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Abstract: Changing environmental conditions are driving worsening flood events, with consequences
for counties, cities, towns, and local communities. To understand individual flood risk within this
changing climate, local community resiliency and infrastructure impacts must also be considered.
Past research has attempted to capture this but has faced several limitations. This study provides a
nation-wide model of community flooding impacts within the United States currently and in 30 years
through the use of high-resolution input data (parcel-level), multi-source flood hazard information
(four major flood types), multi-return period hazard information (six return periods), operational
threshold integration, and future-facing projections. Impacts are quantified here as the level of
flooding relative to operational thresholds. This study finds that over the next 30 years, millions
of additional properties will be impacted, as aspects of risk are expected to increase for residential
properties by 10%, roads by 3%, commercial properties by 7%, critical infrastructure facilities by 6%,
and social infrastructure facilities by 9%. Additionally, certain counties and cities persistently display
impact patterns. A high-resolution model capturing aspects of flood risk as related to community
infrastructure is important for an understanding of overall community risk.

Keywords: flood risk; climate change; community impacts; infrastructure vulnerability

1. Introduction

Reliable infrastructure is essential to the economic prosperity, sustainability, and
security of communities across the United States [1,2]. Infrastructure in this respect encom-
passes a wide range of public and private facilities including roads, utilities, emergency
services, public services, social/cultural institutions, and various property level land use
types. According to the American Society of Civil Engineers (ASCE), U.S. infrastructure is
in mediocre condition, showing signs of deterioration and increasing vulnerability [3]. For
example, ASCE estimates that more than 21,000 bridges are susceptible to “overtopping or
having their foundations undermined during extreme storm events” and that over 40%
of the American road system is in poor or mediocre condition [3]. As a changing climate
alters the frequency and severity of extreme weather events, deteriorating infrastructure
and the communities they serve will be especially vulnerable. Therefore, it is essential that
critical infrastructure systems are maintained to the highest standards and that disaster
preparedness, response, and recovery are top priorities for risk managers and policymakers.

In the United States, many infrastructure discussions over the past 20 years have been
centered around possible physical attacks, energy crises, and terrorism, but climate change
has a higher probability of significant impact on the Nation’s infrastructure [4]. With an
increasing number of flooding events making U.S. headlines, there is a greater awareness
of the economic and human cost that flood-damaged infrastructure can produce. For
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instance, Hurricane Sandy flooded hospitals, crippled electrical substations, overwhelmed
wastewater treatment centers, and shut down power and water to tens of millions of
people [5]. In August 2021, the impact of Hurricane Ida stretched across the country
crippling the electrical grid in southern Louisiana, flooding the transportation infrastructure
in the NYC metro area, and killing nearly 100 people. It is clear, now more than ever,
that the ways and places in which we live are likely to continue to be impacted by our
changing environment. That being said, no high-precision infrastructure analysis has
been undertaken across the entire country. In studies that do aim to assess national level
resilience and vulnerability, infrastructure vulnerability is often included as an important
factor [6]. Only with a comprehensive assessment of flood risk as related to infrastructure—
especially critical infrastructure essential to human health and economic activity—and
targeted investment and improvements can the U.S. hope to avoid significant economic loss.

The objective of this study is to explore the development of a model for the assessment
of aspects of flood risk to U.S. infrastructure, focusing on holistic impacts to communities
such as through residential properties, roads, commercial properties, critical infrastructure,
and social facilities. This was made possible by taking advantage of newly available parcel-
level flood hazard information from the First Street Foundation (FSF) Flood Model [7–9],
including the integration of a first-of-its-kind national database of over 20,000 unique flood
adaptation measures. The First Street data provides parcel-level flood hazard information
for the four major flood types (tidal, pluvial, fluvial, and surge) at six explicitly modeled
return periods while accounting for the mitigating effects of levees, dams, open spaces,
and other flood adaptation measures. With high-resolution data at the property level, this
study is able to estimate flood impacts to each infrastructure element from its joined parcel
or building footprint.

There are a number of important implications associated with these results that center
around a community’s ability to assess current levels of resilience, plan for future resource
allocation around infrastructure and development, and inform individuals of risks that
may not be immediate to their specific properties (but rather to the surrounding community
resources). In all cases, a multi-dimensional approach to measuring and assessing risk
is important in order to gain a more complete understanding of flooding risk today and
into the future as well as to better assess a community’s needs in order to address the
issue at a collective level. Making this information publicly available to elected officials
and policymakers allows for a better understanding of risk, informed by high-quality
risk models which are often inaccessible for most communities. This may help facilitate
collaboration within and across communities, better funding for adaptation and mitigation
strategies, streamlined permitting, and higher levels of civic engagement.

More specifically, at the center of this work is a focus on quantifying and understand-
ing the changes that are occurring in the environment and planning in such a way that
local communities may be resilient to those changes. Climate resilience planning requires
a rigorous method for the estimation of how risk levels and critical facility vulnerability
changes over time. Many previous efforts assessing current day risk are not suitable for
proper resilience planning as they do not include quantified risk under true current or
future climate conditions, or with a high precision indicator of risk.

At a more practical level, planning and development in local communities may be
immensely improved through the use of proper tools and risk models. The use of these tools
to identify all infrastructure at risk in an area (including in varying return periods) allows
for the determination of appropriate levels of protection needed for future conditions as
well as helping to inform decisions around future development. Additionally, identifying
areas with higher amounts of risk than others allows for appropriate allocation of resources
to provide protection where it is most needed, meaning a more efficient use of capital in
protecting the most vulnerable areas of the community while not repeating development
practices that have led to the location of populations and infrastructure in high-risk areas.

Quantified information about community flood risk allows for improved planning
and development within and between local communities, as well as across levels of govern-
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ment, allowing for greater efficiency of resource allocation at various levels. Quantifying
risk under current and future climate conditions is particularly important to ensure funding
is allocated to the projects and areas most in need, as funding decisions usually occur at a
different level of government than at the level at which they are implemented. Publicly
available information regarding flood risk for communities that are shared across a given
area also provides a common knowledge base to facilitate collaboration. Not only is this
important for the allocation of resources, but also for collaboration between different com-
munities in order to address vulnerability and adaptation interdependencies. Vulnerability
interdependence is when the vulnerability of one area spills over into a surrounding area.
For example, flooding in one community that causes the primary hospital to become
inoperable may result in patient relocation to the hospital of a neighboring community.
Adaptation interdependence operates similarly, where the adaptation efforts of a commu-
nity may impact a nearby community. For example, if a community constructs a seawall,
the water may be relocated to increase flooding in the neighboring area. A common plat-
form for sharing knowledge about community flood risk allows for a better understanding
of individual community risk as well as risk in neighboring localities, which allows for
increased collaboration.

Finally, there is a strong need for individual consumers to understand what is at risk
in their immediate area and plan accordingly for service disruptions in the event of a
flood. Community-level flood risk is much more than an individual problem and affects
everyone, regardless of the risk of their own specific property. Understanding one’s risk is
a combination of both individual property risk, which is acutely important to those at risk,
in combination with the risk of their local community. Homeowners and renters may feel a
false sense of security if their specific property is not at risk of flooding directly, however,
the indirect effects of living in a community with high levels of risk can be just as impactful.
In fact, road closures, school closures, utility issues, and lack of access to emergency services
and hospitals can arguably have more dire consequences than the economic losses that
come with floodwaters entering a home. If local communities do not properly plan to
be resilient in these areas, indirect consequences of population out-migration decrease
muni-bond ratings, and the increased likelihood of catastrophic outcomes associated with
the observed risk is all more likely and will affect the entire population of a community,
not just the properties that are at risk of flooding directly.

2. Literature Review

According to the International Panel on Climate Change (IPCC) framework, flood
risk can be expressed as a function of flood hazard (H), exposure (E), and vulnerability
(V) [10]. Flood hazard (H) can be further divided into location, probability, frequency, and
seasonality of flooding events as a result of climate change. Flood exposure (E) refers to
the existence of resources within an area with hazards [11]. That is, risk only exists when
population and/or economic resources are located within these hazard areas (and thus
are exposed). The final component of risk is vulnerability (V), which is recently related
to characteristics of social and environmental processes and the likelihood that exposed
elements will suffer adverse effects [11,12].

Cardona et al. [11] provide an example of how it is possible to be exposed but not
vulnerable, where a building may be located within a floodplain but there are adequate
resources allowing for the modification of the structure to mitigate losses. While a key
component of vulnerability here is the ability to adapt, adaptation in the provided example
is through engineering characteristics of the structure itself. There is growing recognition
within the scientific community that vulnerability includes both internal components,
such as those related to adaptive and coping capacity, and external components, such as
those which determine exposure to hazards [13]. Luers et al. [12] propose an approach for
the quantification of vulnerability that integrates concepts such as the state of a system
relative to a threshold of damage, sensitivity, exposure, and adaptive capacity. Additionally,



Water 2021, 13, 3125 4 of 20

Luers et al. [12] argue that assessments on vulnerability should focus on selected variables
rather than on a place as a whole.

Wing et al. [14] clarify that exposure does not account for factors such as the structural
damage that a flood may cause and that these such factors reflecting susceptibility to
experiencing loss are instead more so broadly related to vulnerability. This illustrates
the distinction between flood exposure and flood risk [14]. It is important to note that
while this study goes beyond a simple measure of the exposure of infrastructures to flood
hazard through the integration of variables related to vulnerability, such as the state of
infrastructures relative to a threshold of damage, this model does not provide a complete
picture of community infrastructure vulnerability. For example, there is room for the
additional consideration of adaptive capacity and for improvements related to damage
thresholds and sensitivity. This is especially true when considering sensitivities related
to social processes, such as how sensitive a community is to a specific hospital losing
functionality (if it is one of many hospitals, a community may be less sensitive to this
impact compared to if it is the community’s only hospital). However, the design and
outputs of this model will be conducive to future research delving deeper into vulnerability
assessments related to these community infrastructures. For the purposes of this paper,
the terminology “flood risk” will be utilized (for lack of a better word) considering the
inclusion of hazard, exposure, and some aspects of vulnerability in this model, but it should
be noted that in this paper it refers only to the limited aspects described and does not
attempt to argue that a full picture of risk is captured here.

National level flood risk assessments focused on infrastructure are relatively rare. In
2007, the Federal Emergency Management Agency (FEMA)—the federal agency tasked
with managing the nation’s disaster risk—announced a design guide for improving critical
facility safety from Flooding and High Wind [15]. Globally, some studies estimate the flood
risk of infrastructure focused on specific cities and regions [16–18], but such assessments
are not as common in the U.S. [19].

Flood risk as—well as its components—are assessed and understood in multiple ways.
In the U.S. context, such assessments tend to focus on the threat that residential properties
face from a 1% annual chance flood event. This is due to the fact that flood hazard mapping
is dominated by FEMA—the federal agency tasked with mapping the nation’s flood risk.
These maps, known as Flood Insurance Rate Maps or FIRMs, focus only on the 1% and 0.2%
annual chance floods and are created primarily to guide federal floodplain management
regulations and to price flood insurance. The limitations of FEMA’s mapping process are
well-documented (e.g., Technical Mapping Advisory Council [20]). For example, ref. [14]
find that FEMA’s current maps only identify one-third of the US population at risk of
flooding in the 1% annual-chance event. Despite their prevalence, FEMA maps do not
provide sufficiently detailed flood hazard information to understand exposure and risk as
related to individual buildings or complex infrastructure systems.

Other researchers have aimed to understand flood risk in a more detailed manner,
with an eye toward infrastructure. In one recent study, ref. [19] uses FEMA maps to
assess the flood exposure of critical infrastructure (CI) facilities at the county level across
the US. Qiang derives an exposure ratio defined by the number of CI facilities in the 1%
annual chance floodplain. While useful, this study does not assess the potential future
exposure of individual facilities and does not consider floods of various return periods.
The analyses by [19] indicate that Louisiana and Florida have high flood exposure to their
critical infrastructures. In another study, Koks et al. [21] carry out a global multi-hazard risk
analysis of road and infrastructure assets. They find that approximately 7.5% of all global
assets are exposed to a 1% annual chance flood event. Importantly, this study estimates
physical damages with flood fragility curves that use newly developed flood risk data from
Fathom—a UK-based flood modeling firm that played a key role in the development of the
First Street Foundation Flood Model.

In one analysis, Pant et al. [17] put forward an integrated framework for critical
infrastructure flood impact assessment using spatial network models. This study is unique
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in that it aims to quantify the number of people in the United Kingdom that would
be affected (directly and indirectly) by widespread flooding to various infrastructure
facilities including airports, electric utilities, waste treatment, and telecommunications.
This framework, the authors contend, can help risk managers prioritize investments in
flood protection more effectively. Importantly, this illustrates a framework for improving
spatial understandings of vulnerability as related to infrastructure flooding.

Similarly, Dong et al. [22] utilize a spatial network model to assess community vul-
nerability. An additional advancement this study makes is to highlight how tolerance
to disruptions of access to critical facilities and community services caused by flooding
varies by population characteristics. In order to create community-level vulnerability as-
sessments, social vulnerability must be assessed in conjunction with physical vulnerability.
The physical vulnerability model utilized by Dong et al. [22] is limited to roadway network
performance, the functionality of critical facilities as determined through exposure, and
connectivity to critical facilities during flood events. Additionally, the flood inputs used
are constructed by limited contributing factors (primarily relying on roadway distance to
floodways). While the Dong et al. [22] paper provides important insights regarding the use
of spatial network models and the integration of physical and social analyses in order to
increase understanding of community vulnerability, a more complete, higher resolution,
and larger spanning model for physical risk would allow for further developments.

Critical infrastructure includes sectors such as emergency services, transportation,
energy, water and wastewater, and healthcare. However, it also includes sectors such as
critical manufacturing, agriculture, and defense industrial base (amongst others) which
are typically of larger-scale importance (as opposed to community-level impacts only).
Infrastructure related to emergency services, utilities, community buildings, and trans-
portation which may be visibly important at a community level are utilized in this paper
to construct infrastructure, social, roads, residential, and commercial risk scores. Reliable
transportation infrastructure is essential for the health of an economy [23]. A case study by
Karami et al. [24] which analyzed Twitter data surrounding the South Carolina flooding
caused by Hurricane Joaquin found some of the most frequently discussed topics included
drinking water, road damage, bridge damage, and power lost. Similar lines of research
are emerging to analyze social media activity in order to understand consumer concerns
and sentiment regarding the impacts of disaster events [24]. However, to our knowledge,
no large-scale study has been conducted previously to gauge consumer concerns specif-
ically about flooding events outside of the limited time period immediately following a
specific event.

3. Materials and Methods

For this study’s purposes, aspects of flood risk are estimated through the application
of the First Street Foundation Flood Model (FSF-FM) [8], to the five dimensions of interest:
residential properties, roads, commercial properties, critical infrastructure, and social
infrastructure. Data identifying roads, critical infrastructure, and social infrastructure
were obtained from publicly available data sources (listed in Table 1). Residential and
commercial property data were obtained through a third-party provider (https://www.
lightboxre.com/, accessed on 11 January 2019). These five dimensions are made up of
individual infrastructure types (for example, hospitals, power stations, and government
buildings), termed “Points of Interest” (POI). For more information on the underlying
FSF-FM and the climate adjustments used to estimate future flooding conditions, see
Bates et al. [25]. Bates and colleagues outline the underlying hydro-dynamic processes at
play in the development of their flood estimates. Most important to this research is the
fact that community development, including the placement and planning of infrastructure,
often happens in floodplains and the risk of flooding must be taken into account when
those decisions are being made. It is, in fact, the intersection of the geomorphology of
an area and the human development which intersect to produce the risk of any given
community to flooding.

https://www.lightboxre.com/
https://www.lightboxre.com/
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Table 1. Data sources used to analyze the impact of infrastructures and roads.

Category Dataset Location (All Accessed on 1 January 2021)

Roads

Roads (100 m line segments) https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-
line-file.html

Critical Infrastructure

Airport: Point locations https://ais-faa.opendata.arcgis.com/datasets/e747ab91a11045e8b3f8a3efd093
d3b5_0

Fire station: Point locations https://hifld-geoplatform.opendata.arcgis.com/datasets/0ccaf0c53b794eb8ac3
d3de6afdb3286_0

Hospital: Point locations https://hifld-geoplatform.opendata.arcgis.com/datasets/6ac5e325468c4cb9b9
05f1728d6fbf0f_0

Police station: Point locations https://hub.arcgis.com/datasets/c8403fea013f44b8a7bb0074495beda8_0

Ports: Point locations https:
//hifld-geoplatform.opendata.arcgis.com/datasets/major-us-port-facilities

Power station: Point locations https://hifld-geoplatform.opendata.arcgis.com/datasets/ee0263bd105d41599
be22d46107341c3_0

Hazardous waste: Polygon (property outline) https://sedac.ciesin.columbia.edu/data/set/superfund-atsdr-hazardous-
waste-site-v2

water outfall point locations https://echo.epa.gov/tools/data-downloads

Wastewater treatment Plants: Point locations https://catalog.data.gov/dataset/environmental-protection-agency-epa-
facility-registry-service-frs-wastewater-treatment-pla

Social Infrastructure

Government building: Point locations https://hifld-geoplatform.opendata.arcgis.com/datasets/major-state-
government-buildings

Historic building: Point locations https://www.nps.gov/subjects/nationalregister/data-downloads.htm

Worship: Point locations https:
//hifld-geoplatform.opendata.arcgis.com/datasets/all-places-of-worship

Museum: Point locations https://university-museums-and-collections.net/

School: Point locations https://hub.arcgis.com/datasets/geoplatform::public-schools

Data Processing

In order to obtain measurements for each POI, all features must be assigned to a
spatial location. Much of the data was already spatial in the form of points, road networks,
or parcel boundaries (see Table 1). Data that contained a spatial component were spatially
joined to parcels in the national parcel file. For non-spatial data, address matching tied each
POI to a spatial parcel in the national level parcel data set. Following the spatial join and
address matching, measurements of risk may be taken using different techniques based
on the POI type and operational threshold. The Python GeoPandas project was utilized to
create the maps for this study.

Step 1: Expected Depth Calculation

In the data development of the Community Risk level, to quantify the flooding impacts
to POIs for 2-year, 5-year, 20-year, 100-year, 250-year, and 500-year flood events in 2021
and 2051 (data processing takes place in five steps that are detailed in Figure 1 below),
the expected depth is collected for each POI or the centerline of disaggregated spatial
segments in the case of roads. The expected annualized depth in each year is the sum of

https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html
https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html
https://ais-faa.opendata.arcgis.com/datasets/e747ab91a11045e8b3f8a3efd093d3b5_0
https://ais-faa.opendata.arcgis.com/datasets/e747ab91a11045e8b3f8a3efd093d3b5_0
https://hifld-geoplatform.opendata.arcgis.com/datasets/0ccaf0c53b794eb8ac3d3de6afdb3286_0
https://hifld-geoplatform.opendata.arcgis.com/datasets/0ccaf0c53b794eb8ac3d3de6afdb3286_0
https://hifld-geoplatform.opendata.arcgis.com/datasets/6ac5e325468c4cb9b905f1728d6fbf0f_0
https://hifld-geoplatform.opendata.arcgis.com/datasets/6ac5e325468c4cb9b905f1728d6fbf0f_0
https://hub.arcgis.com/datasets/c8403fea013f44b8a7bb0074495beda8_0
https://hifld-geoplatform.opendata.arcgis.com/datasets/major-us-port-facilities
https://hifld-geoplatform.opendata.arcgis.com/datasets/major-us-port-facilities
https://hifld-geoplatform.opendata.arcgis.com/datasets/ee0263bd105d41599be22d46107341c3_0
https://hifld-geoplatform.opendata.arcgis.com/datasets/ee0263bd105d41599be22d46107341c3_0
https://sedac.ciesin.columbia.edu/data/set/superfund-atsdr-hazardous-waste-site-v2
https://sedac.ciesin.columbia.edu/data/set/superfund-atsdr-hazardous-waste-site-v2
https://echo.epa.gov/tools/data-downloads
https://catalog.data.gov/dataset/environmental-protection-agency-epa-facility-registry-service-frs-wastewater-treatment-pla
https://catalog.data.gov/dataset/environmental-protection-agency-epa-facility-registry-service-frs-wastewater-treatment-pla
https://hifld-geoplatform.opendata.arcgis.com/datasets/major-state-government-buildings
https://hifld-geoplatform.opendata.arcgis.com/datasets/major-state-government-buildings
https://www.nps.gov/subjects/nationalregister/data-downloads.htm
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the probabilities that relate to each flood magnitude multiplied by the flood depth using
the equation presented here:

Expected Depth = ∑ Avg(Di, Di+1)× (Pi+1 − Pi) (1)

In the above equation, D and P show the depth and probability, respectively, and i is
the numerator for different return period scenarios.
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Figure 1. Data processing workflow.

Step 2: Integration Operational Depth

The Community Risk level incorporates the loss of operational functionality for each
POI through the identification of operational thresholds. Table 2 specifies the operational
thresholds utilized for each POI with sources noted below. The level of flooding the
POI type is generally built to withstand based on federal and local building standards
is considered to calculate a meaningful impact depth. To identify the impact depth, the
difference between the individual expected depth (produced in Step 1) and half of the
operational threshold is analyzed. When the calculated value of the impact depth is less
than the value of the operational threshold, this indicates that the infrastructure would bear
some risk to functionality but would not stop operation. This is important as past research
shows that flooding to the surrounding areas also begins to limit access and operation of
infrastructure before the structure itself is completely non-operational [26].
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Table 2. Operational thresholds used.

Infrastructure Type Infrastructure Category Operational Threshold (ft)

Residential parcels Residential 0
Roads Roads 0.5

Commercial parcels Commercial 0
Airport Infrastructure 1

Fire station Infrastructure 2
Hospital Infrastructure 3.5

Police station Infrastructure 1
Port Infrastructure 1

Power station Infrastructure 2
Superfund site Infrastructure 1
Water outfalls Infrastructure 0

Wastewater treatment plant Infrastructure 0
Government building Social 0

Historic building Social 0
House of worship Social 0

Museum Social 0
School Social 1

HAZUS (https://www.fema.gov/flood-maps/products-tools/hazus, accessed on 1 January 2021) thresholds
are used for fire stations, hospitals, police stations, and power stations.; ASCE (https://ascelibrary.org/page/
books/s-standards, accessed on 1 January 2021) thresholds are used for superfund sites and schools; FAA
(https://www.faa.gov/, accessed on 1 January 2021) threshold is used for airports; FEMA (https://www.fema.
gov/sites/default/files/2020-09/fema_hazus_flood-model_technical-manual_2.1.pdf, accessed on 1 January
2021) thresholds are used for wastewater treatment plants.; UNCTAD (https://unctad.org/system/files/non-
official-document/CBhat_ICF_SLUWorkshop_p13.en.pdf, accessed on 1 January 2021) threshold is used for ports;
Weather.gov (https://www.weather.gov/tsa/hydro_tadd accessed on 1 January 2021) threshold is used for roads.

Step 3: Standardization of Functional Depths

The community risk level requires a data transformation given the highly right-
skewed nature of the flood depths since many POIs have zero or very little flooding. In
order to transform skewed data to approximately conform to a normal distribution for
further analysis, a log transformation may be performed on the continuous outcome of the
difference in expected depth over half of the operational threshold. Min-max scaling is
then used, which is a common normalization technique in social indicators research [27] to
normalize the logged transformed variable into a 0 to 1 standardized scale.

Zik = LN(SDFi) (2)

where: Standardized Functional Depth (SFDi) = (Zi—Zmin)/(Zmax—Zmin).
In this standardized scale, Zik represents the standardized functional depth (SDF) and

the natural log of the scaling process by which each observation is differenced from the
minimum expected depth (Zi—Zmin) and that result is divided by the range of all possible
values (Zmax—Zmin) across each of the five dimensions in this analysis (k). From this
process, a 0 represents those with no risk of flooding, while a 1 represents those with the
most risk. Upper and lower bounds were applied to remove outliers. The lower bound
was 0.01 and the upper bound was 100, or −2 and 2 after the log transformation. These
represent practical values for a minimum and maximum. This transformation is completed
for both current and future expected flood depths (2021 and 2051, respectively). Individual
facilities are assigned a distinct score based on the average of their normalized current and
future expected flood depths, assigned based on five bins of equal width from 0 to 1, with
a sixth classification for those with no flooding.

Step 4: Dimensional Risk level Calculation

The Community Risk Level aggregates the standardized scales to various localities
(j). In all, the indicators contained in the POI scales were aggregated to a total of four

https://www.fema.gov/flood-maps/products-tools/hazus
https://ascelibrary.org/page/books/s-standards
https://ascelibrary.org/page/books/s-standards
https://www.faa.gov/
https://www.fema.gov/sites/default/files/2020-09/fema_hazus_flood-model_technical-manual_2.1.pdf
https://www.fema.gov/sites/default/files/2020-09/fema_hazus_flood-model_technical-manual_2.1.pdf
https://unctad.org/system/files/non-official-document/CBhat_ICF_SLUWorkshop_p13.en.pdf
https://unctad.org/system/files/non-official-document/CBhat_ICF_SLUWorkshop_p13.en.pdf
https://www.weather.gov/tsa/hydro_tadd
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community levels (including the neighborhood (n = 71,786), zip code (n = 41,692), city/place
(n = 19,495), and county levels (n = 3006).

Community Risk Level (CRLjk) = ∑ijk (Zik) (3)

In this process, CRLjk represents the summed Community Risk Level for each of the
different levels of geography-dimension combinations (j) and is simply a summation of
the five dimensions (k). The process of aggregation to each geographic level was preceded
in this step where a dimensional risk score was calculated for each of the five categories
(residential properties, roads, commercial properties, critical infrastructure, and social
infrastructure) and by year (2021 and 2051). That is, the dimensional community risk score
was calculated by computing the sum of the percentiles of normalized expected depths
from 0 to 100 at intervals of five for each dimension, across all POIs in that dimension and
in that location. For a visualization of this process at the county level, refer to Figure 1.

Step 5: Overall Community Risk Score Calculation

The Community Risk level presents the combination of the five dimensional scores
created in Step 4 in a single overall indicator of standardized local impacts, referred to
as the Overall Community Flood Risk. These scores were created for all four community
aggregation levels and provide an overall view of community infrastructure impacts
for each.

Overall Community Risk Level (OCRLj) = ∑jk (CRLjk) (4)

where the category scores that were created as a product of the percentile summation, at
each geo level and for 2021 and 2051, were classified using natural breaks into six qual-
itatively more meaningful categories associated with relative flood risk as (0) minimal,
(1) minor, (2) moderate, (3) major, (4) severe and (5) extreme. This final composite score
at each geo level is computed using the same method as each of the five dimensional
categories but using the average of the sum of all of the percentiles for each category.

4. Results

In the development and analysis of the Community Risk level, it was found that there
are significant differences at the county and city level in the amount of risk that exists
today and into the future. Most importantly, there are a group of counties and cities that
have persistent patterns in these aspects of risk from flooding across multiple dimensions.
These areas tend to be in regions with well-established flood hazards, such as coastal flood
plains along the Gulf and Southeastern coasts of the U.S., but also in less well-known flood
zones, such as in the Appalachian mountain regions of West Virginia and Kentucky. To
that point, 17 of the top 20 counties in the U.S. which are most at “risk” (85%) are in the
states of Louisiana, Florida, West Virginia, and Kentucky (Table 3). Additionally, the top
cities at risk of flooding persistently show up in the states of Louisiana, Florida, Texas, and
South Carolina (Table 4). The analysis further uncovered a high degree of vulnerability in
some of the major population centers in the U.S., including New Orleans, Miami, Tampa,
Charleston, Chicago, and Los Angeles.

At a high level, impacts to residential properties are expected to increase by 10% over
the next 30 years with 12.4 million properties exposed today (14%) and 13.6 million at risk
of flooding in 2051 (16%). Additionally, 2.0 million miles of road (23%) are at risk today
and are expected to increase by 3% over the next 30 years. Commercial properties are
expected to see a 7% increase in the risk of flooding from 2021 to 2051, with 918,540 at risk
today (20%) and 984,591 at risk of flooding in 30 years (21%). Currently, 35,776 critical
infrastructure facilities are at risk today (25%), increasing to 37,786 facilities by 2051 (26%
with a 6% increase in risk). 71,717 pieces of social infrastructure facilities are at risk today
(17%), increasing to 77,843 by 2051 (19% and an increase of 9% over that time period).
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Table 3. Top 20 “most at risk” counties in the U.S.

% of Properties with Operational Risk Today

Rank County Name State Residential Roads Commercial Infrastructure Social

1 Cameron Parish LA 99.2 98.3 100 96.4 100
2 Orleans Parish LA 100 98.5 99.9 94.5 100
3 Jefferson Parish LA 100 97.5 100 95.4 100
4 St. Bernard Parish LA 99.9 98.8 100 92.5 100
5 Hyde County NC 99.3 94.8 96.6 94.1 100
6 Plaquemines Parish LA 99.6 96.4 99.8 85.4 95.5
7 Terrebonne Parish LA 96.7 92.6 96.5 93.2 94.6
8 Monroe County FL 98.5 89.4 97.5 82.5 97.5
9 St. Charles Parish LA 97 87.5 98.3 68.6 95.7
10 Charlotte County FL 87.7 82 86.8 76.6 92.9
11 Sutter County CA 92.6 76.8 86.9 64.4 93.7
12 Galveston County TX 79 83 80.9 80.5 84.8
13 Franklin County FL 86.7 77.2 93.3 68.2 82.1
14 Tyrrell County NC 81.3 79.5 84.5 66.7 87.5
15 St. John the Baptist Parish LA 92.6 72.6 95.6 55.2 80.9
16 Poquoson city VA 78.4 84.2 72 66.7 84.6
17 Glynn County GA 79 60.7 86.3 84 75.2
18 Logan County WV 70.3 69.7 88.9 78.4 73.9
19 McDowell County WV 64.1 60.4 87.9 85.4 71.2
20 Johnson County KY 70.6 74 77.3 66.7 79.7

Table 4. Top 20 “most at risk” cities in the U.S.

% of Properties with Operational Risk Today

Rank City Name State Residential Roads Commercial Infrastructure Social

1 Metairie LA 100 99.8 100 100 100
2 New Orleans LA 100 98.5 99.9 94.5 100
3 Cape Coral FL 89.6 93.8 95.6 87.5 94.1
4 Stockton CA 92 85.7 97.3 75.4 93.9
5 Fort Lauderdale FL 79.5 79.6 78.7 83.6 74.3
6 Sacramento CA 68.9 73.2 66.8 67.6 70.6
7 Charleston SC 60 52.8 68.5 82.6 77.3
8 Miami FL 50.7 61.4 55.4 83.3 55.4
9 North Port FL 50.9 81.6 66.5 50 37.3
10 Chattanooga TN 38.8 51 67.9 69.7 57.6
11 Eugene OR 48.3 60.4 57.9 60 49
12 St. Petersburg FL 48.2 64.7 36.6 65.6 44.4
13 Santa Rosa CA 36.7 37.3 54.3 50 53.8
14 Tampa FL 44.3 50.5 44.3 45.5 35.2
15 Mobile AL 25.9 41.4 40.6 71.7 40.2
16 Houston TX 32 64.4 33.3 55 33.5
17 Lake Charles LA 39.6 50.3 34.6 52.8 25.8
18 Hampton VA 33.4 47.9 28.7 61.1 31.5
19 Fresno CA 38 39.4 47.6 24.2 51.7
20 Palm Coast FL 45.6 36.7 62.2 15.4 33.9

4.1. County Level Analysis

The distribution of the physical impacts, relative to the dimensions used in the de-
velopment of the Community Risk level, vary widely across the U.S. (See Figure 2 for a
visualization). However, predominant patterns of high impacts exist persistently in the
coastal areas of the Southeastern U.S. and along the Appalachian Mountain region of the
country. Specifically, the highest concentration of community impact exists in the states
of Louisiana, Florida, Kentucky, and West Virginia. To that point, 17 of the top 20 most
at-risk counties in the U.S. (85%) are in these four states. Louisiana alone accounts for 6
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of the top 20 most at-risk counties (30%) and is home to the most at-risk county in the
country, Cameron Parish. (2) Monroe County, FL, (3) Terrebonne Parish, LA, (4) Hyde
County, NC, and (5) McDowell County, WV round out the top 5 counties in regards to
having the most impacts on physical infrastructure. See Table 3 for additional details on
the top 20 counties with the highest percentage of impacts in 2021. Similar patterns exist
for each of the five dimensions that make up the overall Community Risk level, which can
be seen in the paneled maps in Figure 3.
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Table 3 lists the top 20 counties by overall risk across the U.S. inclusive of risk across
dimensional impacts associated with residential properties, roads, commercial properties,
critical infrastructure, and social infrastructure. These 5 dimensions are combined to
produce the overall risk ranking. However, the impacts to each dimension vary from
county to county. For instance, the top 4 counties regarding infrastructure impacted are all
in Louisiana but are spread throughout the top list presented in Table 3. Of those counties,
Cameron (96.4%), Orleans (94.5%), Jefferson (95.4%), and St. Bernard (92.5%) all have over
90% of their physical infrastructure at risk of flooding today. Hyde County, NC (94.1%)
rounds out the top 5 counties with relative infrastructure at risk. Outside of the top 20
list, Harris County, TX (Houston area); Miami-Dade County, FL; Broward County, FL;
Lee County, FL; and Pinellas County, FL (Tampa area) all have over 50% of their critical
infrastructure at risk of flooding today.

Similar results are found when examining the top 5 counties regarding social in-
frastructure, residential properties, commercial properties, and roads at risk among the
top 20 list.

Regarding the percent of social infrastructure at risk, Cameron (100%), Orleans (100%),
St. Bernard (100%), and Jefferson (100%) Parishes from Louisiana; and Hyde County,
NC (100%) make up the top 5 most at-risk counties. Nine of the top 10 counties for the
highest percentage of social infrastructure at risk are all located in the states of Florida and
Louisiana. Again, Lee County, FL; Miami-Dade County, FL; and Fort Bend County, TX
(Houston area) all fall outside of the top 20 but have over 50% of their social infrastructure
at risk of flooding.

A similar pattern exists when looking at the distribution of impacts for residential
and commercial properties from the top 20 list. Regarding residential properties, four of
the top five in regards to the percent of residential properties at risk are again in the state
of Louisiana, with the 5th located in North Carolina. Orleans (100%), Jefferson (100%),
St. Bernard (99.9%), and Plaquemines (99.6%) top the list and are all located in the state of
Louisiana, while Hyde County, NC (99.3%) rounds out the top 5. Regarding the percent
of commercial properties impacted in the county, the top 5 from the list are all located
in the state of Louisiana; Jefferson (100%), St. Bernard (100%), Cameron (100%), Orleans
(99.9%), and Plaquemines (99.8%). Regarding both residential and commercial properties,
Lee County, FL, and Miami-Dade County, FL both fall outside of the top 20 but have over
50% of those respective properties at risk of flooding.

In the final dimension of the percentage of roads at risk, the results again find that the
top 5 are all located in the state of Louisiana. While the order is shuffled slightly, the top 5
counties are St. Bernard (98.8%), Orleans (98.5%), Cameron (98.3%), Jefferson (97.5%), and
Plaquemines (96.4%). Outside of the top 20, counties with over 50% of their roads at risk of
flooding are concentrated along the coast of FL (Miami-Dade, Lee, Broward, and Pinellas
Counties) and in the Houston, TX, area (Harris and Fort Bend Counties).

The impact of these changes in risk on local communities has the potential to be
devastating. For example, in Harris County, TX (Houston), there are 770 hospitals, public
utilities, and water treatment plants at risk of flooding above their operational threshold
this year. In Miami-Dade, FL, there are 1640 schools, churches, and museums at risk of
being inoperable due to their flood risk. In Cook County, IL (Chicago), there are nearly a
quarter of a million residential properties (225k) at risk of flooding. In Kings County, NY
(Brooklyn), there are nearly 4k commercial properties at risk of being made inoperable due
to flooding. Finally, in Orleans Parish, LA (New Orleans), nearly all (99%) of roads are at
risk of being undrivable due to their estimated flood risk.

4.2. City Level Analysis

When examining risk within the city level, high-level patterns emerge that mimic
those seen at the county level, but with more of a focus on population centers (Figure 4
illustrates these overall scores spatially). Again, a large percentage of the representation
in the top 20 list (Table 4) is made up of cities from the states of Louisiana (3 cities) and
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Florida (6 cities). Among those cities, the major population centers of New Orleans, LA
(ranked 2nd); Miami, FL (ranked 8th); St. Petersburg, FL (ranked 12th); and Tampa, FL
(ranked 14th) all rank highly in the “most at risk” cities list. Topping the list is Metairie, LA,
and New Orleans, LA (two adjacent cities in the New Orleans Metro Area), followed by
Cape Coral, FL; Fort Lauderdale, FL; and Charleston, SC. It is notable that compared to the
county list, the city list includes more representation from the mid-Atlantic, with Hampton,
VA sitting outside the top 10 most at-risk cities, ranked 18th. The observed increase in
the mid-Atlantic may be driven by warming sea-surface and atmospheric temperatures
which fuel higher occurrences of tropical cyclones in the region. Tropical cyclone intensity
is predicted to increase significantly along the mid-Atlantic [28]. Additionally, the cities of
Sacramento, CA; Fresno, CA; and Eugene, OR highlight the risk in cities on the West Coast.
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When examining the risk rankings by dimension (for a spatial visualization, see
Figure 5), the highest percentage of critical infrastructure at risk among this list of cities
are in Metairie, LA (100%) and New Orleans, LA (94.5%). This is particularly interesting
as both of these cities are in the same Metro (New Orleans-Kenner-Metairie Metropolitan
Area), meaning that there is a sizable concentration of population and risk in a small
geographic area. Cape Coral, FL (87.5%); Fort Lauderdale, FL (83.6%); and Miami, FL
(83.3%) round out the top 5 in regards to critical infrastructure at risk. The top cities at risk
for social infrastructure look very similar with the exception of Stockton, CA (93.9%) and
Charleston, SC (77.3%). Metairie, LA (100%), New Orleans, LA (100%), and Cape Coral, FL
(94.1%) again highlights the persistent extreme physical risk to flooding that exists in these
cities. Outside of the top 20, Houston, TX, and Jacksonville, FL, have over 50% of critical
infrastructure at risk, and Chicago, IL, has nearly one-third (31.4%) of social infrastructure
at risk of flooding.
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Rankings of the relative residential properties, commercial properties, and roads
impacted look very similar to the rankings for critical and social infrastructure. Regarding
residential properties impacted, Metairie, LA (100%); New Orleans, LA (100%); Stockton,
CA (92%); Cape Coral, FL (89.6%); and Fort Lauderdale, FL (79.6%) rank 1–5, respectively.
When looking at commercial properties, the same cities make up the top 5 in a slightly
different order, with Metairie, LA (100%); New Orleans, LA (99.9%); Stockton, CA (97.3%);
Cape Coral, FL (95.6%); and Fort Lauderdale (78.7%) respectively. Again, Houston, TX and
Chicago, IL both fall outside of the top 20 but have around 30% of their residential and
commercial properties within their city boundaries at risk of flooding.

Finally, the top 5 for the percentage of roads at risk are Metairie, LA (99.8%); New
Orleans, LA (98.5%); Cape Coral, FL (93.8%); Stockton, CA (85.7%); and North Port, FL
(81.6%). Ultimately, these results indicate a consistency in risk associated with top cities
impacted across the five dimensions. Of note, Houston, TX (64.4%); Miami, FL (61.4%);
Charleston, SC (52.8%); and Pittsburgh, PA (33.7%) are all major cities that have significant
percentages of their road infrastructure at risk of flooding. While road infrastructure is
unique in this analysis due to the fact that it is not building specific, previous research has
highlighted the disproportionate effect that flooding on the road network has on flood
vulnerability, such as through its impact on property values and disruption of community
activity [26].

4.3. Change in Risk over the Next 30 Years

When examining county-level community risk in relation to its change from 2021
to 2051 (illustrated spatially in Figure 6), the most distinct patterns highlight significant
increasing impacts along the Atlantic and Gulf Coasts, large increases in risk in the North-
west, and very little change in risk for the middle (non-coastal) portion of the country. The
top 20 counties with the most overall percentage increase in impacts are detailed in Table 5
and a visual representation of these changes is provided in Figure 6. All of these patterns
are driven by different environmental sources and predict a widely different experience in
flood risk across the country.

Along the Atlantic and Gulf Coasts, risk increases almost universally due to associa-
tions with the forecasted increases in sea-level rise; increases in surge due to the forecasts
of stronger coastal storm intensities; and increases in latitudinal reach of coastal storms
due to a warming atmosphere and ocean. In the northwestern portion of the country,
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there are more moderate increases in flooding which are primarily driven by increased
precipitation, storm runoff, and snowmelt in areas that feed the rivers in the region. In
comparison, the landlocked interior portion of the country, stretching from New Mexico to
Iowa, is estimated to have a minimal increase in risk. Additionally, isolated locales may
see a decrease in risk due to projected decreases in rainfall over the study period.
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Table 5. Top 20 “greatest change” in risk from 2021 to 2051 by county.

% Increase of Facilities with Operational Risk over the Next 30 Years

Rank County Name State Residential Roads Commercial Infrastructure Social

1 Norfolk city VA 55.3 43.5 43.7 22.6 47.7
2 Portsmouth city VA 36.2 32.1 41 16.2 33.9
3 St. Mary Parish LA 27.8 32.9 28.1 15.7 38.7
4 Hampton city VA 33.7 28.3 27.2 13.9 30.9
5 Calhoun County TX 23.5 18.2 32.1 20.9 36.7
6 Beaufort County SC 20.7 25.7 24.2 21.6 25.5
7 Poquoson city VA 21.2 15.7 27.1 33.3 15.4
8 Mathews County VA 25.7 23.9 23.8 9 29.2
9 Iberia Parish LA 27.1 18 16 12.5 37.4
10 Camden County NC 12.5 11.1 17.2 33.3 35.7
11 Wakulla County FL 17.3 11.5 18.9 16.7 36.2
12 Currituck County NC 11 20.7 13.7 39.2 13.9
13 Vermilion Parish LA 18.9 12.3 22.7 5.3 27.8
14 Suffolk County MA 7.7 13.6 22.3 19.8 17.5
15 Salem County NJ 19.6 9.4 12.4 14.1 24.6
16 Talbot County MD 15.6 19.3 8.7 17.7 16.9
17 Washington County NC 14.9 14.2 18.6 22.8 7.7
18 Chambers County TX 15.8 10.8 9.8 7.8 32.4
19 Virginia Beach city VA 15.2 17.7 16 14.3 13.4
20 Volusia County FL 15.3 12.2 20 13 15.7
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The counties with the “most change” in community risk (Table 5) generally fall into this
coastal region, with Norfolk, VA ranking first in the analysis with a 22.6% point increase
in critical infrastructure flooding, a 55.3% point increase in the flooding of residential
properties, a 43.7% point increase in the risk of flooding of commercial properties, and a
43.5% point increase in the flooding of roads up to the year 2051. Other notable counties in
this analysis include Beaufort County, SC (Charleston) which is projected to see increases
in the risk of flooding of 25.5% points for social infrastructure, 21.6% point increase in
residential property flooding, 24.2% point increase in commercial property flooding, and
25.7% point increase in road flooding over the time period. Additionally, Suffolk County,
MA (Boston); Virginia Beach, VA; and a number of counties in the state of Louisiana all
make the top 20 list for the largest increase in risk and are expected to see increases in flood
risk over this time period.

5. Discussion

While the type of properties examined (all properties provided by the NSI), the flood
hazard information used, and the quantified feature for risk (value of assets) measured by
Wing et al. [14] differs from this study, the pattern of the percentage of infrastructure im-
pacts is similar. Wing et al. [14] find high levels of asset exposure in the states of Louisiana
(32%), Florida (28%), Arizona (26%), and West Virginia (25%). The states identified in the
Wing et al. [14] study for having high percentages of infrastructure impacts are similar to
the states identified here, with the exception of Arizona. This is likely due to a difference
in the flood hazard models utilized, where the hazard model in this study integrates a
unique advancement from other flood hazard models of the consideration of adaptation
measures. In Arizona, the relatively homogenous topography of the region makes mod-
eling water flows difficult. Additionally, Arizona has an extensive canal system where
floodwater is diverted from populations and assets. As a result, hazard models which
do not account for these types of adaptation measures will obtain different results when
investigating exposure.

The analysis by Qiang [19] examined the exposure ratios of critical infrastructure
(CI) through their designations within the 100-year-flood-zone maps provided by FEMA.
While this study also differs in the utilized flood hazard information, the types of infras-
tructures examined, and the nature of the outcome of interest, Qiang [19] similarly finds
that Louisiana, Florida, and West Virginia have relatively high levels of exposure for the
majority of the CI sectors examined.

Flood risk models within the United States, as well as worldwide, are often limited
by problematic hazard data. For example, hazard data may be low resolution, outdated,
and/or not consider the extensive role of mitigation projects. Additionally, low-resolution
and incomplete input data for infrastructures examined often provide a challenge, es-
pecially for data covering large geographical areas. In some areas globally, hazard and
exposure data sets may also not exist at all and would have to be constructed [29,30]. Many
flood risk models do not integrate operational thresholds but several have instead looked
only at asset exposure as an indicator of vulnerability. With these opportunities for improve-
ment in mind, the model developed in this study includes the following advancements:

(1) High Resolution Input Data: The development of a national scale impact assessment
indicator created with high resolution data. This high-resolution data comes in the
form of both the flood hazard data, which is sourced from the First Street Foun-
dation Flood Model [7,25]; and property-specific spatial parcel data sourced from
county-level property assessment records, which were collected and standardized
by a 3rd party data provider. This high-resolution data adds additional precision
to the model that other hazard layers do not allow for at a national scale. Addition-
ally, the availability of the parcel-level data provides the ability to explicitly assign
information about flooding to properties on a property-by-property basis that are
categorized as residential property, roads, commercial property, critical infrastructure,
and social infrastructure.
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(2) Multi-Source Flood Hazard Information: The integration of multiple sources of
flooding in the creation of a high resolution, nationally consistent, flood hazard
estimate. In the absence of a fully integrated flood hazard tool, previous risk score
development efforts have had to rely on single-source national hazard layers (surge,
riverine, rainfall, or tidal), or some combination of these sources, leading to lower
levels of model fidelity. The FSF-FM hazard estimate used in this analysis is a fully
integrated flood hazard assessment indicator that includes flooding from fluvial,
pluvial, and coastal sources, enabling a more accurate understanding of physical
vulnerability to flood risk across the country.

(3) Multi-Return Period Hazard Information: The integration of a probabilistic approach
associated with the magnitude of expected flooding and the probability of the occur-
rence of that flooding. This approach allows for a consistent view of flood hazard that
varies by location based on the unique flood profile of the local area, as opposed to
alternative approaches which focus on a single probabilistic layer (for example, 1 in
100-year return period) or do not have the consistency to measure the probability of
hazard occurrence at a national scale. This FSF-FM integrates multiple return periods
in the model, including the 2-year, 5-year, 20-year, 100-year, 250-year, and 500-year
return periods.

(4) Operational Threshold Integration: The integration of empirically derived thresh-
olds identified by the federal government (like FEMA and NOAA) and authoritative
bodies (such as the American Society of Civil Engineers) to determine the levels of
flooding at which various infrastructure types become inoperable. To date, where
national-level physical risk is assessed in the development of community risk in-
dices, it only accounts for the inclusion of infrastructure inside of flood zone extents,
which themselves are usually problematic (see point 3). The inclusion of operational
thresholds, along with the use of high-precision probabilistic flood layers, allows for a
more detailed and meaningful assessment of risk in a way that most impacts the local
populations through the measurement of inoperability. By relying on government and
authoritative definitions of inoperability thresholds, risk can further be standardized
for community-to-community comparisons.

(5) Future Facing Impacts: The integration of the FSF-FM further allows for the analysis
of impacts today and 30 years into the future. By employing the same flood model-
ing methodology in the development of current and future flood impact layers, this
analysis is able to isolate the effect of a changing environment and its impact on a com-
munity holding all development, population shifts, and adaptation efforts constant.
In essence, this integration allows for the identification of areas, and infrastructure,
that are most susceptible to flooding today and into the future. By presenting risk
in this way to reveal potential vulnerabilities, local communities are able to make
better-informed decisions about where to allocate resources and planning initiatives
for their unique climate and topography.

This study has several limitations, many of which are due to limited data availability,
as all of the infrastructure data used here is publicly available data that may not be complete.
One such limitation is caused by the existence of some areas which have no parcel or
infrastructure feature data. Additionally, a lack of precedent for similar models also serves
as a limitation here. For example, there is ambiguity about what types of infrastructures
should be prioritized for consideration within the model, which is especially important in
light of differences in data availability and quality for different infrastructure types and
between geographical areas. Additionally, the quantification of vulnerability has a wide
variety of approaches and appropriate approaches will likely vary significantly by area
and over time. While operational thresholds are likely necessary for a complete picture of
vulnerability regardless of geographical area and over time, it is not sufficient. Additionally,
the calculation of impact depths utilized here is likely too simplistic to capture the true
nature of functionality in relation to operational thresholds. Additional research is needed
for the development of a more accurate equation here and additional property-specific
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data is necessary to serve as inputs. This is likely to be most feasible on a smaller scale, as
additional information about specific buildings is likely to be required.

In order to further increase understanding of community vulnerability, network
performance and connectivity between community infrastructures should also be assessed.
Pant et al. [17] and Dong et al. [22]) both provide important insights into how spatial
network models may be used to identify and measure direct and indirect impacts. In
this paper, network connectivity was not taken into account in the development of the
community risk assessment as this study’s focus was primarily on the quantification of risk
(outcome oriented) rather than vulnerability (susceptibility oriented). However, researchers
and decision-makers looking to increase their understanding of community physical
vulnerability would benefit from the integration of the high-precision risk assessment
tools developed here in conjunction with considerations of network connectivity.

Additionally, for a more comprehensive understanding of community vulnerability,
social vulnerability should be considered in addition to physical vulnerability (as addressed
by [22]). Integration of network connectivity considerations and social vulnerability would
allow for the establishment of a useful counterfactual economic scenario (such as GDP or
on a smaller scale), proving useful for cost–benefit analyses. This highlights an additional
opportunity for future research, where social vulnerability models gauging consumer
concern for impacted infrastructures may be used to inform the weighting and integration
of specific infrastructures. In this study, dimensions were selected that were judged to likely
be the most visible impacts at the community level, but for different geographic levels
(such as for government) and across different communities, prioritization may require
analyses of different infrastructure types than those used here.

A related key point here is the associated uncertainty at each step in the calculation
of impacts. For example, in addition to the uncertainty in hazard layers, there is also
uncertainty in the location and description of infrastructures and in the calculation of
their impact depths. As there is uncertainty at each layer within this process, uncertainty
accumulates throughout the progression of hazard to risk estimates. Additionally, these
uncertainties are uniquely amplified when considering future impacts.

The future-facing predictions generated within this study also operate on the assump-
tion that settlement patterns will not change over time. For the purposes of this study, this
was not taken into account as it would limit future prediction confidence and decrease the
level of detail at which outcomes may be reported. However, this is an obvious opportunity
for the integration of additional models predicting future built infrastructure patterns.
Future research here may take into account settlement patterns from urban-rural redistri-
bution and climate gentrification (among others). While this will limit the confidence of
predictions for community-specific impacts, it may be useful for governments and planning
agencies to understand for decision-making purposes, such as regarding investment. For
example, estimates of investment costs in future adaptation may be too low if they do not
consider changes in population and settlement patterns.

6. Conclusions

In this paper, an integrated framework for flood impact assessment of community-
relevant infrastructures—specifically, residential properties, roads, commercial properties,
critical infrastructure, and social facilities—is employed across the United States. The main
objective of this study is to create a methodology for estimating key aspects of flood risk at
a high resolution now and with climate change to community-relevant infrastructures. A
key development presented in this paper is the integration of operational thresholds and
the calculation of impact depths for the estimation of infrastructure risk from probabilistic
exposure to flood hazards in 2021 and 2051. The impact depth metric provides a common
measure that is broadly related to vulnerability and which will be useful in developing
more robust risk assessments, especially those integrating network connectivity and social
sensitivity across large geographical areas. This study should be followed by and integrated
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into additional research for the development of common metrics measuring other aspects
of vulnerability for a better assessment of flood risk related to community infrastructure.

Additionally, the development of the framework used here may be applied in other
geographical locations globally or on smaller scales within the United States for areas
that wish to better gauge their infrastructure-related flood risk utilizing the higher quality
data inputs that are typically better available on smaller scales. Limitations for other
areas globally may be the lack of high-quality data on flood hazards (especially those
which are high-resolution, integrate the impact of mitigation projects, utilize multi-return
period and multi-source information, and have future-facing estimations), infrastructure
characteristics and locations, and infrastructure-specific operational thresholds for the
calculation of impact depths.

The estimates and the methodology provided by this study will be useful for screen-
ing and prioritizing investment into mitigation and adaptation measures. Individuals
whose homes were spared the impact of a particular flood event are increasingly likely to
find their local roads, businesses, critical infrastructure, utilities, or emergency services
affected by flooding, indirectly threatening their quality of life, safety, and wellbeing. Pro-
viding a holistic understanding of flood risk at both the individual property level and
broader community level allows homeowners, community leaders, and local governments
a wide-angle lens through which to assess flooding and its physical, economic, and social
impacts. It further serves to expand the conceptual framework within which communities
analyze and understand flood risk, from risk to individual homes and properties to entire
neighborhoods, cities, zip codes, and counties. Arming leaders and individuals with this
information provide the insights necessary to take mitigating actions.
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