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Abstract: Stochastic multicomponent reactive transport modeling is a powerful approach to quan-
tify the probability of non-exceedance (PNE) of arsenic (As) critical concentration thresholds in
groundwater. The approach is applied to a well-characterized shallow alluvial aquifer near Venice,
Italy. Here, As mobility depends primarily on rainfall-controlled redox-dependent precipitation-
dissolution of iron hydroxides. A Monte-Carlo analysis based on a calibrated three-dimensional flow
and transport model targeted the geochemical initial conditions as the main source of uncertainty of
As concentrations in the studied aquifer. It was found that, during 115 simulated days, the fraction
of the entire aquifer volume with As > 10 µgL−1 decreased on average from ~43% to ~39% and the
average As concentration from ~32 µgL−1 to ~27 µgL−1. Meanwhile, PNE increased from 55% to 60%
when 10 µgL−1 was set as target threshold, and from 71% to 78% for 50 µgL−1. The time dependence
of As attenuation can be ascribed to the increase of oxidizing conditions during rainfall-dependent
aquifer recharge, which causes As sorption on precipitating iron hydroxides. When computing
the same statistics for the shallowest 6 m, As attenuation was even more evident. The volume
fraction of aquifer with As > 10µgL−1 dropped from 40% to 28% and the average As concentration
from 31 µgL−1 to 20 µgL−1, whereas PNE increased from 58% to 70% for As < 10 µgL−1 and from
71% to 86% for As < 50 µgL−1. Thus, the wells screen depth in the aquifer can be a critical aspect
when estimating As risk, owing to the depth-dependent relative change in redox conditions during
rainfall events.

Keywords: arsenic; geogenic contamination; uncertainty; Monte-Carlo; groundwater pollution;
risk assessment

1. Introduction

Geogenic aquifer contamination by arsenic (As) is a common issue in several countries
of the world [1–3]. An intake of high As concentrations can cause critical diseases such
as skin lesions, ulcers or cancer. The World Health Organization (WHO) recommends As
concentration in drinking water not to exceed a threshold of 10 µgL−1 (i.e., 10 ppb) [4].
However, up to 220 million people may be potentially exposed to As > 10 µgL−1 [3],
the vast majority being in Asia, where groundwater in contact with shallow (<50 m),
commonly Holocene sediments can exceed the WHO threshold by a factor of 100 [5].
In many countries, the As concentration threshold for drinking is set to 50 µgL−1 [6]. Yet,
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a lifetime exposure to just 50 µgL−1 of As in drinking water may kill one in a hundred
people prematurely [7].

Most groundwater consumers are unaware of As-related health risks. In alluvial
aquifers, shallow private tube wells, sometimes reaching just a few meters below the
ground surface, can be easily drilled and ignored by authorities. Therefore, mapping
the spatial and temporal (i.e., spatiotemporal) variations of elevated As concentrations in
groundwater is of the uttermost urgence for public administrations and regulators. In the
European Union, monitoring of groundwater health has been a mandatory task for local
administrations since the 2000s, according to the Water Framework Directive (2000/60/EC)
and the Groundwater Directive (2006/118/EC).

Reactive transport modeling has been increasingly adopted in recent years to assist
decision makers to quantify the potential extension of As contamination in aquifers [8,9].
Specifically, multicomponent reactive transport modeling (MRTM) has been deployed as
a tool that enables elucidating and simulating the controls of As mobility in aquifers and
predicting its concentrations in space and time [10–14]. These models can mechanistically
simulate the effects of As-bearing rocks or sediments, which are naturally found in aquifers.

The development of predictive MRTM to estimate the spatiotemporal variability of
biogeochemical reactive species in aquifers remains a complicated task. A key reason
is that aquifers are texturally and compositionally heterogeneous across multiple scales.
This makes the complete mapping of model parameters incomplete, rendering the predic-
tive model outputs epistemically uncertain [15]. Although averaging (i.e., homogenizing)
aquifer parameters is a common practice among modelers, embedding parameter het-
erogeneities remains fundamental to properly mimic the transport dynamics of reactive
dissolved species, such as As [16,17], particularly when performing risk assessment.

When making model-based predictions under uncertainty, stochastic modeling is
widely used in hydrogeology to circumvent the limitations of deterministic modeling [18–20].
In stochastic analysis, model input parameters are treated as random spatial functions,
whereas the model outputs are expressed in terms of probability density functions. Statis-
tical indicators derived from these functions are used as metrics to quantify one or more
desired target variables (e.g., the concentration of a polluting aqueous species) [18].

Stochastic MRTM are useful tools that can be used to estimate the probability of non-
exceedance (PNE) of an aquifer toxic compound under uncertainty [21]. Quantifying PNE
according to different concentration thresholds is a key input for As risk assessment [22,23].
Nonetheless, stochastic reactive transport modeling has been only occasionally applied
to the analysis of As transport [24]. We have no knowledge of stochastic MRTM targeting
regional scale As mobility in heterogeneous aquifers, as addressed in the present work.

The epistemic uncertainty related to the incomplete mapping of the geochemical
initial conditions (GICs) represents a crucial limitation for the reliability of the MRTM
predictions. When a system is far from chemical equilibrium, its initial geochemical status is
perturbed with time as the flow, transport and geochemical transformations occur. Setting
the correct GICs at each model cell is fundamental to properly compute the PNE of a
desired toxic compound. Unfortunately, GICs are typically measured at a few locations
(i.e., the boreholes in which geochemical analyses were performed) and repeated at time
intervals which may exceed the frequency at which contaminants concentrations oscillate
and temporarily exceed the regulatory limits. The resulting epistemic uncertainty of the
GICs translates into uncertainty in the model outputs. In statistical analysis, the problem
is known as error propagation or propagation of uncertainty. In fluid dynamics, error
propagation as a function of the uncertain initial conditions has been addressed since the
1960s [25]. However, our literature review revealed that uncertainty in GICs has not been
yet widely explored for MRTM-based forecasts, especially for As-related problems.

In this work, we developed a new Monte-Carlo-based stochastic analysis based on
three-dimensional (3-D) MRTM. The model, never presented before, was used to compute
the time dependent PNE of As concentrations in the shallow Holocene aquifers of the
Western Agricultural Areas (WAA). This site is a well-characterized subset of the Venetian



Water 2021, 13, 3086 3 of 22

Alluvial Plain in Northern Italy (Figure 1). Previous works on the area [26–29] have
generally concluded that As concentrations can be considered a random spatiotemporal
variable, amenable to be modelled using probabilistic and geostatistical analysis. This
makes the WAA an appealing case study to evaluate the actual usefulness of the stochastic
model to predict the PNE of arsenic concentrations above the 10 µgL−1 and 50 µgL−1

critical thresholds.
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Figure 1. (a) Geographical location of the Drainage Basin of Venice Lagoon (DBVL), which includes the studied area (WAA).
Acronyms refer to the major cities of the Veneto regions. The arrow represents the regional-scale groundwater flow direction.
(b) Conceptual not-to-scale vertical sketch of the stratified distribution of the main hydrofacies in the VAP. The trace of this
section is parallel to the groundwater flow direction depicted in frame (a). Note that the amount of fine-grained sediments
increases towards the Adriatic sea, forming the multilevel aquifer around the WAA. The figure has been modified after [26].

Our primary goal is to demonstrate the use of a stochastic multicomponent reactive
transport model to assess the probability of As non-exceedance, treating the geochemical
initial conditions of the MRTMs as the main stochastic parameter. Indeed, for this study a
limited and incomplete amount of geochemical data is available to parametrize the initial
condition of the MRTMs. More broadly, we aim to showcase the benefit of stochastic
MRTM as a decisional tool for administrations and regulators when dealing with complex
hydrogeological systems at regional scales. Although our study targets a specific contam-
inant in a specific aquifer, the developed methodology is general and can be applied to
virtually any kind of aquifer and toxic compound.

2. Materials and Methods
2.1. Background

The Venetian Alluvial Plain (VAP) is a multilevel stratified aquifer underlying the
Drainage Basin of Venice Lagoon (in Italian, “Bacino Scolante della Laguna di Venezia”)
(Figure 1a). This densely populated region near Venice (Italy) is composed of 108 mu-
nicipalities, covering an area of about 2000 km2 and with a population close to 1 million
inhabitants (Italian National Institute of Statistics, 2001). Arsenic concentrations in the
VAP shallow groundwater can exceed the Italian maximum concentration limit and the
WHO-recommended threshold of 10 µgL−1 [26–29]. Following the EU Water and Ground-
water Directive, implemented in Italy mainly through the National Decree D.Lgs 152/2006,
an excess of As concentration in groundwater implies that local administration should
properly monitor and characterize the extension of the contamination, the natural back-
ground levels and thresholds values that can potentially entail a risk for the groundwater
consumers. Although the water distribution is supplied to virtually all households in the
Drainage Basin of Venice Lagoon, groundwater is mainly used for irrigation purposes and
there could be a potential for direct human consumption through private wells.

The controls of elevated As concentrations in the VAP have remained unknown for
years. Hot spots of dissolved As in groundwater, sometimes exceeding 200 µgL−1, are
variably distributed in the shallow VAP aquifer, without an apparent relationship with
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high concentrations of As-bearing minerals [26]. Moreover, concentrations measured
at a few piezometers were found to fluctuate with time above or below the 10 µgL−1

concentration thresholds. This observation was described during different surveys [26],
including the 2009 and 2017 surveys reported in Supplementary Information (Section SI-1)
and later analyzed in this work. The erratic occurrence of As excess in groundwater urged
environmental regulators to perform systematic analyses and establish collaborations with
universities and other research centers to unravel the factors controlling As mobility in the
VAP. A target of these activities was to quantify the probability of non-exceedance (PNE)
of As concentrations above 10 µgL−1, to be later used for measuring the risk to which the
population could be exposed if As-contaminated groundwater is consumed unwarily.

In a recent study, Dalla Libera et al. [29] (hereafter, “DL2020”) proposed a conceptual
model that mechanistically explains the spatiotemporal As variations in the VAP aquifer.
The study focused on the Western Agricultural Areas (WAA), a well characterized area of
the distal portion of the VAP towards the Adriatic Sea. According to DL2020, the aquifer
is stratified and composed of multiple sandy layers embedded into a fine-grained matrix
(Figure 1b). Between 6 December 2017 and 26 March 2018 (i.e., over 115 days), weekly
geochemical measurements and continuous groundwater head logs were collected from
three fully penetrating observation wells (piezometers PZP36, PZP40 and PZP41). The
piezometers are drilled to an average depth of about 10 m from the ground surface.

DL2020 found that rainfall events were well correlated to the decrease of concentra-
tions of aqueous As and Fe and to the increase of oxidizing-reducing potential (ORP). The
shift towards higher ORP values and associated attenuation of As and Fe as a consequence
of rainfall events was more evident when a limited thickness (<1 m) of fine-grained sedi-
ments was observed above the sandy aquifer, according to the boreholes’ stratigraphic logs.
When such fine-grained sediments were thicker, the ORP positive shift was more limited,
and no significant variations of As and Fe were observed.

Based on these observations, DL2020 hypothesized that rainfall-driven redox-controlled
precipitation and dissolution of ferric hydroxides (HFOs) is a main control of As in the
shallow VAP aquifers. Similar to the conceptual model proposed for other alluvial aquifers
of the world [1,10], under circumneutral pH As can sorb on HFOs surfaces, when the
groundwater is sufficiently oxidized to precipitate HFOs. Under reducing conditions,
HFOs tend to dissolve, releasing sorbed As to the groundwater. In the VAP, reducing
conditions are principally induced by organic matter degradation. Previous studies high-
lighted that As tends to precipitate as sulfide when groundwater tends to be very reducing
(Eh < −200 mV) [27]. Such a situation is however never found in the studied shallow
aquifers, where Eh remains between 0 and −200 mV.

A salient aspect of DL2020′s conceptual model was that rainfall could have a strong
control on the redox status of the shallow aquifers in the VAP. The key hypothesis was
that rainfall could bring oxidants to the shallow aquifers, therefore helping precipitate the
HFOs and in turn attenuate As concentrations. Such conceptual model justifies the link
between the magnitude of As, Fe and ORP variations and the thickness of the fine-grained
sediments, acting as aquitards that partially confine the underlying aquifers. The number
of oxidants entering the aquifer could be therefore connected to the effectiveness of aquifer
recharge, which depends on the aquitards’ hydraulic conductivity (K) and thickness (i.e.,
the aquitards’ leakance).

The conceptual model proposed by DL2020 was validated using a geochemical batch
model implemented with the code PHREEQC [30]. The simulated variations of ORP, As
and Fe were consistent with the observed values at the boreholes with high-frequency mon-
itoring. The PHREEQC model provided a quantitative and mechanistic way to simulate
the impact of rainfall events on As attenuation. Yet, the main limitation of DL2020 model
was that a batch (i.e., zero-dimensional) reactor cannot be directly used to estimate the
spatio-temporal variations of As concentrations at a continuum, multidimensional scale.
Thus, the DL2020 model cannot be used to quantify the probability of not-exceedance
(PNE) of As concentration at the scale of the WAA.
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The goal of the present work was the development and application of a MRTM to
quantify the probability of As exceeding the 10 µgL−1 threshold as well as another relevant
thresholds for As risk, the 50 µgL−1, at the scale of the WAA, bypassing the limitations
of DL2020 model. Leveraging the knowledge gained by DL2020, the new model aims
at mechanistically predicting As mobility in the multidimensional heterogeneous WAA,
testing the capability of DL2020 conceptual model to quantify the PNE of As concentrations
at a wider, regional scale.

2.2. Model Setup

We utilized PHAST [31,32], an operator-splitting MRTM code that combines the flow
and conservative transport code HST3D [33] and PHREEQC. The selection of PHAST
was appropriate for this study for multiple reasons. PHAST shares the same structure
as PHREEQC; thus, it is able to reproduce mechanistically the full range of equilibrium
and kinetic geochemical reactions describing As mobility in a multidimensional dynamic
system. As the input files are similar in PHAST and PHREEQC, the same geochemical
setup developed by DL2020 could be used for the PHAST models. Additionally, PHAST
includes a free-surface boundary condition that can simulate groundwater table oscillation
in confined-unconfined aquifers. This was important for our study area where the rainfall-
driven areal recharge and a large drainage system overlap to change the confining status of
the model’s layer in space and time. PHAST allows for cells rewetting when the hydraulic
head of a dry cell raises above the cell’s bottom elevation, and the input flux (both water
and dissolved solutes) is applied to the highest active cells. Ultimately, PHAST is equipped
with a parallel computation algorithm allowing for runs on a multiprocessor computer or
on a collection of computers that are networked.

A main aim of this study was to generate a stochastic MRTM analysis with PHAST,
treating the geochemical initial conditions (GICs) as uncertain parameters. Therefore, we
proceeded through the following sequential steps:

• A 3-D flow model embedding a heterogeneous distribution of lithological materials
was setup to simulate groundwater flow in the WAA.

• The flow model was used for the advective and dispersive transport of a multidimen-
sional MRTM model. This model inherited the geochemical reactions proposed by
DL2020 to describe As mobility in the WAA.

• Within a Monte-Carlo framework, indicator-based geostatistical modeling was used
to build spatially correlated random realizations of GICs. Such GICs were employed
to run independent MRTM simulations.

• The ensemble of results was then collected and examined to estimate the PNE and
useful statistics that allow gaining insight into the expected variation of As and related
key variables in the WAA.

2.2.1. Flow Model

The flow model covered an area of 1935 m × 2760 m (Figure 2a), aligned along the x
and y Cartesian axes, respectively. The area was discretized into a regular mesh of Nx = 43
and Ny = 46 cells, with uniform cell size of ∆x = 45 m and ∆y = 60 m, respectively, along
x and y (Figure 2b). The model top surface was set at an elevation (z) of z = 3 m above
sea level (a.s.l.) and the bottom to z = −9 m a.s.l. A total number of NZ = 12 layers, with
uniform thickness of ∆z = 1 m, was set. The model was run in transient-state conditions
from December 2017 to March 2018. This period of 115 days corresponds to the time
window simulated by DL2020. A uniform time discretization was set with ∆t = 1 day.
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represent the nodes used to build the drain’s feature in the model. (b) The discretized mesh of the PHAST model, illustrating
the position of the GHBs and DRN BCs as well as the zonation of the recharge (“RCH”) BCs.

The flow boundary conditions were set as follows. Along the lateral edges, Cauchy-
type General Head Boundaries (GHB) were assigned. Along the Western and Northern
edges, the GHB1 and GHB2 simulated the lateral groundwater recharge from upgradient
aquifer bodies. The GHB4 assigned along the Southern edge simulated the interaction
between the study aquifer and the Naviglio Brenta River flowing in that area. The GHB3
located on the Eastern edge simulated the hydraulic interaction between the studied
aquifer and the Venice Lagoon. A Neuman-type Recharge (RCH) BC was applied to the
uppermost active cells in order to simulate the areal recharge due to rainfall events. Two
recharge rate zones (RCH1 and RCH2) were considered, due to the different amounts
of fine-grained materials on top of the aquifer. A third-type DRAIN (DRN) BC was set
in the central zone of the WAA to simulate an existing drainage system that lowers the
groundwater table in the area (as part of the agricultural land conversion initiated in the
early 1900s). All BCs were set as time-dependent functions, except for the DRN which has
no time-dependent parameters.

To map the spatially-variable hydraulic properties of the WAA, we followed the
methodology presented by Fabbri et al. [34] who developed a 3-D mapping of subsoil
heterogeneity in a different, northern sector of the VAP. The methodology was based on the
code “spMC” [35,36], a transition probability algorithm that simulates the juxtapositions of
categorized variables (here, the “lithological materials”) through embedded Markov chains.
Stochastic lithological maps conditioned to the stratigraphic data available in the site are
generated by spMC. Details regarding the construction of the lithological map are provided
in the Supplementary Information (SI-2). In short, stratigraphic data are classified and
categorized into four lithological materials: “sand”, “silt”, “clay” and “peat”. Although
more complexity could be used to classify soil materials, the adopted codification is based
on the average grain size distribution of the sediments, which ultimately control the soil
hydraulic conductivity (K). Simplified ways to classify soil type for transitional probability
based geostatistical modeling have been commonly adopted in the past [37]. The code
spMC computed internally the transiograms, which are used to produce a stochastic
realization of the four materials in the studied area. Such realization, depicted in Figure 3,
was then re-mapped by assigning individual hydraulic conductivity (K), specific storage (Ss)
and specific yield (Sy) to each of the four materials. The resulting K, Ss and Sy maps were
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then used to populate the PHAST model. The porosity (φ) was assumed as homogeneously
distributed, varying less than the other relevant hydraulic parameters such as K. The flow
model was adequately calibrated, using the continuous logs of hydraulic heads collected at
PZP36, PZP40 and PZP41 as calibration targets. More information regarding the calibration
process is reported in the Supplementary Information (SI-3).
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2.2.2. Deterministic Transport Model

According to DL2020, As mobility in the WAA is primarily controlled by redox-
dependent precipitation and dissolution of HFOs, on which As can sorb. Arsenic sorption
was simulated through a surface complex model (SCM) [10] that provides a mechanistic
quantification of As adsorption behavior as a function of the dissolved As and Fe concen-
trations. The amount of reactive surfaces (i.e., the HFOs) was assumed to be a proportion
of the amorphous Fe-hydroxides (Fe(OH)3). The SCM considers the influence of competing
ions such as phosphate or bicarbonate as well as the density of adsorption sites on the host
minerals. The thermodynamic database WATEQ4F [38] provided the reference stability
constants for HFOs equilibrium based on Dzombak and Morel [39].

The stability of HFOs depends directly on the change in pH and redox conditions.
The system pH was observed to remain stable around circumneutral values due to the
buffering by calcite, which is present in great amounts in the studied area and included in
the reaction network as an equilibrium phase. The change in redox conditions affect the
stability of Fe(OH)3 by altering the Fe2+/Fe3+ redox couple. When the aquifer becomes
more oxidized (i.e., the ORP increases), Fe is more prone to pass to a higher oxidation status
(Fe2+→ Fe3+) and precipitate as amorphous Fe(OH)3. Since HFOs are directly linked to the
amount of Fe(OH)3, a change in ORP intrinsically leads to a change in the concentration
of surfaces on which As can sorb. Fe(OH)3 was introduced to the reaction network as an
equilibrium phase.

Rainfall events alter the redox status of the groundwater by recharging the aquifer
with oxidized water. The oxidant mass flux entering the aquifer is computed internally by
PHAST from the recharge rates imposed to the RCH boundary and from the concentrations
assigned to that boundary, which is in direct contact with the atmosphere. DL2020 noted
that the ORP variations could not be explained considering solely the ingress of O2(aq) in
equilibrium with the atmosphere. It was concluded that infiltrating water could be enriched
in other dissolved oxidizing species (e.g., nitrates or sulfates generated by agriculture
practices and leached through the topsoil). Alternatively, gas-phase oxygen could be
pushed through the vadose zone, reaching the aquifer. We lack specific information
regarding the dominant mechanism controlling the excess of oxidants in the infiltrating
water. Since the goal of this work is to present a general tool to compute the excess of As
at the regional scale using a probabilistic approach, we adopted a simplified approach
and equilibrated the infiltrating water with a much higher O2 concentration than the
atmospheric gas. Hence, the infiltrating boundary brings a much higher amount of O2
molecules than in real life, while not adding other species to the aquifer. Note that this
assumption is not a limitation of the study, since we still preserve the very essence of the
study, i.e., evaluating the probability of As non-exceedance as a function of the uncertain
input factors (the geochemical initial conditions), as carefully explained in the next section.

The dispersivity coefficient (α) was treated as a homogeneous parameter. Lacking
specific tracer tests, we followed empirical compilations of results [40] to set the longitu-
dinal dispersivity (αx) to 100 m, the horizontal transverse dispersivity (αy) to 10 m and
the vertical transverse dispersivity to 1 m, The chosen dispersivities satisfy the stability
condition by which the Peclet number (Pe), such that Pe = ∆xi/αi ≤ 2, where ∆x defines
the cell size and i the direction (i = x, y, z). The effective diffusion coefficient (D) was set to
D = 10−9 m2/s.

2.2.3. Stochastic Transport Model

PHAST requires a “solution” to be defined at each model cell. In this context, a “solu-
tion” is a PHREEQC modeling term [30] that refers to a list of concentrations that defines
the geochemical chemical composition of the water at the beginning of the simulation. Since
the geochemical composition of the aquifer is heterogeneous, a spatial distribution (i.e., a
map) of solutions is required to parameterize each PHAST model cell. Our simulations
assumed December 2017 as the initial time; therefore, the map of solutions should refer to
December 2017.
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The December 2017 geochemical database contains measured concentrations at the
eight boreholes shown in Figure 2a and reported in the Supplementary Information SI-1.
The database was obtained from the Veneto region environmental agency (ARPAV) during
the routine monitoring activities to monitor groundwater quality. Although a larger number
of boreholes exist in the area, most of them were either dismissed with time or not included
in the recent monitoring activities. The December 2017 dataset is broad in terms of variety
of analyzed species. This allows setting a complete PHREEQC solution at least at the eight
model cells that spatially correspond to the position of eight boreholes sampled by ARPAV.
Sampling and analytical methods followed the standard protocols, as suggested by the
Italian National Environmental Agency. Detail regarding these methods can be found in
the Supplementary Information SI-1.

The limited number of sampled boreholes contained in the December 2017 pre-
vented us from obtaining a “deterministic” distribution of solutions at each model cell.
Geostatistical analysis could be invoked for the statistical interpolation of concentration
maps [23,26,41]. Such maps can be conditioned to the existing geochemical measurements
(in geostatistical terms, the “hard data”). Yet, a sound geostatistical inference cannot be
performed using the December 2017 dataset. Too few spatially distributed data impede cal-
culating the spatial structure of the geochemical data (e.g., the concentrations variograms),
which is the crucial step to perform geostatistical analysis.

To circumvent this limitation, we considered an older geochemical characterization
carried out by ARPAV in 2009. The 2009 characterization targeted about 50 piezometers,
of which 34 were screened in the shallow portions of the VAP aquifer. The corresponding
database is reported in the Supplementary Information SI-1. The 34 sampling points are
enough to perform geostatistical inference and obtain information regarding the correlation
of concentrations in the shallow aquifer [26]. However, in 2009 only specific contaminants
were sampled, the majority being heavy metal(loid)s. The reason is that the 2009 sampling
campaign was mainly focused on evaluating the extension of the groundwater contamina-
tion linked to the Porto Marghera chemical factory, an Italian site of major interest located
in the proximity of the WAA [42]. While the 2009 database included key elements such as
As and Fe, several other major, minor and trace elements were not measured. This issue
implies that a complete list of solutions cannot be obtained from the 2009 dataset. Although
a MRTM can be run using only a limited number of species, not including key geochemical
species that could directly or indirectly control the fate of As limits the reliability of the
stochastic MRTM outputs. We also considered that, even if we had a sufficiently complete
set of geochemical species in the 2009 dataset, we could not directly use this dataset to sim-
ulate transport starting in December 2017. Indeed, according to our conceptual model, As
mobility is controlled by aquifer recharge and our calibrated flow model refers specifically
to the 2017–2018 period.

We combined pros and cons of the 2009 and 2017 databases to obtain stochastic
geochemical initial conditions (GICs) for the PHAST models, as follows:

1. The spatial structure (i.e., the variogram) of As was initially computed from the
34 boreholes sampled in 2009. The As variogram was used to generate Nmc = 100
sequential indicator simulations (SISs) [43,44] of As. The simulations were created on
a 2D grid having the same size as the PHAST models (43 × 46 cells).

2. These simulations (or “realizations”) were conditioned to the 2017 measurements of
As and obtained from the eight sampled piezometers. Examples of maps generated
using the SIS algorithm are shown in the Supplementary Information SI-4.

3. The procedure at steps 1 and 2 was repeated for Fe, to obtain Nmc = 100 Fe realizations.
4. We treated the eight hydrogeochemical surveys performed in 2017 as eight PHREEQC

“solutions”. We then created Nmc = 100 empty grids of the same size of the stochastic
realizations (43 × 46 cells) and populated them with a unique solution in each grid
cell. Such solution was chosen by minimizing, for each cell of each j-th pair of
As and Fe realizations (j = 1, . . . , Nmc), the pairwise Euclidean distance between
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the simulated As and Fe concentrations and the observed concentrations from the
8 PHREEQC solutions.

In this way, we obtained Nmc = 100 random maps of solutions (i.e., the geochemical
initial conditions, GICs), which were used to populate the PHAST models. The mapping
algorithm was coded through an in-house MATLAB script, which included the native pdist
function to calculate pairwise Euclidean distance. The variograms and SIS computation was
performed using SGEMS [45]. The resulting variograms are reported in the Supplementary
Information SI-4.

An example of the approach is graphically depicted in Figure 4a. The map on the
left represents a realization of As concentrations, while the map on the right represents
a realization of Fe concentrations. In the cell marked by the green square, the SIS algo-
rithm generated a concentration of As = 0.023 mgL−1 and of Fe = 2.214 mgL−1, shown
respectively in the map on the left and on the right. The closest pairwise distance between
measured and computed As and Fe concentrations in this specific cell correspond to the
concentrations represented by the “Solution 4”. In the cell marked by the magenta square,
the concentrations of As = 0.012 mgL−1 and Fe = 1.354 mgL−1 are instead closer to the “So-
lution 6”. For each cell (i.e., x-y position), we assigned the same solution in all layers, since
the composition of the groundwater which is sampled by fully penetrating observation
wells is an average aquifer composition of the entire borehole.

The process was repeated for each domain cell until the map of solution was com-
pleted. The whole procedure was then looped Nmc = 100 times to obtain Nmc = 100
solution maps. Examples of two solution maps obtained using this approach are shown in
Figure 4b. Each of the Nmc = 100 solutions maps were used to populate and run indepen-
dent PHAST simulations. After each run, the entire spatial and temporal distribution of
As and other key variables was stored. The ensemble of results was analyzed in a proba-
bilistic fashion. For a generic variable X, the ensemble mean X and standard deviation σX
were computed to evaluate the change in time of the expected behavior of geochemical
system under uncertainty. Empirical cumulative distribution functions (ecdfs) were com-
puted and compared at different time scales to calculate the PNE above key thresholds of
As concentrations.

We finally recalled that groundwater could be withdrawn through “fully penetrating”
pumping wells, i.e., wells which are screened along the entire 12-m-long vertical section
of the aquifer, or through partially penetrating well, and in particular through wells are
screened at shallower depths. We postulated that a different pumping well configuration
could result in a different PNE and become a useful decisional criterion for local admin-
istration, for instance to compute well-type-specific As risk for groundwater consumers.
To demonstrate this, we conducted two distinct analyses:

• A “full depth” analysis, where the statistics of As concentrations and other variables
were calculated considering the entire model extension in the vertical direction.

• A “shallow depth” analysis, where the same statistics were calculated for the top
half of the model (i.e., up to 6 m), as a representative value for partially-penetrating
pumping wells.
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Figure 4. (a) The example shows how pairs of As and Fe values are extracted from two specific
cells on As (left) and Fe (right) random maps and associated to the closest PHREEQC solution
(b) Two maps showing the distribution of PHREEQC solutions after completing the mapping in the
whole domain. These maps represent the geochemical initial conditions (GICs) used to populate the
stochastic PHAST models.

3. Results
3.1. Flow and Deterministic Transport Model

The subsurface lithological model created using spMC highlighted a large variability
of lithological units within the WAA, both in terms of relative proportion and in terms
of spatial continuity of such units. Volumetrically, the statistical analysis of available
borehole logs (Figure 5a) indicates that about one third of the aquifer is composed of
sandy materials (35% of the total volume), while the remaining two thirds are composed
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of fine-grained, low-permeable sediments (46% silt, 18% clay and 1% peat). The mean
length of the materials along the x (i.e., E-W) direction shows (Figure 5b) similar lengths
for sand and silt (respectively, 284 m and 297 m), while clay (122 m) and particularly peat
(16 m) materials show shorter lengths. Comparing the lengths in the x direction with
those computed for the y (N-S) direction (Figure 5c) reveals that sandy materials are quite
isotropic in the horizontal direction, while silty material is slightly more anisotropic and
elongated towards the x direction. Peat and particularly clay materials seem much more
continuous along the y direction, when compared to the corresponding values in the x
direction. For all materials, however, the mean lengths along the horizontal plane are much
longer than in the vertical direction z (Figure 5d). Lengths of about 2 m were found for the
sandy materials (the main aquifers of the WAA), with a ratio between the horizontal and
vertical lengths close to 150.
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Figure 5. (a) Relative volumetric proportion of the four “materials” in the modelled WAA. (b–d) Box plots of the mean
length of the four materials (in meters), respectively along the x, y and z direction.

The flow model indicates a mean groundwater velocity of about 0.2 m/d. The strati-
graphic variation determines a spatial variability of the hydraulic parameters, which
translates into a variability in the local flow velocity. Table 1 reports the resulting hydraulic
parameters at the end of the calibration process. The sandy materials show a larger K than
the finer-grained materials, suggesting that sandy horizons could be acting as preferential
flow zones, enhancing the mixing between infiltrating waters and existing water. In the
northern part of WAA, the calibrated recharge rates associated to the transient RCH BCs
linearly decreased from an initial value of 10% of the total rainfall to 1% after 97 days and
remained at 1% until the end of the simulation. In the southern and in the middle zones,
the calibrated recharge rate linearly decreased from 10% to 3% after 60 days and remained
at 3% until the end of the simulation. This range of values agrees with the recharge rates
reported for the shallow aquifers of the adjacent Porto Marghera site [42].
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Table 1. Calibrated hydraulic parameters assigned to each material used in the model.

Material K (ms−1) Ss (m−1) Sy (-)

Sand 1.25 × 10−4 1.00 × 10−7 2.00 × 10−1

Silt 5.00 × 10−6 1.00 × 10−4 1.00 × 10−2

Clay 1.00 × 10−8 5.00 × 10−4 5.00 × 10−3

Peat 1.00 × 10−8 5.00 × 10−4 5.00 × 10−3

Figure 6 shows the interpolated map of resulting head-level distribution at the end
of the simulated period. It can be observed that the head levels are strongly affected
by the presence of the drainage systems, which locally lower the water table below the
sea level. At the stage depicted by this specific snapshot, the minimum head level is at
−1.37 m above sea level (a.s.l.). Considering that the model elevation is 3 m a.s.l. and
the layer discretization is 1 m, at the end of the simulated time the top four layers in the
proximity of the drainage system are dry. As mentioned earlier, however, this issue does
not imply a limitation for the reactive transport model, since the input mass flux associated
to the recharge (a key mechanism for the control of As in our study) still applies to the top
active layers.
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Figure 6. Simulated hydraulic head distribution within the WAA. The shown result refers to the end
of the transient simulation after 115 days. The central zone is characterized by a depressed hydraulic
head level as effect of the mechanical drainage system (green dotted line).

3.2. Stochastic Transport Model
3.2.1. Whole Aquifer Depth

We initially analyzed the statistical change in relevant geochemical species and vari-
ables at the scale of the entire model, i.e., considering the entire vertical extension of the
aquifer. Key results of this analysis are shown in Figure 7. For each variable, the blue line
represents the ensemble mean obtained from averaging over the 100 stochastic simulations,
while the red dotted lines represent the 95% (±2σ) uncertainty envelope. The grey bars
represent the recharge rates (ms−1), which are directly correlated to the rainfall events.
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Our first significant result is the relative volumetric proportion (the fraction) of aquifer
where As concentrations exceeding 10 µgL−1 decrease with time. Initially, ~43% of the
entire aquifer is characterized by As concentrations above 10 µgL−1. As time elapses,
the fraction drops toward a final value of ~39%. This behavior is linked to a decrease in
average As concentration which tends to drop from ~32 µgL−1 to ~27 µgL−1. Although
the model was not calibrated using geochemical information, the decreasing trend in As
concentration simulated by the stochastic model is consistent with the previous results by
DL2020. Since As and Fe are strongly correlated, dissolved Fe concentrations also drop
with time, following a similar pattern as As concentrations. The drop in dissolved Fe
is opposed to an increase in reactive surfaces (HFOs), whose amount depends directly
on the amount of amorphous iron Fe(OH)3 existing in the system. The concentration of
amorphous iron is inversely correlated to the amount of dissolved Fe. This is explained
considering that, as the time proceeds, the ensemble mean of saturation index of Fe(OH)3
tends towards higher values, i.e., SI→ 0. In other words, as time elapses the system tends
towards equilibrium conditions for Fe(OH)3.

The main driver of such reduction is the aquifer recharge. This is demonstrated by the
clear correlation between rainfall events and the oxidation reduction potential (ORP), here
expressed by the pe = − log(e+). Initially, ORP tends to higher values; then, a sudden
decrease in ORP is found at ~40 days, corresponding to the beginning of a dry period
lasting several consecutive days. After that, new precipitation events occurred and ORP
increased again. This is explained considering that precipitation triggers aquifer recharge,
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which adds oxidants to the aquifers. All the other redox-sensitive species displayed in
Figure 7, including As, show a similar “bumped” behavior. Note instead that pH remains
close to circumneutral conditions throughout the entire simulation time. This is consistent
with the buffering of the calcite minerals.

Figure 8 shows the empirical cumulative distribution functions (ecdfs) of As concen-
trations obtained from two different time steps of the MRTM simulations. In Figure 8a,
the ensemble of ecdf calculated for each realization reflects the distribution of As at the
beginning of the simulation (t = 0). The ecdf indicates that the distribution of As in the
whole aquifer is very heterogeneous. The use of the log scale helps to better capture the
variations of As concentrations which span over more than three orders of magnitude
and deviate largely from the mean value of ~32 µgL−1 (blue dotted vertical line). The
shape of the ecdfs is alike among the different realizations. It is characterized by a stepwise
increase in the cumulative probability, as a result of the SIS-based stochastic realizations
used as GICs in the reactive transport models Figure 4. The SIS realizations include eight
categories (i.e., the “solutions”), resulting in an equivalent number of steps, since each
solution occupies a different proportion of the aquifer volume.
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In Figure 8a, the ecdf reflects the distribution of As at the end of the simulation
(t = 115 d). Note that the ensemble of ecdfs is now different than the ensemble of ecdfs
calculated for t = 0. This is due to a combination of factors. First, transport determines a
mixing among adjacent cells, such that the well-defined clustered As distribution at t = 0 is
now more continuous, as reflected by smoother ecdf obtained at t = 115 d. Secondly, as
time elapses, As is attenuated by the rainfall-driven redox-controlled adsorption on HFOs.
Indeed, the ensemble of ecdfs at t = 115 d is shifted towards lower values, being consistent
with the decrease in the mean As concentration to ~27 µgL−1.

These ecdf can be used to quantify the PNE of arsenic concentrations according
to targeted thresholds. We note however that such estimation is hardly obtained from
Figure 8a,b, where the ensemble of ecfds is quite spread. This is particularly true for values
exceeding a concentration of 3 µgL−1. The ecfds spreading is explained considering that
the relative proportion of As in the GICs is random outcome of the SIS algorithm. While on
average all realizations embed the same statistics, each individual realization can produce
a slightly different proportion of a specific solution. As such, we calculated the ensemble
mean of the ecdfs to obtain a unique reference PNEs for the two analyzed times reported
in Figure 8a,b.

The ensemble means of the ecdfs are reported in Figure 8c, along with the calculated
mean As concentrations already reported in the previous panels. It was found that the
expected PNE for the WHO-recommended threshold of 10 µgL−1 was 55% at t = 0, and
increased to 60% at t = 115 d. This means that, on average, the fraction of aquifer that
can be considered contaminated by arsenic at the end of the simulation was lower by 5%
compared to the beginning of the simulation. For 50 µgL−1, another common threshold
which is sometimes a maximum concentration in drinking water in countries such as
Bangladesh, the probability of non-exceedance has increased from 71% at t = 0 to 78% at
t = 115 d.

The time dependance of the PNE is consistent with the rest of the analysis and linked
to the effect of As attenuation as controlled by the adsorption of HFOs. Attenuation
increases as time elapses, as a consequence of the hypothesized effects of rainfall-controlled
HFOs in the studied aquifer. Since PNE is directly connected to risk indicators, such as to
compute the chronic exposure of population to an excess of a toxic waterborne compound,
our results stress the importance of rainfall events as a critical aspect controlling the risk of
As contamination in the studied area. This is important information for decision makers
when quantifying the risk of As contamination in the studied area. Since the PNE is
non-stationary in time, administrations should regularly update their risk calculations
depending on new concentration levels.

3.2.2. Shallower Aquifer Portion

We now reanalyze the results from the stochastic models using a similar approach,
this time focusing on the top six meters of the aquifers. Figure 9 shows the changes in
the same geochemical species and variables evaluated in Figure 7. Compared to variation
occurring when integrating the results of the entire aquifer thickness, we found a more
marked decrease in As concentrations with time in the shallow portions of the aquifer. The
relative aquifer fraction with As >10 µgL−1 dropped from 40% to 28%, which is linked
to a decrease in average As concentrations from 31 µgL−1 at t = 0 to 20 µgL−1 at t = 115
d. A higher relative change was also observed for the other key parameters controlling
As mobility.
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The difference between the results of the shallower portions of the aquifer and those
of the full aquifer is explained considering that the shallow aquifer is closer to the recharge
boundary. Therefore, the recharge-driven redox changes are enhanced in the shallower
parts of the aquifer than in the deeper part of it where groundwater remains more isolated
from the ingress of oxidants. The relative control of recharge on As attenuation explains
why the probability that As does not exceed a specific threshold also depends on the depth
of the analyzed aquifer. Figure 10a,b show the ensemble of ecdfs for the top six meters of
the aquifer calculated at t = 0 and t = 115 d, respectively, and Figure 10c the ensemble mean
of these curves. While the distribution of As values at t = 0 is similar to the distribution
calculated for the full-depth analysis (Figure 8c), at t = 115 d the ensemble-mean ecdf is
smoother than in the previous case. The probability computed for different thresholds also
changed. For As < 10 µgL−1, the probability increased from 58% at t = 0 to 70% at t = 115 d,
while for As < 50 µgL−1, the PNE increased from 71%% at t = 0 to 86% at t = 115 d. Thus,
the relative risk due to As excess in drinking water is more reduced if groundwater is
withdrawn at shallower depths, owing to the better attenuating effects of rainfall-driven
recharge on As.
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4. Discussion

Stochastic modeling is a powerful method to compute the probability of non-exceedance
(PNE) of toxic compounds in complex aquifers. While several models have been devel-
oped to compute the probability of As contamination in different environments [46], for
groundwater such probability has been traditionally computed using data-driven statistical
analysis [22]. For instance, the Bayesian Maximum Entropy theory was applied by Serre
et al. [47] to study arsenic exposure across Bangladesh by the local population using a
database that combined about 4000 tube-well and borehole samples from four different
surveys and a total of 3373 As concentration measurements of the shallow aquifers. When
such datasets do not exist, data-driven statistical analysis may be insufficient to perform
probabilistic analysis.

The present study is among the first documented attempts to evaluate PNE for As
critical concentrations in groundwater using a mechanistic MRTM formulation. Leveraging
previous studies on the same area, the model accounted for key hydraulic and geochemical
controls of As mobility in a shallow aquifer near Venice, Italy. Although stochastic mecha-
nistic modeling coupled to geostatistical inference is a demonstrated tool that can generate
probabilistic maps of time-dependent concentrations of toxic compounds [18,21], it is not
clear why stochastic MRTM have not been widely documented so far in the literature. One
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reason may owe to the well-known computational burden required to resolve the nonlinear
equations characterizing this type of model, which can determine very long computational
times. A second reason may be linked to the number of unknowns and input parameters
required to run MRTM. However, the present study showed that stochastic MRTM of
As mobility can be computed with reduced computational burden (all simulations run
overnight on a modern workstation) if the model embeds a simplified geochemical system
that captures the essential mechanisms controlling As mobility.

Our stochastic analysis revealed that the shallow aquifers in the WAA are more
sensitive to rainfall-controlled reactions than deeper parts of the aquifers. On the one hand,
this corroborates and extends the validity of the conclusions by Dalla Libera et al. [29]. On
the other hand, the results are well aligned with the conclusions from other studies that
already identified a link between As mobility and aquifer recharge. Rodriguez et al. [48]
explained the variation in As concentration in terms of the precipitation regime and the
oxidation conditions induced by local rainfall incorporation. Our model results could be
interpreted as if relatively shallow wells are less prone to generate As risk than relatively
deeper wells. We stress the term “relative”, as this assessment refers uniquely to wells
which are drilled up to a maximum depth of 10–15 m. In the Venice area, other aquifers
located at much deeper depths exist and are utilized for drinking purposes.

It is also important to note that rainfall is not always linked to an attenuation of As
concentrations. For instance, Duan et al. [49] found that rainfall implied an increase in
As concentrations in Jianghan Plain in China. The authors suggested that rainfall could
generate increasingly reducing conditions by increasing the groundwater table, while the
dry season favors the ingress of oxidants and the adsorption of As of HFOs. Therefore, a
sound evaluation of the site-specific mechanisms controlling As mobility is required prior
to performing any stochastic MRTM.

Ultimately, we note that despite being based on a 3-D mapping of the subsoil, flow
boundaries, recharge conditions, and the variations of the hydraulic parameters, the flow
model was calibrated using the values of hydraulic heads measured in three aligned points,
and the results were extended to the studied area. Future developments of the model
should include more spatially distributed observation points, when available, in order to
increase the validity of the model results.

5. Conclusions

We conducted a stochastic analysis based on multidimensional multicomponent
reactive transport modeling (MRTM) to evaluate the probability that As does not exceed
critical thresholds in the Western Agricultural Area (WAA). This area is a subset of the
Venetian Alluvial Plain (VAP), near Venice (Italy), a densely populated region where As
concentration in shallow Holocene aquifers (up to a depth of 10–15 m) exceeds the WHO-
recommended threshold of 10 µgL−1. The complex spatial and temporal variations of
As concentrations complicate the decisions regarding control and mitigation of As risk in
the area.

The analysis suggested that the proposed modeling approach is able to quantify such
probability. When the entire modeled aquifer is analyzed in a Monte-Carlo-based stochastic
fashion, the relative proportion of the aquifer where As > 10 µg/L tends to decrease with
time from an initial ~43% to a final ~39% after 115 simulated days. The probability of
As non-exceedance increased from 55% to 60% with time using the 10 µgL−1 as target
threshold, and from 71% to 78% when the target was 50 µgL−1. The result corroborates
the conclusions of a previous study [29] who proposed that rainfall could add oxidants to
the shallow aquifer and promote the formation of sorption surfaces, on which As can be
temporarily removed from the aqueous environment.

When the same statistics are computed for the shallowest (top 6 m) portion of the
aquifer, the relative aquifer fraction with As >10 µgL−1 dropped from 40% to 28% during
the 115 simulated days, while the average As concentration dropped from 31 µgL−1 to
20 µgL−1. The PNE computed for different thresholds also changed when shallower parts
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of the aquifer were sampled compared to the full-aquifer sampling. For As < 10 µgL−1, the
PNE increased from 58% to 70%, while for As < 50 µgL−1 the probability increased from
71% to 86%. Thus, the PNE was higher if groundwater was withdrawn at shallower depths.
This is explained considering that the impact of rainfall on As attenuation is exacerbated in
the shallower parts of the aquifer, since rainfall-controlled recharge has a more effective
redox control in the shallower portions of the aquifer compared to the deeper parts.

We finally remark that the adopted modeling approach is general and can be applied
to assess the risk of any toxic compound in complex systems. It can be easily extended to a
different aquifer and/or to a different compound, provided that a mechanistic description
of the processes controlling the mobility of the target variable are known.
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