optimization model. From these, the best relationship for each climate type was
selected and used in the second method as the basic relationship, together with climatic
correction coefficients (Cc) determined for other climate types using the genetic algorithm
optimization model. The accuracy of the two methods was tested using data from 32
synoptic weather stations throughout Iran.

In the first method, statistical evaluations showed that a quadratic relationship had
the greatest ability to simulate pan evaporation for the six different climate types, owing to
its better ability to simulate higher evaporation than the linear relationship and to simulate
lower evaporation than the cubic relationship. Examination of the quadratic relationships
obtained for the six climate types showed that those for dry, semi-dry, Mediterranean,
and semi-humid climate types were similar, but differed from those for humid and very
humid climate types (which were similar to each other). Therefore, two graphs were
created for these two groups of climate types, with the horizontal and vertical axis showing
temperature and relative humidity, respectively, and with average pan evaporation drawn
as a contour.

In the second method, statistical evaluations showed that the quadratic relationship
for the semi-dry climate type performed best, so it was used as the basic experimental
relationship for the six climate conditions. The values of climatic correction coefficients
obtained with this relationship ranged between 0.8 and 1 for the dry, semi-dry, Mediter-
ranean, and semi-humid climate types, and between 0.4 and 0.6 for the humid and very
humid climate types.

Both methods for estimating pan evaporation were verified by simulating pan evap-
oration at 32 synoptic weather stations throughout Iran, which gave NSE values >70%,
correlation coefficient (r) >80%, and PBIAS <20%. Two input combinations (with four
and two parameters, respectively) were applied for the 32 synoptic weather stations and
the statistical coefficients obtained showed no significant differences between these for
either of the two new methods. Therefore, using the four-parameter input combination
(temperature, relative humidity, sunshine and wind speed) was not economical, as the
two-parameter input combination (temperature, relative humidity) performed equally
well.

The two new methods presented have some advantages over existing methods, e.g.,
they consider the six climate types in Iran and a wide area was covered by the data. Thus
both methods can simulate pan evaporation for all climate types in Iran, but other methods
are not applicable for all climatic conditions. Both methods are also simpler to use than
existing methods and the only inputs required are temperature and relative humidity data,
which are available for all weather stations in Iran.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/w13202814/s1, Figure S1: Time series of observed and simulated pan evaporation using
linear, quadratic, and cubic experimental relationships and both input combinations (2020–2000) for:
(a) Shahroud station (semi-dry, two-parameter input combination), (b) Shahroud station (semi-dry,
four-parameter input combination), (c) Yasuj station (semi-humid, two-parameter input combina-
tion), (d) Yasuj station (semi-humid, four-parameter input combination), (e) Kermanshah station
(Mediterranean, two-parameter input combination), (f) Kermanshah station (Mediterranean, four-
parameter input combination), (g) Sari station (humid, two-parameter input combination), (h) Sari
station (humid, four-parameter input combination). Figure S2: Error tolerance of linear, quadratic,
and cubic experimental relationships in estimating pan evaporation (2020–2000) at: (a) Shahroud
station (semi-dry, two-parameter input combination), (b) Shahroud station (semi-dry, four-parameter
input combination), (c) Yasuj station (semi-humid, two-parameter input combination), (d) Yasuj
station (semi-humid, four-parameter input combination), (e) Kermanshah station (Mediterranean,
two-parameter input combination), (f) Kermanshah station (Mediterranean, four-parameter input
combination), (g) Sari station (humid, two-parameter input combination) (h) Sari station (humid,
four-parameter input combination), (i) Rasht station (very humid, two-parameter input combina-
tion), (k) Rasht station (very humid, four-parameter input combination). Figure S3: Time series of
observed and simulated evaporation using the basic relationship with the six climate correction
coefficients (2020–2000) for: (a) Shahroud station (semi-dry, two-parameter input combination), (b)
Shahroud station (semi-dry, four-parameter input combination), (c) Yasuj station (semi-humid, two-
parameter input combination), (d) Yasuj station (semi-humid, four-parameter input combination),
(e) Kermanshah station (Mediterranean, two-parameter input combination), (f) Kermanshah station
(Mediterranean, four-parameter input combination), (g) Sari station (humid, two-parameter input
combination), (h) Sari station (humid, four-parameter input combination). Table S1: Experimental
relationships used in the literature to simulate evaporation from open water surfaces. Table S2:
Results of previous studies on sensitive input parameters in simulating pan evaporation. Table S3:
Results of previous studies on simulating pan evaporation using MLP-NN. Table S4: Location of
synoptic stations in Iran from which data were obtained for the present study. Table S5: Values of
statistical coefficients obtained in comparisons between observed pan evaporation and pan evap-
oration simulated using linear, quadratic, and cubic experimental relationships (2000–2020). The
yellow shading indicates the best experimental relationship in each input combination for the six
stations. Table S6: Weights of linear, quadratic, and cubic experimental relationships obtained using
the genetic algorithm for the six climate types with the two-parameter and four-parameter input
combinations. Table S7: Statistical coefficients obtained for comparisons between observed pan evap-
oration and pan evaporation simulated using correction coefficients (Cc) and the basic relationship
for six selected stations representing different climate conditions and both input combinations. Table
S8: Statistical coefficients obtained for comparisons between observed pan evaporation and pan
evaporation simulated using the best experimental relationships in the validation step (2000–2020).
Table S9: Statistical coefficients obtained for comparisons between observed pan evaporation and pan
evaporation simulated using the basic relationship and correction coefficients (Cc) in the validation
step (2000–2020).
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