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Abstract: The coastal area of Bangladesh is highly vulnerable to extreme sea levels because of
high population exposure in the low-lying deltaic coast. Since the area lies in the monsoon region,
abundant precipitation and the resultant increase in river discharge have raised a flood risk for
the coastal area. Although the effects of atmospheric forces have been investigated intensively,
the influence of precipitation on extreme sea levels in this area remains unknown. In this study,
the influence of precipitation on extreme sea levels for three different stations were investigated
by multivariate regression using the meteorological drivers of precipitation, sea level pressure,
and wind. The prediction of sea levels considering precipitation effects outperformed predictions
without precipitation. The benefit of incorporating precipitation was greater at Cox’s Bazar than at
Charchanga and Khepupara, reflecting the hilly landscape at Cox’s Bazar. The improved prediction
skill was mainly confirmed during the monsoon season, when strong precipitation events occur.
It was also revealed that the precipitation over the Bangladesh area is insensitive to the El Niño-
Southern Oscillation and Indian Ocean Dipole mode. The precipitation over northern Bangladesh
tended to be high in the year of a high sea surface temperature over the Bay of Bengal, which may
have contributed to the variation in sea level. The findings suggest that the effect of precipitation
plays an essential role in enhancing sea levels during many extreme events. Therefore, incorporating
the effect of terrestrial precipitation is essential for the better prediction of extreme sea levels, which
helps coastal management and reduction of hazards.

Keywords: sea level; extreme sea levels; precipitation; river discharge; Bangladesh

1. Introduction

Global mean sea level (MSL) rise induced by climate change is an alarming issue with
respect to the sustainability of the world’s coastal communities [1,2]. The global MSL is
projected to increase by 0.52–0.98 m by the end of this century [3], which is anticipated
to increase the risk of floods and deteriorate freshwater environments, particularly in
low-lying regions. The Bangladesh coast is considered to be highly vulnerable to the
adverse impacts of sea level rise [4–6]. Its geographical characteristics, with an active
deltaic coast and low coastal elevation (1–5 m), make the area more vulnerable to sea level
extremes [6,7] (Figure 1). Inadequate infrastructure and high population exposure also
enhance the vulnerability of this area [5,8,9]. A one-meter increase in MSL by the late
21st century could affect approximately 1000 km2 of coastal areas in Bangladesh [10,11].
Therefore, it is essential to assess the magnitude of sea level extremes that are typically
caused by meteorological and oceanic drivers.
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Figure 1. Topography around the Bangladesh coast and the locations of the selected study sites. The 

Cox’s Bazar station is located at 21.45° N and 91.95° E, Charchanga at 22.22° N and 91.06° E, and 

Khepupara at 21.85° N and 90.08° E. 

The review of the related literatures noted that the extreme sea level (hereafter re-

ferred to as ESL) mainly arises from the interactions of meteorological factors, such as low 

atmospheric pressure and high winds, and oceanic factors, such as tides, surges, and 

ocean currents [12–18]. Another factor related to the hydrological cycle is the discharge of 

precipitated water from continental upstream, which has been studied in many coastal 

areas across the world [19–22]. The contributing factors are illustrated in Figure 2. Among 

these factors, the effect of precipitation on ESL variability remains unexplored along the 

coast of Bangladesh, whereas other factors have been studied intensively [10,11,16,17,23–

27]. The sensitivity experiment of the ocean model revealed that the river discharge affects 

the interannual variation of sea surface height near the river mouth [28]. The role of the 

ocean and atmospheric factors and precipitated water discharge to the long-term sea level 

variability along the coast of Bangladesh was addressed in earlier studies. However, the 

influence of terrestrial precipitation on ESL events at a daily time scale remains unknown. 

Therefore, the investigation of the precipitation effect on ESL events at a daily time scale 

represents the novelty of this study, and it is expected that the outcomes will contribute 

to improve the forecast of ESL events and disaster prevention.  

Figure 1. Topography around the Bangladesh coast and the locations of the selected study sites. The
Cox’s Bazar station is located at 21.45◦ N and 91.95◦ E, Charchanga at 22.22◦ N and 91.06◦ E, and
Khepupara at 21.85◦ N and 90.08◦ E.

The review of the related literatures noted that the extreme sea level (hereafter referred
to as ESL) mainly arises from the interactions of meteorological factors, such as low
atmospheric pressure and high winds, and oceanic factors, such as tides, surges, and
ocean currents [12–18]. Another factor related to the hydrological cycle is the discharge of
precipitated water from continental upstream, which has been studied in many coastal areas
across the world [19–22]. The contributing factors are illustrated in Figure 2. Among these
factors, the effect of precipitation on ESL variability remains unexplored along the coast
of Bangladesh, whereas other factors have been studied intensively [10,11,16,17,23–27].
The sensitivity experiment of the ocean model revealed that the river discharge affects
the interannual variation of sea surface height near the river mouth [28]. The role of the
ocean and atmospheric factors and precipitated water discharge to the long-term sea level
variability along the coast of Bangladesh was addressed in earlier studies. However, the
influence of terrestrial precipitation on ESL events at a daily time scale remains unknown.
Therefore, the investigation of the precipitation effect on ESL events at a daily time scale
represents the novelty of this study, and it is expected that the outcomes will contribute to
improve the forecast of ESL events and disaster prevention.

Precipitation in and around Bangladesh has increased in recent decades [29–31] and is
projected to have increased further by the late 21st century [32,33]. As a low altitude basin
area of the three major river systems of the GBM (Ganges–Brahmaputra–Meghna) rivers,
the coastal area of Bangladesh receives abundant precipitated water [34], which enhances
the sea level near the coast and causes severe coastal flooding [6,8,9,25,30]. Hence, it is
likely that the river discharge enhances the sea level in this region.

Figure 3 illustrates the seasonal variation of the daily sea level and precipitation in
1999, observed at Cox’s Bazar area (see Figure 1 for location). There are marked sea level
peaks during the monsoon season, which appear to coincide with the precipitation peaks.
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The synchronized variation in daily sea level and precipitation shown in Figure 3 is a
common characteristic observed in many other years. Figure 3 strongly suggests that
precipitation enhances the sea level at a daily time scale, and its impact seems to be large
for ESL events. Meanwhile, Figure 3 also suggests the role of other forcing factors. Strong
precipitation events during the monsoon season are often caused by synoptic atmospheric
disturbances [35], which have a potential to increase sea levels, even though precipitation-
induced river discharge is absent, because the disturbances usually accompany changes
in air pressure and wind speed. Considering this specific geographical background and
high precipitation over this area, it is important to verify the contribution of precipitation
variability during ESL events. Hence, the objective of this study was to investigate the
effect of precipitation on ESL events at a daily time scale. The research was mainly
conducted based on statistical analysis. It was hypothesized that the ESL prediction with
the consideration of precipitation effect would outperform that without precipitation.
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Figure 3. The time series of daily observed sea level (red) at Cox’s Bazar station and area average precipitation (black) near
Cox’s Bazar area (22◦–22.5◦ N and 21.5◦–22.5◦ E) in 1999. The shaded period represents the period for the monsoon season
(late May to early October).
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The following sections of this paper are outlined as follows. The adopted materials
and methods are described in Section 2. The obtained results are explained in Section 3.
The relevant discussions are provided in Section 4. The concluding remarks are mentioned
in Section 5.

2. Materials and Methods
2.1. Data and Variables

The variability of ESL was investigated at three selected coastal sites. These sites are
located in different geographical settings (Figure 1). Cox’s Bazar is located in the eastern
coastal area and is characterized by a hilly landscape. Charchanga is located in the lower
estuary of the GBM river system. Khepupara is located in the low-lying deltaic plain of the
western coast. Daily station-observed sea level data, provided by the University of Hawaii
Sea Level Center [UHSLC] [36], were used. The studied periods were 1983–2006 for Cox’s
Bazar, 1980–2000 for Charchanga, and 1987–2000 for Khepupara, based on the availability
of in-situ sea level data. The satellite-observed daily gridded (0.25◦ × 0.25◦) anomalous sea
level product of the Copernicus Climate Change Service (C3S) was adopted to investigate
the spatial pattern of coastal sea levels during 1993–2006 [37].

The sea level near the Bangladesh coast exhibits prominent seasonal variation [38]
corresponding to the monsoon [39] and regular tidal cycles. An example of the seasonal
variation of the daily sea level at Cox’s Bazar station for a one-year period of 1998 is
shown in Figure A1. The figure shows a seasonal variation in sea level corresponding to
pre-monsoon, monsoon, and post-monsoon seasons. To remove such low-frequency compo-
nents, daily sea level anomalies (hereafter referred to as SLA) relative to the 91-day running
mean were used. As demonstrated in Figure 4, the SLA represents the high-frequency
daily sea level variations caused by meteorological factors and river discharge. Then, the
ESL events were determined by applying the threshold value of the 99th percentiles in the
daily SLA time series, following the method of previous studies [40,41]. The 99th percentile
high SLA values were 0.562 m, 0.486 m, and 0.427 m (indicated by red lines in Figure 4),
and the number of selected ESL events were 69, 62, and 37, respectively, for Cox’s Bazar,
Charchanga, and Khepupara station.

Daily precipitation data were obtained from APHRODITE-V1003R1 [42], which cov-
ers land area at spatial resolution of 0.25◦ × 0.25◦. The daily SLP and wind data were
obtained from the Japanese 55-year Reanalysis [JRA55] [43], whose horizontal grid size is
1.25◦ × 1.25◦. For precipitation, SLP, and winds, the area-averaged values over 20◦–27◦ N
and 87.7◦–93◦ E were commonly used for all three sites. The area roughly corresponds to
Bangladesh and is also a part of the hydrological catchment of GBM. At the determination
of this area, we conducted a pre-analysis, aiming to identify the source area from where
the precipitated water could influence the sea level. We found that the daily sea level for
the periods of extreme events was highly correlated with the daily precipitation over the
lower river basin of the GBM covering the Bangladesh area (not shown). This convinced
us that the domain setting for the area-average was reasonable. This result may also reflect
the effects of humans’ control of river water in the upper river basin [44–46], which results
in a low correlation between sea level and precipitation in the upper-river basin.
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Figure 4. (a) Time series of daily sea levels at Cox’s Bazar during 1983–2006. The green line represents
the observed daily sea level. The dark orange line shows the 91-day running mean, and the blue line
shows SLA. The discontinuity in the time series denotes the missing data. (b) Same as (a) but for
Charchanga during 1980–2000. (c) Same as (a) but for Khepupara during 1987–2000. The red lines
in a, b, and c represent the 99th percentile values used for the selection of ESL events, which were
0.562 m, 0.486 m, and 0.427 m for Cox’s Bazar (a), Charchanga (b), and Khepupara (c), respectively.

2.2. Empirical Methods

A multivariate linear regression (MLR) analysis was used to investigate the effect
of precipitation on the daily variability of sea level during the extreme events. The
MLR has been widely used to discuss the mechanisms of sea level variations at vari-
ous timescales [18,47,48]. Using MLR statistics, the targeted variable (observed daily
SLA) could be described by the linear combination of explanatory variables. Previous
studies analyzed the linear relationship between sea level and explanatory variables of
sea level pressure (SLP), precipitation, air temperature, winds, and climate variability
indices [18,48–50]. Here, we selected four explanatory variables: precipitation, SLP, zonal
wind (U), and meridional wind (V), and we evaluated their influences on sea level vari-
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ations. To represent the characteristics of the used dataset for the selected ESL events, a
summary of descriptive statistics of the variables at each of the three stations has been
added in Section S1. It might be best if we can incorporate river discharge as an additional
explanatory variable for more skillful MLR. However, the river discharge data were un-
available in the upstream regions of the targeted sea level stations. The prediction equation
for the observed SLA is described as

SL’(t) = a1 × SLP(t) + b1 × U(t) + c1 × V(t) + d1 × Pre(t) + e1 (1)

Herein, t represents the duration of the event, which ranged from −6 to 0, correspond-
ing to six days before the targeted ESL (t = −6) to the day of the ESL event (t = 0). As
indicated in Equation (1), our focus was the seven-day variation of SLA and its controlling
factors. This time range was determined by considering the fact that the durations of the
ESL events are generally around a week, probably reflecting the life span of storm-induced
surges and cyclones [18,48]. SL’ represents the predicted SLA. Pre represents the accumu-
lated precipitation over the preceding five days for each t, to account for the delayed effect
of runoff after precipitation. According to our pre-analysis, it was found that the setting
of five-day accumulated precipitation outperformed in comparison with other possible
settings regarding the length of the preceding days (Figure A2). This result may imply
that the typical time scale of river discharge over this rain-prone area is approximately
five days, although this hypothesis needs to be investigated using reliable river discharge
data. The explanatory variables were standardized, and the MLR analysis was performed
for each ESL event. The regression coefficients are represented as a, b, c, and d, while e
represents the intercept value. The coefficients were determined for each site and for each
selected event.

To elucidate the impact of precipitation on the SLA, another MLR analysis was con-
ducted. Without the precipitation effect (Pre), the MLR equation is rewritten as

SL’(t) = a2 × SLP(t) + b2 × U(t) + c2 × V(t) + e2 (2)

The predicted sea level anomalies obtained from MLR Equations (1) and (2) were
evaluated using the same seven-day time series of the observed daily SLA as reference data.
The goodness of fit of each prediction was evaluated by R2. The R2 values were expected to
be different between two predictions, and an R2 close to one denotes that the MLR is very
skillful. If the prediction using Equation (1) outperforms the prediction using Equation (2),
it means that adding precipitation data could improve the prediction of SLA during the
ESL event. It was anticipated that the contribution of precipitation to the prediction of
ESL may be influenced by the multicollinearity of the variables. To argue this point, we
performed a correlation analysis among the variables for each ESL event of the three
study stations (Section S2). It showed that the correlation among the explanatory variables
was not significant in the majority of the events, which denoted the independency of the
explanatory variables in the MLR (Table S4). In this study, the difference in R2 between the
two predictions was regarded as the significance of the effect of precipitation. If R2 for the
prediction with precipitation (i.e., Equation (1); hereafter referred to as WP) is greater than
that without precipitation (i.e., Equation (2); hereafter referred to as WOP), we can consider
that precipitation is crucial for the targeted extreme event. Thus, a larger difference in
R2 between predictions WP and WOP denotes a stronger influence of precipitation on
sea level variations. The R2 value was evaluated for all selected events to determine the
spatial and temporal characteristics of the effect of precipitation on the sea level. One
may anticipate that the difference in R2 simply reflects the difference in the number of
explanatory variables between Equations (1) and (2), rather than the precipitation effect.
We have argued this point in Section 4.

In addition to the MLR analysis, the influence of remote and local sea surface tem-
perature (SST) was analyzed to investigate the relationship between SST and interannual
variabilities of high sea level and precipitation in the studied region. To explore the role
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of large-scale atmosphere–ocean coupled modes, the Oceanic Niño Index [ONI] [51] and
the Dipole Mode Index [DMI] [52] were obtained from the National Weather Service and
Physical Sciences Laboratory of NOAA, respectively. Aside from these remote SST effects,
local SST in the Bay of Bengal was also analyzed for the above-mentioned purpose. For this,
we use Optimum Interpolation Sea Surface Temperature [OISST] [53] data from NOAA.

3. Results
3.1. Influence of Precipitation in Selected Cases

In this section, the effect of precipitation on SLA was evaluated using MLR statistics.
Figure 5 compares the variations of predicted and observed sea levels for a typical event at
each station. Here, we only presented successful cases, in which the sea level prediction
was nicely improved by adding the precipitation effect. We will later examine all extreme
cases to see under what condition the effect of precipitation plays a crucial role. At Cox’s
Bazar, the observed daily sea level on 10 July 2006 was well captured by the prediction
with precipitation (i.e., Equation (1)), which achieved R2 = 0.982 (Figure 5a), and the root
mean squared error (RMSE) was 0.03. This result suggests that the evolution of ESL was
mainly controlled by meteorological factors. However, when the effect of precipitation
was excluded, the R2 decreased to 0.371 (Figure 5a), and the RMSE became 0.23. At
Charchanga on 18 September 1997, the prediction with precipitation was more skillful
(R2 = 0.974, RMSE = 0.04) than the prediction without precipitation (R2 = 0.645, RMSE = 0.13)
(Figure 5b). At Khepupara on 19 November 1988, the prediction with precipitation also
performed better, although the differences in R2 between the prediction with (R2 = 0.983,
RMSE = 0.02) and without precipitation (R2 = 0.772, RMSE = 0.09) were small (Figure 5c)
compared with those of Cox’s Bazar and Charchnaga stations. The difference in R2 between
the two predictions implies that the impact of precipitation on ESL differed for each station.
We decomposed the MLR Equation (1) to understand the causality of the precipitation
effect for the predictions of ESL (Section S3). Figure S1 confirms that the influence of
precipitation on sea level rise during the ESL event was larger than the influence of other
atmospheric forces.
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Figure 5. (a) The observed SLA (bar) and predicted SLAs for the prediction with precipitation (WP, red line) and without
precipitation (WOP, black line) at Cox’s Bazar for the case of ESL on 10 July 2006. (b,c) same as (a) but for Charchanga on
18 September 1997 and Khepupara on 19 November 1988, respectively.

3.2. Evaluation of the Predictability for All Events

In Section 3.1, we confirmed that the consideration of precipitation could enhance
predictability of the sea level for selected events. Here, a composite analysis for all ESL
events was performed to understand the spatiotemporal variations of sea level and forcing
parameters. Figure 6 displays the time series of SLA and meteorological variables, averaged
for all selected ESL events. For all three of the stations, the mean SLA was highest on
the day of the extreme (t = 0), with a gradual increase from the prior days (Figure 6a–c).
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The precipitation at Cox’s Bazar showed a similar evolution with SLA, in which the
amount of precipitation increased gradually towards the day of ESL (Figure 6d). In
comparison with Cox’s Bazar, the evolutions of precipitation for Charchanga (Figure 6e)
and Khepupara (Figure 6f) did not show such a monotonic increase. The time series of
SLP at all three stations showed a gradual decline from the prior days to the day of the
extreme (Figure 6g–i), suggesting that a low-pressure system was approaching the targeted
area. The SLP decrease was relatively steady at Khepupara (Figure 6i). The southerly
wind velocities at the three stations increased and reached the maximum on the day of
ESL (Figure 6j–l). In Charchanga and Khepupara, the southerly wind was intensified from
t = −2, denoting a strong effect of a wind-induced surge for these locations. The westerly
wind increased during the ESL events at Cox’s Bazar, while the zonal wind speed was near
zero at Charchanga, and an easterly wind was dominated at Khepupara (Figure 6m–o).

Similarly, a composite spatial distribution of meteorological variables has been pre-
sented for ESL events at Cox’s Bazar. The composite analysis was performed for the period
of 1993–2006, considering the availability of SLA data. Please note that the definition of sea
level anomaly for the daily gridded data, which represents the deviation of the daily sea
level from 20-year mean, was different from the one used for the station data (Section 2).
Figure 7 demonstrates that the sea level anomaly along the coast was high throughout
the targeted seven-day duration and increased until the day of ESL, which was consistent
with the time evolution in the station data (Figure 6a). Accumulated precipitation over the
coastal area remained high from t = −6 through to t = 0, presumably reflecting the strong
enhancement of orographic rain along the Arakan Mountains [54]. The rainfall began to
increase from t = −1 and reached a maximum on the ESL day (Figure 7a–g). The high oro-
graphic rain appeared to be intensified in accordance with strong southerly-southwesterly
winds toward the coast, which are part of synoptic-scale flow surrounding the low-pressure
center, located over western India (Figure 7g). The composite analysis suggests that high
precipitation concentrated on the narrow hilly slope increased SLA along the coast of
Cox’s Bazar, together with the effects of low SLP and associated surface winds. The earlier
studies also mentioned that the storm-induced surges, associated with low pressure and
high winds, accelerate the sea level rise along the coast of Bangladesh [10,15–17,27].

Figure 8 examines the R2 of the SLA predictions for all extreme events. The higher R2

was commonly seen for the prediction with precipitation. This was a common character
for the root mean square error (RMSE, Table 1). The distribution of RMSE values for the
predictions with precipitation shifted lower in comparison to that for the prediction without
precipitation; the lower shift of the mean RMSE value was statistically significant (p < 0.05
for the three stations). These results show the importance of precipitation variability in
predicting sea level variation along the coast of Bangladesh. The improvement in R2 for
WP predictions was greater at Cox’s Bazar than at Charchanga and Khepupara. Figure 8
shows that the increase of R2 was large for the event whose R2 value was low for the
prediction WOP. For such cases, the daily variation of sea level is likely to be influenced
by the precipitation that accompanies river discharge, and therefore, the consideration of
the precipitation effect would improve the predictability of ESL. Studies have shown that
the high river discharge modulates the long-term sea level variability along the coast of
Bangladesh [24,25,28,33]. Our emphasis was, however, on the daily sea level variation.
We recognize that, in a few cases, the R2 was not so high, even with the consideration of
precipitation (Figure 8). For such cases, nonlinear effects may play an important role, and
our MLR did not work as expected.
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Figure 6. The average time series (line) of SLA, Pre, SLP, U, and V for all ESL events at Cox’s
Bazar (a,d,g,j,m), Charchanga (b,e,h,k,n), and Khepupara (c,f,i,l,o). The error bars represent the
standard deviation of the cases. The values on the x-axes represent the day, ranging from −6 to 0,
corresponding to six days before (t = −6) the targeted day of the ESL event (t = 0).
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Figure 7. Composite map of the variables for each prior day (a–f) and the day of extreme (g) for all ESL events at Cox’s
Bazar during 1993–2006. Here, the analysis was performed for the period 1993–2006, considering the availability of gridded
SLA data. The gray shading over the ocean represents SLA (m), and the color shading over the land represents accumulated
precipitation during the five preceding days (mm). The contour and vector are for SLP (hPa) and surface wind (m/s),
respectively. The rectangles denote the location of the Cox’s Bazar station. Please note that the sea level anomaly drawn
here is defined as the deviation of sea level from its 20-year (1993–2012) climatological mean [37].
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Table 1. The evaluation of the root mean square error (RMSE) for prediction with precipitation (WP)
and without precipitation (WOP).

Cox’s Bazar
(No. of Cases)

Charchanga
(No. of Cases)

Khepupara
(No. of Cases)

WP WOP WP WOP WP WOP

RMSE < 0.01 4 0 5 1 3 1
0.01 ≤ RMSE < 0.03 19 7 22 9 20 6
0.03 ≤ RMSE < 0.06 24 16 29 20 11 21
0.06 ≤ RMSE < 0.09 13 6 5 12 3 8

0.09 ≤ RMSE 9 40 1 20 0 1

Total 69 69 62 62 37 37

3.3. Seasonal Variations of the Impact of Precipitation

In this section, the impact of precipitation on ESLs has been evaluated, with a focus on
the seasonal variability of precipitation. Figure 9 shows the seasonal variation of precipita-
tion over Bangladesh (20◦–27◦ N and 87.7◦–93◦ E). Monthly precipitation in Bangladesh has
high seasonal variability, associated with summer monsoon, which typically ranges from
June through to September (Figure 9b). According to the submonthly-scale intraseasonal
variability dominant in this region [55], there is a prominent increase of heavy precipitation
events (>50 mm/day) from pre-monsoon (May) to post-monsoon (October) seasons. The
frequency of ESL events showed a similar seasonal variation with the heavy precipitation
event, indicating that ESL events are triggered by high precipitation events (Figure 9a). The
seasonal variation of high precipitation was also noticed in earlier studies [29,38,56–58].
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Figure 9. (a) Monthly variation of ESL events at Cox’s Bazar (count per month) averaged during
1983–2006. Note that the years of 2001–2003 were excluded due to data unavailability. (b) Monthly
variations of mean precipitation (mm/day; bar) during 1983–2006, averaged over the Bangladesh
area (20◦–27◦ N and 87.7◦–93◦ E), and the number of days exceeding 50 mm/day of the area-mean
precipitation (count per month; line).
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Figure 10 shows the relationship between SLA and the R2 difference between two
predictions. Here, we used the difference as a measure to quantify the influence of the
precipitation effect (c.f., Section 2). In Cox’s Bazar, ESL events with a high influence of
precipitation tended to occur in June and July (Figure 10a), corresponding to the peak
precipitation during the summer monsoon (Figure 9b). Figure 9a,b also confirmed that
the simultaneous increases of ESL events and heavy precipitation in 1999, as shown in
Figure 3, are common characters for many years. Interestingly, the highest SLAs were
observed in May (Figure 10a), and the difference in R2 for these events was generally small.
We confirmed that these events mostly occurred in early May in 1995 and 1997, and there
were tropical cyclones or tropical depressions over the study area [59,60]. Hence, it is very
likely that these ESL events were strongly influenced by SLP and winds, rather than the
precipitation effect. For such cases, since R2 was originally very high, predictions WP
and WOP did not differ largely. In June and July, the effect of precipitation at Cox’s Bazar
was thought to be enhanced because the precipitation amount was high in these months
(Figure 9b). In Charchanga, the ESL events with a large R2 difference occurred during
the post-monsoon period from August through to September (Figure 10b). The frequency
of heavy precipitation events remained high in these months, leading to the possibility
of a large contribution of precipitation. At Khepupara, the differences in R2 were found
during October and November, corresponding to the post-monsoon season, although the
magnitude of the R2 difference was smaller than other stations (Figure 10c). The impact
of precipitation on the skill of MLR predictions varied among stations and seasons. It
has been suggested that the impact was high in Cox’s Bazar and Charchanga for July and
September–October, respectively. These months agree well with the month of highest
precipitation for the study area (Figure 9b), as mentioned in previous studies [30,57,58].
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3.4. Influence of Remote and Local SST

In Section 3.3, we confirmed that the predictability of ESL varies with the seasonal
march of monsoonal precipitation. It is known that the monsoonal precipitation shows
interannual variation in relation to large-scale ocean and atmosphere dynamics [56,61,62].
This section describes the influence of remote and local SSTs on ESL events and precipitation.
Figure 11 depicts the interannual time series of the daily SLA at Cox’s Bazar. Although it is
not clear in Figure 11, we confirmed that the occurrence of positive SLA was more frequent
during the years with a high SST anomaly (>0.5 K, 5.2%) than with a low SST anomaly
(<−0.5 K, 2.0%) in the Bay of Bengal. However, the SST’s impact on ESL remains unclear
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because the ESL events seemed to occur irrespectively of the SST anomaly (Figure 11). It is
expected that the SST serves as an indirect forcing agent for ESL, through enhancing the
cyclone activity and high precipitation when SST in the Bay of Bengal is high [62–64]. The
difference in R2 also seemed to be independent of the local SST (Figure 11). To clarify the
reason for this weak connection between the SST and the impact of precipitation to ESL,
we next examined the relationship between SST and precipitation.
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Figure 11. Time series of (upper) daily SLA at Cox’s Bazar and (lower) monthly mean SST anomaly over the Bay of Bengal
(5◦–23◦ N and 80◦–99◦ E). Shading indicates the period of positive (orange) and negative (blue) SST anomaly. The triangle
plotted on the top denotes the day of the ESL event. The red triangle indicates the ESL event at which the R2 difference was
greater than 0.3. The station SLA data are missing during 2001–2003.

Considering the importance of precipitation for a high SLA, spatial distributions of
terrestrial precipitation were investigated for remote SST (i.e., ENSO and IOD) and local
SST conditions. A list of the status for ENSO/IOD and local SST during 1983–2006 is given
in Table 2. There was no significant difference in precipitation over the area of Bangladesh
between the positive and negative phases of ENSO and IOD (Figure 12a–c), suggesting
that the effect of remote SST was not a dominant factor altering the terrestrial precipitation
variability over Bangladesh. For the positive IOD phase, a positive precipitation anomaly
was found only in a narrow area near Cox’s Bazar (Figure 12d–f). Such a weak response of
precipitation to remote SST has been noted by previous studies [56,57,65]. Our composite
analysis indicated that the passage of cyclones with a low SLP and high meridional wind
enhances the SLA (Figure 7g). Studies have found that the passage of tropical cyclone
is frequent during negative ENSO and negative IOD [66,67]. Hence, the ENSO and IOD
modulate the cyclone activity, and the direct influence of cyclones on ESL might explain the
indirect impacts of SST. It was found that when the local SST in the Bay of Bengal is warmer,
the northern Bangladesh area receives more precipitation (Figure 12g–i). The precipitation
enhancement over these hilly areas is regulated by the mesoscale atmospheric circulation,
governed by submonthly-scale intraseasonal variability and the diurnal cycle [68]. The
enhanced precipitation and the resultant increase in river discharge could help increase the
sea level along the coast [24,28]. Therefore, the frequency of ESL events tends to be high
during warm SST years. It is expected that in future, the consideration of the discussed role
of local and remote SST will be important for studying the ESL variability in this region.
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Table 2. List of SST status. For the selection of years, a threshold of ±0.5 K was applied to ENSO/IOD
indices and the area mean SST in the Bay of Bengal (5◦–23◦ N and 80◦–99◦ E).

ENSO
Positive years: 1985, 1988, 1989, 1999, 2000

Negative years: 1987, 1991, 1992, 1997, 2002, 2004

IOD
Positive years: 1987, 1991, 1994, 1997, 2000, 2003, 2006

Negative years: 1984, 1985, 1986, 1988, 1989, 1990, 1992, 1993, 1996, 2002, 2005

BoB SST
Positive years: 1983, 1987, 1988, 1991, 1998, 2001, 2002, 2003, 2005, 2006

Negative years: 1984, 1985, 1986, 1989, 1990, 1992, 1993, 1994, 1995, 1996, 1999, 2000
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between positive and negative ENSO years. (d,e) Mean precipitation during positive IOD and negative IOD years and
(f) their difference. (g,h) Mean precipitation during warm and cold BoB SST years and (i) their difference. The dots in (c,f,i)
represent that the difference is statistically significant at the 95% confidence level.
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4. Discussion

In Section 3.2, we confirmed that the R2 for prediction WP was higher than that for
WOP. The increased R2 might have resulted from the utilization of an increased number of
explanatory variables in WP predictions in comparison with WOP predictions rather than
the physical contribution of precipitation to sea level. To evaluate the robustness of the
higher R2 values in WP predictions, an additional analysis using adjusted R2 statistics [69]
was performed. It was hypothesized that if the adjusted R2 is close to the original R2, it
means that R2 is not influenced by the number of explanatory variables. The adjusted R2

was calculated by

Adjusted R2= 1 −
(

1 − R2
) n − 1

n − p − 1

Herein, p is the number of explanatory variables, and n is the sample size. We assumed
p = 4 (i.e., SLP, zonal and meridional winds, and precipitation) for the sea level prediction
WP, whereas p = 3 was assumed for the prediction WOP. The sample size was set as
n = 7, considering the seven-day variations of meteorological variables (see Section 2).
The adjusted R2 for predictions with precipitation data were higher than those without
precipitation data for 50 (72% relative to the total ESL events), 34 (55%), and 20 (54%)
events in Cox’s Bazar, Charchanga, and Khepupara, respectively. Hence, we conclude that
precipitation is likely to be an essential factor for ESL at Cox’s Bazar for a majority of the
ESL events. In contrast, for other stations, the benefit of precipitation data appeared to
be limited in up to approximately half of the ESL events. Negative values in the adjusted
R2 were found for WOP prediction (7 out of 69 and 1 out of 62 events, respectively, for
Cox’s Bazar and Charchanga). These negative values mean that the sea level was not well
predicted without accounting for precipitation. The number of events with a high adjusted
R2 (≥0.9) was significantly greater in WP predictions than WOP predictions (Table 3).
This also supports our earlier speculation that the effect of precipitation improves the
predictability of ESL events. In addition, we believe the adoption of a physical model
is desirable to understand the causality of precipitation to increase ESL. However, the
consideration of such a physical model is beyond the scope of this study.

Table 3. The adjusted R2 for predictions with precipitation (WP) and without precipitation (WOP).

Cox’s Bazar
(No. of Cases)

Charchanga
(No. of Cases)

Khepupara
(No. of Cases)

WP WOP WP WOP WP WOP

adj R2 < 0.0 0 7 0 1 0 0
0.0 ≤ adj R2 < 0.3 0 1 1 7 0 0
0.3 ≤ adj R2 < 0.6 6 13 0 5 1 4
0.6 ≤ adj R2 < 0.9 23 34 10 18 12 16

0.9 ≤ adj R2 40 14 51 31 24 17

Total 69 69 62 62 37 37

5. Conclusions

The present study investigated the influence of precipitation on ESL along the coast of
Bangladesh using MLR statistics. It was revealed that the estimation of ESLs considering
precipitation effects outperformed the estimation of ESLs without precipitation. This
study revealed that the influence of precipitation on extreme SLA is higher at Cox’s
Bazar than at Charchanga and Khepupara. The effect of high precipitation at Cox’s Bazar
reflects its hilly landscape that accelerates runoff and enhances coastal water levels with
inundation [4,6,24,58]. It was found that the ESLs were influenced by the high precipitation
during the monsoon season. The extreme sea levels intensify coastal inundation and cause
coastal floods with high precipitation during monsoons [8,32,57,59,65]. Therefore, the
attempt of this study relating to predictions of ESL has implications for the reduction of
coastal hazards. Our results demonstrated that the effect of precipitation on ESL is robust,
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and the effect of precipitation on the variability of sea levels has spatial variation, with
strong effects in the central and eastern parts of the coast. The revealed spatial variability
in sea level may be helpful for the planning of coastal management.

This study investigated the possible effect of terrestrial precipitation of daily ESL
for many events. It is widely known that this region is one of the wettest regions in
the world [29,56,58], having a peak precipitation associated with the summer monsoon.
Fujinami et al. [70] pointed out that sub-monthly intraseasonal precipitation variability
shows a significant contribution to the variability of annual precipitation. It is hoped that
future studies will analyze the possible influence of intraseasonal precipitation variability
to improve the predictability of sea level variations.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/w13202915/s1: Section S1: Represents the descriptive statistics of the used dataset for the
selected ESL events at three study stations. Section S2: Represents the contribution of each MLR term
to daily seal level evolution. Section S3: Exhibits the correlation analysis among the explanatory
variables for all ESL events at three study stations.
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