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Abstract: The increasing intensity and frequency of extreme storms pose a growing challenge
to stormwater management in highly urbanized areas. Without an adequate and appropriate
stormwater system, the storms and associated floods will continue to cause significant damage to
infrastructure and loss of life. Low Impact Development (LID) has become an emerging alternative to
the traditional stormwater system for stormwater management. This study evaluates and optimizes
applications of different combinations of LIDs to minimize flows from a catchment under past and
future storm conditions. The Storm Water Management Model (SWMM), forced by observed and
downscaled precipitation from Coupled Model Intercomparison Project phase 6 (CMIP6), was used
to simulate the runoff and apply the LIDs in the Renton City, WA. The final results show that the
performance of LIDs in reducing total runoff volume varies with the types and combinations of LIDs
utilized. A 30% to 75% runoff reduction was achieved for the past and future 50 year and 100 year
storms. The study demonstrates the effectiveness of LID combinations with conventional stormwater
systems to manage the future runoff in the study area, which is expected to increase by 26.3% in 2050.

Keywords: urban watershed; Low Impact Development (LID); stormwater management; Storm
Water Management Model (SWMM); climate change

1. Introduction

The changes in land use associated with urbanization affect flooding in many ways.
Urban development alters the natural landscapes by modifying the surface topography,
replacing the vegetated and pervious areas with impervious surfaces, and compacting the
soil, which ultimately leads to the increase in direct conversion of rainfall to runoff [1–5].
Despite the use of a dense stormwater drainage system, major flooding is often associated
with urbanized areas [6,7]. The warming climate further intensifies this problem by increas-
ing the frequency and intensity of extreme precipitation [6–12] and severe floods [8,11].
With the continuous growth in urbanization and rising global temperatures, effective man-
agement of the stormwater has become increasingly challenging [12–14]. The challenge
is further exacerbated by the use of conventional and aging stormwater infrastructure,
making communities across the globe vulnerable to increasing flood risk [15,16]. The
existing stormwater systems are already beeing overwhelmed by the present-day storm
conditions in many areas [17]. Appropriate modifications of existing stormwater systems,
including revision and updating the design practices and standards, retrofit of the existing
infrastructure, and construction of additional ones, are required to mitigate the increasingly
frequent occurrence of urban flooding [18].

Traditionally, stormwater is managed by collecting storm runoff through a network
of conveyance systems made of gutters, concrete channels, and pipes that help drain the
excess water into nearby rivers and lakes [19]. This system of stormwater management
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is also known as end-of-pipe practices involving centralized management [20]. In most
older cities, this traditional system has shown limited ability to handle the increased flow
volume, quicker time of concentration, and high peak flow [21]. Consequently, the system
is susceptible to causing frequent flooding in the future [22]. In the early 1990s, environ-
mental managers, architects, and civil engineers proposed an alternative design approach,
also known as Low Impact Development (LID), to improve the efficiency of traditional
stormwater management. The LID practices are considered to provide better functioning
of the hydrological and environmental systems in urban areas [23]. The approach was
proven to significantly control the discharge and peak flow compared to the traditional
counterparts [3,24]. The LID practices are environmentally sustainable as they shift the
focus of urban stormwater management systems from using drainage pipes to designing
runoff storage, increasing infiltration, reducing runoff quantity, and improving runoff
quality [25]. The most common LID practices include preamble pavements, bio-retention
ponds, rain gardens, infiltration trenches, vegetated bio-swales, and rain barrels that foster
retention, infiltration, evaporation, transpiration, groundwater recharge and discharge, and
storage [26]. However, despite their significant environmental and hydrological benefits,
implementation and maintenance of LIDs are costly [27,28]. Furthermore, little is known
about their effectiveness under climate-driven extreme flood conditions [27,29].

Several studies have compared LIDs with traditional methods of stormwater man-
agement. Gilroy and McCuen [29] evaluated two LIDs (cisterns and bioretention pits)
versus the traditional stormwater system in Maryland, USA. They pointed out that the
conventional off-site stormwater management system is not effective for small watersheds.
They also found that the size and spatial location of the LIDs affect their effectiveness
in reducing peak flows and total runoff volume. Dietz and Clausen [3] found the LIDs
outperformed the traditional practices for sustainable stormwater management at the
watershed scale. A similar study by Hood et al. [23] in Connecticut, USA, found that LIDs
effectively decrease runoff volume and peak flow rate by more than 1000% compared to
the traditional stormwater system. The time of concentrations of the hydrographs from
the LIDs are also significantly longer for intense storms with short durations and low soil
moisture conditions [23].

Although several studies have been conducted to evaluate the hydrological and envi-
ronmental benefits of LIDs, very few have assessed the LIDs under future precipitation [30]).
Zahmatkesh et al. [31] evaluated LIDs under climate change scenarios in New York City us-
ing SWMM and storm data from Coupled Model Intercomparison Project Phase 5 (CMIP5).
Their results indicated an overall increase of 48% in annual runoff volume due to climate
change, and the LIDs provide nearly 41% and 8–13% reduction of the volume and peak
flow, respectively. Zhou et al. [32] assessed the impact of climate change on urban flood
volumes under Representative Concentration Pathway (RCP 2.6 and RCP 8.5) scenarios
and the effectiveness of LIDs to reduce the flood volume in the city of Hohhot in northern
China. Their findings revealed that flood volume is due to increase by as much as 52%
in the future and that the LIDs were more effective in tackling the flood than the climate
change mitigation measures through reduction of carbon emission.

Earlier studies were mainly focused on the modeling of LIDs in small areas within
the watersheds [33–35], providing little understanding about their effects on the overall
watershed hydrology [36]. Large scale hydrologic and hydraulic modelling and optimiza-
tion of LIDs with conventional stormwater systems remain challenging. Most studies
generally consider single types of LIDs, for example, permeable pavements [37], biore-
tention ponds/rain gardens [38,39], rain barrels [40], rainwater harvesting/permeable
pavement [41], and bio-swales [42]. This is mainly due to the modeling difficulties and
lack of data to simultaneously simulate and optimize combinations of several LIDs. In
some cases, LIDs failed to achieve desired expectations of reducing stormwater runoff and
flooding problems since most of the models did not accurately incorporate the physical
characteristics of LIDs, such as the size and location [43–45]. To gain the full benefit from
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the combined LID and conventional stormwater systems, optimized implementation, in
terms of size, location, and type, plays an important role [19,46,47].

Therefore, to fill these research gaps, comprehensive hydrologic and hydraulic model-
ing is required that simulates and optimizes several LIDs under current and future extreme
storm events [27,48]. There are several hydrologic-hydraulic models, including Storm Wa-
ter Management Model (SWMM), Western Washington Hydrology Model (WWHM2012),
System for Urban Stormwater Treatment and Analysis Integration (SUSTAIN), Urban
Drainage and Sewer Model (MOUSE), Distributed Routing Rainfall-Runoff Model (DR3M),
Storage, Treatment, Overflow, Runoff Model (STORM), and Long-Term Hydrologic Im-
pact Assessment-Low Impact Development (L-THEA-LID), which are commonly used
to simulate the effects of LID on hydrology and water quality [49–51]. Among them, the
SWMM model has been extensively used in the U.S. and many other countries world-
wide [27,46,52–54]. For the present study, SWMM was selected due to its ability to model
dynamic rainfall-runoff properties in urban environment, easy to use graphic user interface
(GUI) and its wide applicability for planning, analysis and design related to drainage
systems in urban areas. SWMM can simulate the peak discharge, runoff volume, and
water quality for short- and long-term rainfall events, making it suitable for designing and
implementing several LIDs [46,52–54].

Different LIDs (e.g., bioretention cells, bioswales, infiltration trenches, rain gardens,
and permeable pavements) are incorporated into the model to evaluate their effectiveness in
reducing the runoff characteristics (e.g., total flow and peak flow). The efficacy of each LID
was evaluated by the ability to turn-on and turn-off specific LIDs and assess the changes
in flood level. The study also incorporates the change in storms into the stormwater
system design based on different climate change scenarios and models. While design
storms derived from historical observations are often used in stormwater management
design and planning, they may not represent the potential change in future precipitation.
Given that most stormwater systems are designed to last for multiple decades into the
future, consideration of future extreme storms is essential. Non-stationary IDF curves are
developed using both the observed precipitation and downscaled future precipitation data
obtained from the CMIP6 climate models under Sharted Socioeconomic Pathways (SSP585)
scenarios. Furthermore, the LIDs implementation requires optimization of their types,
sizes, and spatial distributions. The study determines suitable sizes and locations of the
LIDs by comparing them with the existing stormwater system for both the historical and
future 50 year and 100 year storm events.

2. Materials and Methods
2.1. Study Area and Data

The case study area lies in the Springbrook Creek drainage basin, located in the
southwest part of Renton City, Washington State (WA), USA. The city of Renton is a
fast-growing city in WA that is also currently suffering from frequent stormwater-related
flooding, making it an appropriate testbed for this study. The selected urban watershed,
shown in blue shade in Figure 1, covers 15 km2 area that comprises mostly warehouse
styles buildings. Along the drainage boundaries of the study area, there are wooded areas,
limited parking lots, and other paved areas. The majority of the impervious areas are
connected to the drainage system, including underground pipes and catch basins that
direct surface runoff from the streets, parking lots, and buildings towards a detention
wetland for natural water quality treatment and retention.

The primary cause of floods in the city is heavy precipitation during the late fall and
winter seasons. Parts of the city have already experienced many challenges to manage
stormwater adequately and effectively. For example, the city has experienced significant
flooding in 2009, 2019 and 2020 [55]. In December 2019, 114 mm (4.46 in) of rainfall was
recorded in 24 h, causing major basement and street flooding [56]. The city’s climate change
adaptation plan suggested that this type of extreme event would be more frequent and
intense in the future. A comprehensive study conducted by Kitsap County in western WA
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using global climate models (GCMs) projected an increase of 15% and 24% in the maximum
daily precipitation by 2080 under RCP4.5 and RCP8.5, respectively [57]. The projected
increase in winter precipitation and streamflow in the western part of WA are expected
to increase the flood risks in the Puget Sound region and the Cedar River Watershed,
where the Renton City is located [58]. The increasing precipitation trends will influence the
ability of the existing conveyance system to convey stormwater and can be a trigger for the
occurrence of major floods [59].

Figure 1. The study area (or City of Renton) with the weather station and Springbrook Creek that collects the stormwater
from streets drainages.

The historical precipitation data were obtained from a King County weather sta-
tion (known as 03u-Panther Creek Station, https://green2.kingcounty.gov/hydrology/
GaugeMap.aspx) (accessed on 6 August 2020). The station is located within the study area
(Figure 1) and has 60 years of hourly rainfall records. In addition to historical data, we
have considered the precipitation projections from 2020 to 2050 under different scenarios
from the Model for Interdisciplinary Research on Climate (MIROC6) and Centro Euro-
Mediterraneo sui Cambiamenti Climatici (CMCC) models, which are part of CMIP6 and
known to perform better in the region [60]. The historical data from 1994 to 2014 were used
as a baseline to downscale the precipitation projections.

10 m resolution land use data were obtained from the City of Renton database [56]. The
city comprises mostly commercial buildings with 2030 m2–12,140 m2 areas, wooded areas,
limited parking lots, and paved areas. 48% of the area is impervious, 12% is woodland with
dense growths of trees, and the rest are vegetation areas, which mainly consist of grasses,
small deciduous trees, and shrubs. In recent years, some of the wooded areas have been
converted into residential areas to accommodate the city’s growth. The newly developed
areas, which were not marked on the original city map, were delineated in this study based
on on-site inspection.

A 0.5 m resolution digital elevation model (DEM) was obtained from the City of
Renton database (CORMAP). The topography is relatively flat, with an approximately
3 m change (from 6 m to 9 m) in the elevation across the study area. It slopes slightly

https://green2.kingcounty.gov/hydrology/GaugeMap.aspx
https://green2.kingcounty.gov/hydrology/GaugeMap.aspx
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(0.5%) to the northeast towards the wetland. The elevation difference is used to design the
stormwater conveyance system (Emerson et al., 2005). A 10 m soil data obtained from Soil
Survey Geographical Database (SSURGO 2.2) was used with the USDA’s hydromorphic
classifications [61]. The dominant soil type in the study area is Woodinville Silty Loam
(Wo), with traces of Newberg Silty Loam (Ng) and Puget Silty Clay Loam (Pu). The Wo
and Pu soil types have relatively slower permeability rate with higher runoff potential,
whereas Ng soil type has a moderate to rapid permeability rates with relatively lower
runoff potential.

Part of the existing stormwater system in the study area is shown in Figure 2. The
system generally consists of curbs, gutters, channels, and ditches to carry runoff from the
roadways and drains to Springbrook Creek, which heads toward the northeast. The outfalls
of existing surface water conveyance system are illustrated in Figure 2. The creek drains
approximately 25 square miles of highly urbanized areas in the western King County,
WA [62]. For this study, the watershed area was divided into 120 lots. Most of the drainage
pipes were designed in 1997, making several areas (for example, eastern part of study area,
SW 27th Street, Lind Avenue SW and Springbrook Creek crossing of Oakesdale Avenue) to
be flood prone. Daily flow data obtained from the USGS flow monitoring station, which is
located at the outfall of the Springbrook Creek (gage id 12113346), the watershed was used
for calibration and validation of the SWMM model.

Figure 2. Parts of the stormwater network and existing LIDs in the study area.

In 2000, the city began working with FEMA to develop a methodology for flood
control improvements [63] and to solve existing flooding problems. Consequently, a com-
prehensive stormwater system improvement project was implemented to solve existing and
anticipated future street floods. However, the target water surface elevations in some areas
were not achieved the desired level of protection as shown in Figure 3 [64]. The flood zone
designation for the study is primarily Zone X (areas outside the 500 year floods inundation)
and Zone AE (areas subject to inundation by the 100 year floods). The 100 year floodplain
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is located at an approximate elevation of 4.8 m in Zone AE [55]. The embankment slopes
along Springbrook Creek range from 40% to 60%, which are considered flood-sensitive
slopes [65]. The 100 year peak flow to existing systems will cause severe flooding and ero-
sion in the area [63]. Therefore, using the existing conveyance system without appropriate
modifications will aggravate the flooding problems with the anticipated increase in storm
events in the future.

Figure 3. FEMA floodplain zones in part of the study area modified after CORMAP 2020.

2.2. Methodologies

Nonstationary IDF curves, the SWMM model, various LID scenarios in combination
with the existing stormwater system were used to evaluate and improve the stormwater
system under both current and future storm conditions. Figure 4 shows the schematic
representation of the different methodologies involved.

2.2.1. SWMM-Model Development

SWMM-5 was used to simulate the stormwater runoff and flow in the open channels,
pipes, and other drainage systems across the study area. It simulates the rainfall-runoff
process by considering the existing and proposed LIDs. The surface runoff was simulated
using dynamic wave routing and Manning’s equation [66]. Precipitation data, SCS CN
values for different land uses, and hydromorphic characteristics of sub-catchments are
the primary inputs to the SWMM model. The catchment was delineated using a 0.5 m
resolution DEM into 79 sub-catchments with 120 lots. Figure 5 shows the sub-catchments
and conduit map of the study area. Different sub-catchment level parameters, including
sub-catchment area, slope, CN, depression storage depth for impervious and pervious sur-
faces, Manning’s n values for impervious and pervious surfaces, percent zero (percentage
of impervious area that has no depression storage), and internal routing variables were
considered to calibrate the SWMM model (Table 1).
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Figure 4. Schematic diagram outlining the steps and methodologies involved in developing the
SWMM model and assess effectiveness of the LIDs.

Figure 5. The sub-catchments and stormwater system of the study area.
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Table 1. List of main variables used for the SWMM model development.

Variables/
Simulation Options Description Source

Curve Number Infiltration Method Describes how rainfall infiltrates to the upper zone
of soil in a catchment Calibrated

N Impervious Roughness of overland flow (Manning’s n) for
impervious sub-catchment Calibrated

Zero Impervious Percentage of impervious area with zero depression Calibrated

Width of Sub catchment Width of sub catchment area for overland flow
length of impervious

SWMM User Manual
[67]

Dynamic Wave Routing Method conveyance routes Classified by user

Storm event-type IA NRCS Type 1A rainfall distribution SWMM User Manual [67]

Surface slope (%) The slope of each sub catchment DEM

Surface layer Vegetation volume(fraction), % of a storage depth’s
volume that is taken up by vegetation. SWMM User Manual [68]

The SWMM model was calibrated and validated using four major storm events and
flow data obtained from the outfall detention pond of Springbrook Creek. After validation,
the model was used to simulate runoff from 50 and 100 year storms under historical and
downscaled future storm events. It was run with and without LIDs while considering the
conventional storm system as a baseline to quantify the percent reduction of total and peak
flows when LIDs are considered. This allows quantifying the effectiveness of the existing
and proposed LIDs to minimize flood risks.

2.2.2. Sensitivity Analysis

SWMM model outputs can be sensitive to several input data and parameters, making
sensitivity analysis an important step in the model development [69]. In this study, hydro-
logical and catchment-related parameters, namely Manning’s n for impervious surface,
impervious percentage with no depression, curve number, and width, were considered for
the sensitivity analysis (Table 2). The slope was not considered for the sensitivity analysis
because of the negligible slope of the study area. Manual sensitivity analysis by changing
each parameter independently by 5%, 10%, and 15% from the base values is used to assess
the simulated runoff volume and peak flow changes.

Table 2. SWMM parameters used for the sensitivity analysis.

Parameters Values Initial Values Source

Sub-catchment width Variable Geometry

Manning’s n for impervious surface 0.05–0.15 SWMM Manual

Impervious Percentage with no depression (%) 5–15 SWMM Manual

Curve Number Variable DEM, land use & soil data

2.2.3. Downscaling of Precipitation

Downscaled precipitation from climate models is required for the SWMM model to
simulate storm runoff in the future. Two climate models, namely MIROC6 and CMCC-
ESM2, were selected from the CMIP6 for the future precipitation projections under SSP
585 (highest emission) scenario. The two models were selected because of their ability to
reproduce the mean climate and variability at different time scales in the study area [69].
The projected precipitations were downscaled using statistical relationships with observed
precipitation at the selected weather station in the watershed. In general, many statisti-
cal techniques, including the Quantile-Quantile Mapping (QM) and Delta Change (DC)
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methods, are commonly used to bias correct and downscale the precipitation [70]. The
DC method was used in this study to downscale the precipitation projections because of
its simplicity and its reasonable accuracy. It uses a transfer function that depends on the
means of the observed and projected precipitation to correct the bias as shown below [71]:

PDelta
SD = PGCMSSP ×

PObs

PGCMhist.
(1)

where PDelta
SD is the bias-corrected precipitation, PGCMSSP is the raw GCM precipitation,

PObs and PGCMhist are the means of the observed and GCM precipitations, respectively.
The precipitation data from 1994 to 2014, which was obtained from the 03u meteorological
station in the King County database, was used for the bias correction. The performance of
the downscaling was evaluated using the Nash-Sutcliffe efficiency (NSE) and degree of
agreement (R) shown below.

NSE = 1− ∑n
i=1(Oi − Si)

2

∑n
i=1

(
Oi −O

)2 (2)

where, Oi represents the observed precipitation and O is the mean of the observed precipi-
tation, S is the simulated precipitation, and N is the number of observations. The range
of NSE lies between 1.0 to −∞, with a value of 1 indicating perfect agreement between
observed and modeled values. Similarly, the degree of agreement, R, ranges from 0 to
1, with a value of 1 indicating a perfect agreement. For the IDF curves and stormwater
analysis, precipitation data at sub-daily (or sub-hourly) are generally required. The 15-min
precipitation data obtained from the City of Renton was used as the base data to develop
the historical IDF curves. For the future (2020–2050), the downscaled daily precipitation
projection was transferred to 15 min precipitation using the SCS Type IA distribution.

2.2.4. Development of Precipitation IDF Curves

Design storms obtained from the IDF curves are required to design the conventional
and LID stormwater management system. This study developed the IDF curves for both
historical and future periods using the California empirical method [71]. Precipitation data
measured at 15 min intervals from 1995 to 2019 was used to develop the historical IDF
curves. The daily precipitation projection from 2020 to 2050 under the SSP 585 emission
scenario was downscaled using DC statistical method and then disaggregated to 15 min
precipitation data using the SCS Type IA distribution. The disaggregated data were then
used to develop the IDF curves for the future period.

2.2.5. LID Scenarios

The existing stormwater system in the study area includes mainly a network of
underground pipes, catch basins, curbs, and gutter that collect runoff throughout the
watershed and direct it to a detention wetland for retention and natural treatment. After
incorporating the existing drainage system in the SWMM model, different LID scenarios,
comprised of a single type of LID or combination of different types of LIDs, were considered
to investigate their comparative benefits to reduce the runoff across the watershed. The
scenarios were formulated on two groups of flood regions based on primary land covers
and runoff coefficients of the sub-catchments. Group 1 covers 34 sub-catchments containing
a total of 27 commercial developments, while Group 2 covers 45 sub-catchments with a
total of 56 private properties

In order to optimize the LID implementation strategy, two scenarios were simulated
using the SWMM. The first scenario incorporated the conventional stormwater system
without LIDs while the second scenario considered the existing LID practices as shown
in Figure 6. This analysis helps us evaluate the efficacy of the existing LIDs to control the
flooding event against the conventional stormwater system in the study area. Further-
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more, the performance of individual LIDs was evaluated to quantify their effectiveness
in reducing the total and peak flow during flooding events. Based on their performance,
five types of LIDs, namely, the infiltration trench (IT), rain barrel (RB), rain garden (RG),
bioretention (BR), and permeable pavement (PP) were selected. Comparison among indi-
vidual LIDs helps in establishing the scenarios where the maximum number of LIDs can be
implemented at each applicable adoption level. While many scenarios could be developed
and considered for a complete analysis of various LIDs, in this study we have selected six
plausible scenarios that are summarized in Table 3. The SWMM model was run separately
for each scenario and compared the associated results with the results from the baseline
run that considers only the existing stormwater system.

Figure 6. Spatial distribution of LID in part of the City of Renton with existing urban storm system modified after
CORMAP 2020.

Table 3. Description of the six LID scenarios.

Scenario Remark

(S1) Only RG Raingarden (RG) collecting the rainwater from land surface and roofs.

(S2) Combination IT+ BR Rain barrel (BR) collecting runoff from the roofs, while infiltration trench (IT)
capturing the runoff from driveways.

(S3) Only PP Permeable pavement (PP) collecting the runoff from parking lots.

(S4) Combination PP + BR Permeable pavement collects the rainwater in parking lot and driveway, while
bio-retention (BR) collects the runoff from roof and 10% runoff from parking lots.

(S5) Only BR Bio-retention capturing the driveway runoff in the public properties.

(S6) Combination RB + BR + IT Rain barrel collecting the runoff from roofs, Bio-retention
and Infiltration trench capturing the runoff from the entire driveway.

The number of LIDs associated with a given house depends on the type of the LIDs.
Zero to four rain barrels per house are used. For raingardens, bioretention, or permeable
pavement, zero to one unit per house is used. The numbers of the different LID types in
each sub-catchment are entered into the SWMM input file by multiplying the numbers
with the number of houses in the sub-catchment.
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The Infiltration trenches parameters are optimized according to the sub catchment
properties, with the area of each unit per sub catchment ranging from 3 m2 to 80 m2 (or 20%
to 50% of the impervious area) [72]. The Infiltration trenches can take 50% of the front yard
(the driveway) of private properties. For the raingarden, the width is considered between
0.5 m–1 m and take 50% of impervious runoff (driveway) and 25% of the roof. The other
25% of runoff from the roof will be routed to rain barrel. The runoff is calculated based
on the houses in each sub catchment and the runoff capacity, and then routed through
impervious surfaces. The depth of the raingarden is considered to be between 8 cm to
12 cm based on the topography of the surface [73]. Another factor that may influences the
size of the raingarden is soil conditions. A poorly drained soil will require raingarden with
a larger surface area and shallow depth, while a well-drained soil will require a raingarden
with small surface area but deeper depth [73]. For bioretention, the design suggested for the
parking lots is to have at least 15–20 cm deep and implemented in areas with underlying
clay or sandy soil [74].

Due to the moderately fine content of the topsoil, the soil in our study area is consid-
ered to be moisture sensitive. During wet season (typically between October and May), the
increase in soil moisture can cause significant reduction in the infiltration capabilities. In
addition, once the soil is wet, the time required to dry it will be long and significantly affect
the functioning of the infiltration system. Hence, the bio-retention may need underdrain at
the bottom to allow for more infiltration.

The surface of private paths (garage) and parking lots are considered to be permeable,
porous concrete and porous asphalt, respectfully. The porous asphalt is typically ranged
from 7 to 18 cm depending on vehicle types and runoff volume [75].

3. Results and Discussions
3.1. Rainfall-Runoff Modeling

Comparison of the observed and downscaled daily precipitation for the MIROC6
and CMCC-ESM2 GCMs are shown in Figure 7a,b, respectively. Results shows that the
downscaled precipitation match the observed daily precipitation reasonably well. Overall,
the MIROC6 model performed better (R2 = 0.82 and NSE = 0.81) than the CMCC-ESM2
model (R2 = 0.69 and NSE = 0.64). Based on this performance the MIROC6 model predic-
tions under SSP 585 scenario were used to evaluate the LIDs performance under the future
design storms.

Figure 8 shows the historical and future IDF curves for the study area. The precipita-
tion intensities are expected to increase in the future for almost all durations and return
periods. For example, the historical 100 year precipitation intensity event will be a 25 year
event in the future under the SSP585 climate change scenario. On average, the observed
100 year precipitation intensity will increase by 2.5% to 30% by the mid-century, with the
increase in short-duration precipitation being more prominent. The stormwater system is
highly vulnerable to short-duration extreme precipitation, indicating that climate change
will significantly impact the stormwater systems in the future.

3.2. Sensitivity Analysis

The SWMM sensitivity analysis results are presented in Table 4. The 5% to 15%
increase in the sub-catchment’s width, CN, percent Zero impervious (impervious area with
no depression storage), and Manning’s n value for impervious surfaces results in the peak
flow reduction of 10.75% to 22.44%, 17.29% to 24.74%; 13.89% to 22.44%, and 15.25% to
23.51%, respectively. This indicates the model is equally sensitive to the four parameters
we have considered.
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Figure 7. (a). Observed and downscaled daily precipitation from the MIROC6 Model. (b). Observed and downscaled daily
precipitation from the CMCC-ESM2 Model.

Figure 8. IDF curves for the historical (a) and future (b) periods for the selected station (3u).

Table 4. Sensitivity analysis of SWMM parameters on peak flow.

Parameter Test Percentage
Change (%)

Reduction in
Peak Flow (%)

Percentage
Change (%)

Reduction in
Peak Flow

Percetage
Change (%)

Reduction in
Peak Flow (%)

Zero Impervious 5 −13.89% 10 −16.9% 15 −22.44%
Width 5 −10.75% 10 −14.60% 15 −18.31%

Manning n 5 −15.20% 10 −19.86% 15 −23.51%
CN 5 −17.29% 10 −20.69% 15 −24.74%
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3.3. Calibration and Validation of SWMM

Four storm events were used to calibrate and validate the model. Figure 8 illustrates
the observed and simulated flow rate for the four precipitation events. Overall, the model
captures the hydrographs reasonably well, particularly the rising and recession of the
hydrograph. The peak flows are slightly underestimated for the calibration period, whereas
they are overestimated for the validation period (Figure 9). The model underestimates
the low flows in the validation period, but these low flows are not important in terms of
stormwater system design [72]. The NSE values for the calibration storms are 0.81 and
0.79, while R2 values are 0.83 and 0.81 (Table 5). The NSE values for validation storms
are 0.80 and 0.84, and R2 values are 0.82 and 0.87. Overall, the results indicate that the
SWMM model reasonably reproduces the flow hydrograph for the historical period with
the existing stormwater system, land use, and hydromorphic conditions of the watershed.
The calibrated SWMM model is then used to simulate storm runoff for different past and
future storm events and LID scenarios.

Figure 9. Calibration results for the storm events in (a) 18–20 June 2019, (b) 7 October–7 December 2019; validation results
for the storm events in (c) 21 August 2019, (d) 8 October 2019.

Table 5. Performance evaluation for the calibration and validation storms.

Period NSE R2

Calibration (7 October 2019–7 December 2019) 0.81 0.83
Calibration (18 June 2019–20 June 2019) 0.79 0.81

Validation (21 August 2019 for 23 h) 0.80 0.82
Validation (8 October 2019 for 21 h) 0.84 0.87



Water 2021, 13, 2889 14 of 21

3.4. Effects of Existing LIDs on Runoff

The effectiveness of the existing LIDs to reduce flow rate at the drainage outlet was
assessed by turning on and off the specific LIDs (i.e., infiltration trench (IT), permeable
pavement (PP), bio-retention (BR), rain garden (RG), and rain barrel (RB)). Figure 10 shows
the flow rate at the outlet with and without considering the existing LIDs in addition
to the conventional stormwater system. The result shows that the existing LIDs play an
important role in reducing runoff from the drainage area. Additionally, the effectiveness
of the individual LIDs are assessed by replacing all the existing LIDs with a specific LID.
Figure 11 shows the percentage reduction of flow rate when a single type of LID replaced
all the existing LIDs in the stormwater system. As expected, the flow reduction varies
depending on the types of LIDs.

Figure 10. Comparison of simulated flow rates (cfs) at the drainage outlet with and without considering the existing LIDs
in the stormwater system.

Figure 11. Reduction of flow (in %) for different LID types compared to the existing stormwater system.

The maximum flow rate reduction achieved compared to the baseline scenario with
IT, PP, RG, BR, and RB were 84%, 63%, 36%, 33%, 29%, and 21%, respectively.
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The baseline scenario considers the existing stormwater system, which include both
the conventional stormwater and LIDs. The results indicated that infiltration facilities
namely IT and PP have greater potential to reduce the surface runoff and peak flow than
the storage facilities. The outcomes of single type LIDs in reducing surface runoff were
consistent with the studies conducted by Xie et al. [76] and Bai et al. [77].

3.5. Effects of Proposed LIDs on Runoff

In addition to the existing stormwater system, we considered additional LIDs to
further reduce the runoff. Six LID scenarios, based on the types of property and runoff
coefficients of the sub-catchments, were considered to find the optimal combination of
LIDs in the study area. Figure 12 shows the percent reduction in total flow by the different
LID scenarios for 50 and 100 year storms events in the past and future periods. All the
scenarios reduced the flood risk but with different magnitudes.

Figure 12. Reduction of total flows (%) by different LIDs scenarios for the 50- and 100-year historical (HIST) and future (CC)
storm events. Dotted lines represent the reduction of flow over selected historical and future design storms.

The average reduction of total flow for the historical (HIST 50 and 100) and future (CC
50 and 100) storm events are 29.8%, 34.3%, 52.5%, 62.0% 15.8% and 65% for LID scenarios
S1, S2, S3, S4, S5 and S6, respectively.

The combination of RB+ BR+ IT (S6) offered maximum reduction in total flow (80%
for 50 year and 70% for 100 year event), while IT + BR (S2) provides only 45% and 34%
flow reduction for 50 and 100 year historical events, respectively. When single type of LIDs
is considered, PP only (S3) reduces the flow by 65% and 57% for 50 and 100 year historical
events, respectively. In contrast, BR only (S5) has the least effectiveness in reducing the
total flow.

The different LID scenarios considered also performed well in minimizing the peak
flows, but at lower percentage compared to the reduction in the total flow (Figure 13).
The comparison results among the six scenarios are similar to that of the total flow. For
example, the RB+ BR+ IT (S6) provides maximum reduction in peak flows for all conditions
(50 and 100 year historical and future storm events), whereas the BR only (S5) has lowest
reduction in peak flow. On an average the overall reduction of peak flow for the S6 and S2
scenarios are 51.25% and 7%, respectively. For the single type of LIDs, S3 (PP) showed best
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performance in reducing peak flow (50% and 43% for the 50 year and 100 year historical
storm events). For all the scenarios, the percentage reduction of total and peak flows
for the future period are lower compared to the historical period. This indicates a better
implementation of the LID mixes using a full optimization approach to improve their
effectiveness under increased future storm and flood events.

Figure 13. Reduction of peak flows (%) for different LIDs scenarios for 50- and 100-year storm events of the historical (HIST)
and future periods (CC). Dotted lines represent the reduction of flow averaged over selected historical and future design
storms.

Among the single LIDs, infiltration-based facilities (IT and PP) were better in reducing
the surface runoff while the combined LID model S6 (RB+ BR+ IT) and S4 (PP + BR)
performed better compared to any other combination under historical and future climate
change scenario. Amalgamation of filtration and storage-based LID facilities provide a
greater control over the surface runoff and peak flow. Hence, optimal combination of
LIDs is necessary for obtaining full benefits from the green infrastructure development
for stormwater management. Overall, the appropriate implementation of LIDs can help
reducing the likelihood of flooding from increased extreme precipitation, and thus, assist
tackling the urban stormwater flooding issues in the future with additional benefit to the
region water quality, ecology, and socioeconomic. Therefore, this study will help the water
managers and urban developers to better understand the effectiveness of different LIDs
in tackling future storm events and flooding problems in the city of Renton and other
identical areas.

4. Conclusions

Hydrodynamic modeling was performed for Renton City in WA using the SWMM
model to assess the performance of existing and proposed LIDs to reduce total and peak
flows associated with 50 and 100 year past and future storm events. After calibrating the
SWMM model using event-based simulations, it was used to simulate the runoff from
past and future storm events with and without LIDs. We used downscaled daily rainfall
projection from CMIP6′s MIROC6 model under the SSP-585 climate change scenario, which
is then transferred to hourly precipitation based on the SCS Type 1A distribution to develop
the IDF curves for the future period. Overall, the storm intensity and frequency in the
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city are expected to increase in the future, leading to an upward shift in the future IDF
curves compared to the historical curves. The effectiveness of the existing LIDs in the
city was evaluated by comparing the SWMM simulation results with and without LIDs.
The performance of each LID was evaluated to reduce the past and future flow rates. An
additional six different LID scenarios were investigated to identify the best LID mixes for
effective management of the stormwater under past and future storm conditions. The main
conclusions derived from this study are:

(a) Statistical comparison of observed and downscaled precipitation data derived from
the MIROC6 and CMCC-ESM2 confirmed that the MIROC6 is a better climate model
to reproduce the observed precipitation in the study area. Precipitation is expected to
increase under the highest emission scenario, which further aggravates the problem
of stormwater management in the study area. The precipitation intensity for the
100 year return period will increase by 2.5% to 30% in 2020–2050 under the SSP585
compared to the historical observations.

(b) Sensitivity analysis revealed that the percent imperviousness is the most sensitive
parameter in the SWMM hydrological model for the study area. High variations
in curve number magnitudes also have a relatively higher impact on the runoff.
Percent changes in the width parameter cause an increase in overland flow length
and overland flow travel time.

(c) Higher values of NSE (>0.8) and R2 (>0.79) for the calibration and validation periods
confirm that the SWMM model captured the rainfall-runoff relationships across the
watershed well. The model has the ability to simulate stormwater and runoff by
considering the traditional and LID stormwater system under past and future storm
conditions.

(d) Incorporating LIDs into the traditional stormwater system helps to reduce the stormwa-
ter and runoff. Compared to other commonly used LIDs, incorporating the infiltration
trench was found to be more efficient in controlling the peak flows, while the rain
barrel provided the lowest reduction in peak flows.

(e) In order to minimize the increasing flood risk in the study area, six LID scenarios
were considered to extend the existing stormwater system, which consists of both
conventional and LID stormwater. The combined implementation of the rain barrel
collecting the rooftop runoff, bio-retention, and infiltration trench provides the most
effective control to stormwater and runoff from the study area under both past and
future storm conditions. The added LIDs are relatively more effective in reducing
the flow volume than the peak flow. It was also found that the volume and peak
flow reduction by the selected LID scenarios are relatively lower for the future storms
compared to the historical ones because of the higher precipitation intensity in the
future. A full optimization of the LIDs implementation is needed to further improve
their performance. The optimization should include several other practically feasible
LIDs, the size, and locations of the LIDs.

Finally, the presented study showed the potential effectiveness of LIDs to minimize the
increasing flood risk due to climate changes that most major cities faced in the United States.
The study can be extended by including more LIDs, conducting rigorous optimization of
the LID implementations, applying to other cities, and considering several climate change
projections of storms. The study highlighted the effectiveness of green development (LIDs)
for reducing urban stormwater runoff and peak flow under climate change scenarios
but lacks impact on the water quality and groundwater level and societal and financial
parameters. These limitations present important directions for the future work.
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Abbreviation Meaning
LID Low Impact Development
SWMM Storm Water Management Model
CMIP6 Coupled Model Intercomparison Project Phase 6
RCP Representative Concentration Pathways
SSP Shared Socio-economic Pathway
GCMs global climate models
MIROC Model for Interdisciplinary Research on Climate
CMCC-ESM Euro-Mediterranean Centre on Climate Change coupled climate model-Earth

System Model
SSURGO Soil Survey Geographical Database
USDA United States Department of Agriculture
HIST Historical
CC Climate Change (future)
FEMA Federal Emergency Management Agency
NSE Nash-Sutcliffe efficiency
IDF Intensity-Duration-Frequency
SCS-CN Soil Conservation Service-Curve Number
CN Curve Number
DEM Digital Elevation Model
NRCS Natural Resources Conservation Service
IT Infiltration Trench
RB Rain Barrel
RG Rain Garden
BR Bioretention
PP Permeable Pavement
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