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Abstract: To examine evapotranspiration (ETc), soil evaporation (Es), and transpiration (Tr), and
partitioning of ETc, a two-year field experiment was carried out in a maize field with drip irrigation
under mulch in an arid region of northwestern China in 2017 and 2018. In the experiment we
designed two treatments with full irrigation (T1) and growth stage-based strategic regulated deficit
irrigation (T2). The applied irrigation of T2 was 40% of the T1 during both late vegetative and
reproductive growth stages. Based on the measurements of soil water content (SWC) and Tr, a dual
crop coefficient model (SIMDualKc) was calibrated and validated, and daily ETc, Es, and Tr were
estimated. The model can simulate well the dynamic variations of SWC and Tr. The calibrated basic
crop coefficient at the initial, mid-season, and end growth stages was 0.2, 1.15, and 0.75, respectively.
The ETc was 507.9 and 519.1 mm for the T1 treatment, and 428.9 and 430.9 mm for the T2 treatment.
The ratios of Tr to ETc were higher for the two treatments, ~90%, for two years. Collectively, both
drip irrigation under mulch and strategic deficit irrigation after canopy covering of the ground can
significantly reduce the ineffective proportion of ETc and Es.

Keywords: evapotranspiration; transpiration; maize; drip irrigation under mulch; strategic deficit irrigation

1. Introduction

Crop evapotranspiration (ETc) is one of the key indicators of field water manage-
ment, crop irrigation scheduling, and planning and design of farmland water conservancy
projects [1]. ETc is divided into two parts, soil evaporation (Es) and plant transpiration (Tr).
Among them, Es, known as ineffective water consumption for crop growth and yield, can
be decreased by ground coverage or proper irrigation management [2,3]. Tr, associated
with photosynthetic carbon fixation through leaf pores, directly decides crop growth and
the final yield [4]. However, as two water consumption processes in the farmland, Tr
and Es occur simultaneously, so it is difficult to carry out quantitative partitioning. There-
fore, accurate determination of crop evapotranspiration and its components is of great
significance for guiding field irrigation and improving the water use efficiency.

The FAO-56 dual crop coefficient approach is widely used because it can be used to
accurately estimate crop evapotranspiration and realize quantitative partitioning of daily
Es and Tr [5]. Fan and Cai [6] and Lu et al. [7] demonstrated that ETc can be accurately
estimated by the dual crop coefficient approach. A micro-lysimeter can be used to measure
Es, but owing to the limited measuring accuracy of the instrument, the accuracy can merely
be controlled within 15–20% [8]. Rosa et al. [9] developed a dual crop coefficient model
(SIMDualKc) based on the dual crop coefficient approach, making it easier to partition
ETc. Many studies showed that the model has a highly accurate estimation of ETc and its
components for wheat, maize, forage, tomato, chili, pea, cucumber, etc., in Brazil, Uruguay,
Portugal, Spain, and North China [10–17].
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Agricultural irrigation is a large water user in arid regions of Northwest China,
which is short of water resources, so the use of a new effective water-saving irrigation
technology is of great strategic significance for ensuring the water resources security and
ecological safety of Northwest China [18]. Drip irrigation under mulch, which is a new
type of water-saving technology integrating the advantages of the mulch film, such as soil
temperature conservation, soil moisture conservation, yield increase, and the water-saving
advantage of drip irrigation, can be used to decrease Es and increase water use efficiency
utilization during the initial stage of crop growth [19]. Thus, it has been widely used in
arid regions of Northwest China. Previous studies have indicated that Es was reduced
by ~50% with plastic film mulch over the whole growing season [20–22]. Fan et al. [23]
indicated that plastic mulch decreases the available energy and ETc of maize in an arid
region of northwest China, and thus the crop coefficient (Kc). Ding et al. [20] introduced
a ground-mulching factor to modify the original soil evaporation coefficient in order to
account for the reduction of the evaporation area by plastic film mulch. Zhang et al. [24]
found that maize ETc with drip irrigation under mulch was reduced by 2.8–5.2%, with
reduced soil evaporation by 45.2% and increased transpiration by 8.9% in Northeastern
China. However, there remain very few studies on ETc and its components related to the
use of drip irrigation under mulch in arid regions of Northwest China.

Crop regulated deficit irrigation (RDI) is a water-saving and high-yield irrigation
technology based on the relationship between crops and water. Moderate water deficit
in the growth stage of crops can reduce crop water consumption but has a small impact
on the final grain yield, thereby improving water use efficiency [25]. RDI reduces crop
water consumption mainly by reducing crop growth and leaf area or canopy coverage,
but a reduction in canopy coverage will increase the area of bare soil and increase soil
evaporation. For example, water deficit in the seedling or early growth period would
delay crop growth and canopy cover time, increasing the proportion of ineffective soil
evaporation [26]. After the canopy covers the ground (or the leaf area index is greater
than 3.0 m2 m−2), the implementation of the strategic stage of deficit adjustment can
ensure the reduction of crop water consumption without increasing the proportion of soil
evaporation [27]. Therefore, the timing of RDI is very important to reduce crop water
consumption without increasing ineffective soil evaporation.

In this study, a two-year field experiment of maize with drip irrigation under mulch
was carried out, and two water treatments were set up, namely full irrigation (T1) and
strategic stage regulated deficit irrigation in the late growth and reproductive periods (T2).
The SIMDualKc model was used to estimate the ETc and Es and Tr of maize during the
whole growth period. The objectives were: (1) to quantify the proportion of ETc and Es
and Tr of maize with drip irrigation under mulch, and (2) to compare the differences in
water use between the two treatments. These results provide a novel approach for efficient
water management by strategic growth stage-based RDI in field maize.

2. Materials and Methods
2.1. Experimental Area

The experiment was conducted at the Shiyanghe Experiment Station, China Agricul-
tural University in 2017 and 2018. The station is located in Liangzhou District, Wuwei,
Gansu Province, northwest China (37◦51′ N, 102◦52′ E, at an altitude of 1581 m). The
area has a typical continental temperate climate (arid inland desert climate) and abounds
in photothermal resources. The annual sunshine duration exceeds 3000 h; the frost-free
season lasts for more than 150 d; the annual average temperature is 8 ◦C and accumulated
temperature above 0 ◦C is higher than 3550 ◦C; the multi-year average wind speed is
1.3 m s−1; the multi-year average precipitation is 164 mm; the groundwater depth is greater
than 30 m. The soil in the experimental area is light sandy loam. The average dry bulk
density in the 100 cm soil layer of the root zone is 1.38 g cm−3, with an average field
capacity (θFC) of 0.32 cm3 cm−3 and permanent wilting point (θWP) of 0.13 cm3 cm−3.
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2.2. Experiment Design

A randomized block experiment was used, with two irrigation treatments, i.e., full
irrigation (T1) and regulated deficit irrigation (T2). Each treatment had three replicates,
and there were six plots in total. Each plot had a size of 7 × 4.5 m, and the plots stayed
unchanged in terms of size and treatment location in the two years. The planting crop
was spring maize (Xianyu 335), which was sown on 29 April 2017, and the harvest date
was 24 September, and the growth period was 148 days; in 2018, the planting was carried
out on 26 April, the harvest date was 24 September, and the length of the growth period
was 151 days. We used drip irrigation under the film, and each plot was laid with three
white transparent films (Figure 1). The film width was 1.4 m, and each film had three drip
irrigation tapes. The seeds were sown on one side of the drip irrigation tapes under the
mulch, with a pore diameter of 5 cm, row spacing of 50 cm, and plant spacing of 25 cm. The
film coverage rate was one minus the sum of the bare soil area per unit area and the film
hole area, which was about 80%. The dripper flow rate was 2.5 L h−1, the dripper spacing
was 30 cm, and the working pressure was 0.1 MPa. Nitrogen fertilizer of 250 kg ha−1,
phosphate fertilizer of 60 kg ha−1, and potassium fertilizer of 139 kg ha−1 were applied
during the whole growth period. Nitrogen fertilizer of 60 kg ha−1 was applied before
sowing, and the remaining nitrogen fertilizer was applied four times. Other agronomic
measures were consistent with local field management.
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Figure 1. Schematic diagram of maize planting with drip irrigation under mulch (a) and photo (b). 

2.3. Irrigation Management 
For the T1 treatment, irrigation scheduling was designed based on both the water 

requirements of the crop estimated by the FAO-56 approach and on the measured soil 
water content. The irrigation amount was set to 100% ETc or θFC. The water amount for 
the T2 treatment was 40% of that for T1 during both the late vegetative and reproductive 
growth stages and irrigated to θFC both at the seedling stage and the filling stage. For T1 
treatment, unified irrigation was performed before the soil water content decreased below 
the level of readily available water (RAW). ETc was determined according to the reference 
evapotranspiration (ET0) and crop coefficient (Kc), while Kc was determined by canopy 
cover (fc) calculation. Table 1 shows the irrigation time and amount for T1 and T2 in 2017 
and 2018. The total irrigation amount for T1 and T2 was 433 and 337 mm in 2017, and 382 
and 347 mm in 2018, respectively. 
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Figure 1. Schematic diagram of maize planting with drip irrigation under mulch (a) and photo (b).

2.3. Irrigation Management

For the T1 treatment, irrigation scheduling was designed based on both the water
requirements of the crop estimated by the FAO-56 approach and on the measured soil
water content. The irrigation amount was set to 100% ETc or θFC. The water amount for
the T2 treatment was 40% of that for T1 during both the late vegetative and reproductive
growth stages and irrigated to θFC both at the seedling stage and the filling stage. For T1
treatment, unified irrigation was performed before the soil water content decreased below
the level of readily available water (RAW). ETc was determined according to the reference
evapotranspiration (ET0) and crop coefficient (Kc), while Kc was determined by canopy
cover (fc) calculation. Table 1 shows the irrigation time and amount for T1 and T2 in 2017
and 2018. The total irrigation amount for T1 and T2 was 433 and 337 mm in 2017, and 382
and 347 mm in 2018, respectively.
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Table 1. Irrigation scheduling for maize with drip irrigation under mulch for two water treatments
(T1 and T2) during the whole growth period of maize in 2017 and 2018.

Years Dates
Irrigation Depth (mm)

T1 T2

2017

5/3 30 30
5/31 17 16

6/18–6/19 40 41
6/30–7/1 55 22

7/10–7/11 53 21
7/22–7/24 120 120

8/8 43 57
8/31 75 30

2018

4/27 30 30
5/9 21 21

6/10 50 51
6/23 60 25
6/30 41 17
7/9 37 16

7/18–7/19 68 100
8/15–8/16 75 87

2.4. Data Measurements

The meteorological data were measured by a 2 m-high automatic weather station
(Hobo, Onset Computer Corporation, Cape Cod, MA, USA) at the Experimental Station.
The data included solar radiation (Rs), air temperature (Ta), relative humidity (RH), 2 m
wind speed (u2), and precipitation (P) recorded every 15 min. ET0 was calculated using
the FAO-56 Penman–Monteith equation [5]. The average wind speed during the growth
period was 0.7 m s−1 in 2017 and 0.66 m s−1 in 2018. The average Rs during the growth
period was 223.54 W m−2 in 2017 and 213.4 W m−2 in 2018. Figure 2 shows the ET0, P, and
maximum and minimum Ta (Tmax, and Tmin) in 2017 and 2018.
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The volumetric soil water content (SWC, cm3 cm−3) was measured in 10 cm incre-
ments in depths of 0–200 cm using a neutron probe (CPN-503 Hydroprobe, InstroTek,
San Francisco, CA, USA). One neutron tube was installed at the center of each plot. SWC
was measured every 7–10 d, and an additional measurement was made before and after
irrigation and after rain. The soil drying method was used for calibration.

Maize transpiration was measured by the wrapped sap flowmeter Flow32-1k (Dyna-
max Inc., Houston, TX, USA). Three uniformly growing maize plants in each plot were
selected for wrapping. Before wrapping, the stem diameter of maize at the wrapping site
was measured with a vernier caliper with an accuracy of 0.01 mm. An average value was
used to calculate the cross-sectional area of the maize stalk and then the cross-sectional area
was converted into the transpiration of the plot based on the leaf area index as follows:

Tr =
1
N

n

∑
i=1

Qdi
LAi

LAI (1)

where Tr is the transpiration rate of the plot (mm d−1); Qdi is the sap flow per plant of the i-th
plant (L d−1); LAi is the leaf area of the i-th plant (m2); LAI is the leaf area index (m2 m−2).

The crop height (hc) was measured with a ruler every 10–15 d. The canopy coverage
(fc) was measured by photographing above the crop perpendicular to the ground. The
ratio of the green area to the total area in the photo was equal to fc. The root zone depth
(Zr) was measured at each growth stage by root drilling.

2.5. Quantitative Partitioning of ETc Using the SIMDualKc Model

The SIMDualKc model calculates daily crop ETc by considering both Es and Tr based
on the soil water balance and dual Kc method [9,28]. In the model, actual crop ETc is
computed as follows:

ETc = (Ks·Kcb + Ke)ET0 (2)

where Kcb is the basal crop coefficient, Ke is the soil evaporation coefficient, Ks is the water
stress coefficient [0, 1], and ET0 is the reference evapotranspiration. The SIMDualKc model
was used to calculate ETc and its components by simulating the dynamic variations of
SWC in the root zone. The input data of the model included soil data (field water holding
capacity, withering coefficient, saturated moisture content), meteorological data, crop
growth data (start and end dates of each growth stage, root depth, plant height, canopy
coverage), and irrigation data (irrigation amount and date). The model also considers
the effects of mulching film coverage, groundwater recharge, surface runoff, and deep
percolation on Tr. Before running the model, the total evaporable water (TEW), readily
evaporable water (REW), depth of evaporation layer (Ze), basic crop coefficient (Kcb), and
soil water depletion fraction (p) were calibrated.

To calibrate the model parameters, according to the FAO-56 method [5,28], the whole
growth period of maize was divided into the initial stage (from seed sowing to fc = 10%),
development stage (10% < fc < 80%), mid-season stage (from fc = 80% to maturing) and
late-season stage (from maturing to harvest). The average growth indicators of maize in
2017 and 2018 are shown in Table 2 for each treatment. The parameters were calibrated
by the trial-and-error method. The simulated soil water content was compared with the
measured value. When the error between the simulated and the measured values reached
a minimum, the parameter calibration process ended [28,29]. In this study, the measured
SWC of 2017 was used for parameter calibration while the data of 2018 were used for
verification. The initial values of TEW, REW, Ze, Kcb, and p were set to be equal to the
values recommended by Allen et al. [5] and corrected according to the local meteorological
conditions and crop factors. Because drip irrigation under mulch was used, the irrigation
water–soil wetting ratio (fw) was 0.4 and the film mulching rate was 0.6. The irrigation
amount did not exceed the water capacity of the root layer, so deep-water seepage or deep
percolation was not taken into consideration. Surface runoffs were not detected in the two
years. A simulation was performed using the given Kcb and p. Since the T2 treatment
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caused some limitations on the growth of maize, the fc of the T2 treatment decreased
somewhat at the mid-season and late-season stages compared with T1. Therefore, Kcb was
adjusted according to the mid-and late-season stages’ measured values of fc.

Table 2. Growth traits for two water treatments (T1 and T2) during the whole growth period of maize in 2017 and 2018.

Traits Years Treatments
Growth Stages

Initial Development Mid-Season Late-Season Whole Season

Growth length (d)
2017 T1 27 27 64 30 148

T2 28 29 58 33 148

2018 T1 32 25 64 30 151
T2 32 28 59 32 151

Plant height (m)
2017 T1 0.3 1.5 2.9 3.1

—T2 0.29 1.5 2.4 2.4

2018 T1 0.4 1.4 2.9 3.1
T2 0.4 1.2 2.7 2.7

Root depth (m)
2017 T1 0.1 0.4 0.74 0.74

—T2 0.2 0.5 0.65 0.65

2018 T1 0.2 0.44 0.7 0.7
T2 0.25 0.5 0.7 0.7

Canopy cover
2017 T1 0.1 0.97 0.93 0.6

—T2 0.1 0.9 0.85 0.56

2018 T1 0.1 0.95 0.9 0.6
T2 0.1 0.88 0.85 0.55

Model performance was assessed using the regression coefficient (b), determination
coefficient (R2), root mean square error (RMSE), maximum absolute error (Emax), average
absolute error (AAE), Willmott index of agreement (dIA), and Nash and Sutcliffe modeling
efficiency (EF) between the simulated value and the measured value [13,30–33]. Among
them, b, R2, dIA, and EF were closer to 1.0, and RMSE, Emax, and AAE were closer to 0,
indicating that the fitting effect was better.

3. Results and Discussion

Table 3 shows the initial and calibration values of the main model parameters. After
calibration, the Kcb of maize with drip irrigation under mulch at the initial stage (Kcb-ini),
mid-season stage (Kcb-mid), and late season stage (Kcb-end) were equal to 0.2, 1.15, and 0.55,
respectively. The values of Kcb obtained in this study were similar to those in the existing
studies and sit within the reviewed and updated range of Kcb for field maize based on accu-
rate crop ETc measurement and FAO56 method by Pereira et al. [34]. Chauhdary et al. [35]
presented Kcb-mid = 0.93, Kcb-end = 0.47 for dripped maize with high grain moisture; they
used the SALTMED model and gravimetric SWC measurements in Faisalabad, Pakistan.
The experimental results achieved by Gimenez et al. [11] in western Uruguay showed
that Kcb-ini = 0.15, Kcb-mid = 1.05, and Kcb-end = 0.3. Martins et al. [36] studied maize
with sprinkling irrigation and drip irrigation under organic film in southern Brazil and
showed that Kcb-ini = 0.2, Kcb-mid = 1.12, and Kcb-end = 0.2. Rodrigues et al. [37] conducted
a study on maize under full irrigation and deficit drip irrigation in Portugal and found
that Kcb-ini = 0.15, Kcb-mid = 1.15, and Kcb-end = 0.4. Paredes et al. [38], in Portugal, showed
by using the AquaCrop model that KcTr,x = 1.18. Paredes et al. [12] in 2014 showed that
Kcb-ini = 0.15, Kcb-mid = 1.15, and Kcb-end = 0.3. Yan et al. [39] studied summer maize under
different drip irrigation conditions using the SIMDualKc model in Yangling, Shaanxi, con-
cluding that Kcb-ini = 0.15, Kcb-mid = 1.13, and Kcb-end = 0.2. Zhao et al. [40] studied summer
maize in Beijing, concluding that Kcb-ini = 0.2, Kcb-mid = 1.1, and Kcb-end = 0.45. Li et al. [25]
studied maize by drip irrigation under mulch in northeastern Inner Mongolia, concluding
that Kcb-ini = 0.15, Kcb-mid = 1.05, and Kcb-end = 0.4. The slightly higher Kcb-end might be
due to the incomplete senescence of maize.
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Table 3. Initial and calibrated values of key parameters for the SIMDualKc model.

Parameters Initial Values Calibrated

Crop parameters
Kcb-ini 0.15 0.2
Kcb-mid 1.15 1.15
Kcb-end 0.50 0.55

pini 0.55 0.55
pmid 0.55 0.55
pend 0.55 0.55

Soil parameters
REW (mm) 10 12
TEW (mm) 30 30

Ze (m) 0.12 0.15
Note: Kcb and p are the maize basal crop coefficient and the soil–water depletion fraction, respectively, for no
stress at the initial (ini), mid-season (mid) and late-season (end) stages; REW and TEW are readily and total
evaporable water, respectively; and Ze is the depth of the soil evaporation layer. The emboldened values are
calibrated parameters that are different from the initial ones.

The measured and simulated SWC in the root zone of the two treatments in 2017 and
2018 are shown in Figure 3. The goodness-of-fit statistic of calibration and verification are
shown in Table 4. The simulated value and measured SWC fit well. The simulated SWC
can capture a dynamic process in which the SWC increased in a short period with irrigation
or rainfall, and then gradually decreased due to ETc. The regression coefficient b was
0.96–1.07, R2 was 0.84–0.95, RMSE was 0.005–0.008 cm3 cm−3, AAE 0.01 was cm3 cm−3,
Emax 0.025 was cm3 cm−3, and dIA reached up to 0.96, which was better than the results of
the study of rain-fed maize in Inner Mongolia by Wu et al. [41]. These results were slightly
lower than those found by Zhao et al. [39] on summer maize in Beijing (b = 0.91–1.01,
R2 = 0.87–0.93), but the relative error of SWC in this study was lower than 10%, suggesting
that the SIMDualKc model was accurately able to calculate SWC and can be used to
calculate ETc of maize and its partitioning [9].
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Figure 3. Measured and simulated seasonal soil water content (SWC) for two water treatments (T1
and T2) with days after planting (DAP) during the whole growth period of maize in 2017 (a,b) and
2018 (c,d).
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Table 4. Statistical indicators of goodness-of-fit between measured and simulated seasonal soil water content (SWC) for the
two treatments (T1 and T2) in 2017 and 2018.

Years Treatments b R2 RMSE (cm3·cm−3) AAE (cm3·cm−3) Emax (cm3·cm−3) dIA EF

2017
T1 0.98 0.84 0.008 0.006 0.013 0.96 0.82
T2 0.96 0.90 0.008 0.006 0.022 0.97 0.89

2018
T1 1.07 0.95 0.005 0.004 0.010 0.99 0.94
T2 1.00 0.95 0.008 0.006 0.025 0.99 0.94

Note: b, linear regression coefficient; R2, coefficient of determination; RMSE, root mean square error; AAE, average absolute error; Emax,
maximum absolute error; dIA, Willmott index of agreement; and EF, the Nash and Sutcliffe modeling efficiency.

The Es, Tr, and ETc of maize were estimated using the calibrated and verified SIMDualKc
model. Daily Ke, Kcb, and Kcbadj, as well as Es, Tr, and ETc, and measured Tr for T1 and T2
in 2017 and 2018 are shown in Figures 4 and 5, respectively. The goodness-of-fit statistics
of the measured and simulated Tr are presented in Table 5. The simulated and measured
Tr had the same changing trend during the growth period. The b was 0.91–1.04, R2 was
0.91–0.97, RMSE was 0.366–0.389 mm d−1, AAE < 0.5 mm d−1, Emax was 1.163 mm d−1,
dIA > 0.95, and EF 0.80–0.91. Although Tr was only verified during the mid-to-late growth
period, we concluded that the model can estimate Tr throughout the growth period since
it accurately simulated SWC throughout the growth period. Qiu et al. [42] compared
tomato ETc measured by a lysimeter with SIMDualKc simulations and found that b was
0.91–1.13 and R2 was 0.55–0.82. Yan et al. [17] compared measured Tr values of greenhouse
cucumber with simulations and demonstrated that the R2 was 0.89–0.92 and RMSE was
0.36–0.51 mm d−1. Our results were similar to those of previous studies. Overall, after
being calibrated, the SIMDualKc model can better simulate the changes in ETc of maize
with drip irrigation under mulch during the growth period.

1 
 

 
Figure 4. Dynamic variations of basic crop coefficient (Kcb), actual adjustment Kcb (Kcbadj) and soil
evaporation coefficient (Ke) for two water treatments (T1 and T2) with days after planting (DAP)
during the whole growth period of maize in (a,b) and 2018 (c,d).
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Figure 5. Seasonal variations of simulated evapotranspiration (ETc), transpiration (Tr), and soil
evaporation (Es), and measured Tr for two water treatments (T1 and T2) with days after planting
(DAP) during the whole growth period of maize in (a,b) and 2018 (c,d).

Table 5. Statistical indicators of goodness-of-fit between measured and simulated seasonal plant transpiration (Tr) for the
two treatments (T1 and T2) in 2017 and 2018.

Years Treatments b R2 RMSE (mm·d−1) AAE (mm·d−1) Emax (mm·d−1) dIA EF

2017
T1 0.99 0.95 0.366 0.294 1.060 0.97 0.88
T2 1.00 0.91 0.379 0.293 1.163 0.95 0.80

2018
T1 0.91 0.97 0.367 0.310 0.709 0.98 0.91
T2 1.04 0.95 0.389 0.346 0.649 0.96 0.82

Note: b, linear regression coefficient; R2, coefficient of determination; RMSE, root mean square error; AAE, average absolute error; Emax,
maximum absolute error; dIA, Willmott index of agreement; and EF, the Nash and Sutcliffe modeling efficiency.

Es and Tr values and their ratios to ETc in different growth stages of maize are shown
in Table 6. In 2017, the ETc for T1 and T2 was 507.9 and 428.9 mm, Es was 32.0 and 43.6 mm,
and Tr was 476.0 and 385.3 mm, respectively during the whole growth period of maize.
In 2018, the ETc for T1 and T2 was 519.1 and 430.9 mm, Es was 35.2 and 43.4 mm, and Tr
was 484.0 and 387.5 mm, respectively during the whole growth period of maize. There
were large differences in ETc, Es, and Tr between T1 and T2. In particular, there was
a difference of 90.7–96.5 mm in Tr, which occurred in the middle growth period. The
pattern was similar for two years, which suggests that drip irrigation with film mulching
can significantly reduce soil evaporation regardless of whether full or regulated deficit
irrigation are used.

Tr was the major component of ETc, with the Tr/ETc ratio of 93.7% and 89.8% for T1
and T2 in 2017, and 93.2% and 89.9% in 2018, respectively. Although Tr and ETc decreased
for T2, the Tr/ETc ratio did not decrease significantly, suggesting that the growth-based
RDI strategy maintains a higher percentage of crop effective transpiration. The Es/ETc
ratio obtained for T1 in the two years was 6.3% and 6.8%, while it was 10.1% and 10.2% for
T2, respectively. T2 caused higher evaporation than T1 for the reason that T2 restricted the
growth of maize and the fc for T2 was lower than that for T1 at the mid-season stage and
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late-season stage, causing an increase in the exposed soil area, thus increasing the Es. In the
early stage of growth, the fc of maize was very low, with Es as the major active component,
and the Es/ETc ratio was highest, in the range of 39–49.4%. At the development stage,
the evaporation ratio was 9.9–12.2% in 2017 and 1–1.6% in 2018. Such a large difference
was due to a decrease of 18.4 mm in rainfall and a decrease in irrigation volume of 7.2 mm
in the same period in 2018. The Es in the mid-growth period in 2017 was smaller than
that in the late-growth period, and the opposite was true in 2018. This was because
the rainfall in the mid-growth period in 2018 was 140.2 mm, which was 57.6 mm more
than in 2017, which led to an increase in soil evaporation. These results indicated that
soil evaporation is greatly affected by the degree and coefficient of soil surface moisture
and canopy coverage. For efficient crop water management practices, inefficient water
consumption can be minimized by covering the ground with the canopy as soon as possible
before performing deficit irrigation.

Table 6. Soil evaporation (Es), transpiration (Tr), evapotranspiration (ETc) and ratios of evaporation and transpiration to
evapotranspiration for the two treatments (T1 and T2) at different growth stages of maize in 2017 and 2018.

Growth
Stages Years

Es (mm) Tr (mm) ETc (mm) Es/ETc (%) Tr/ETc (%)

T1 T2 T1 T2 T1 T2 T1 T2 T1 T2

Initial
2017 17.8 21.5 18.3 22.0 36.2 43.6 49.3 49.4 50.7 50.6
2018 21.0 21.0 31.9 32.9 52.9 54.0 39.7 39.0 60.3 61.0

Development 2017 7.8 10.0 70.5 71.8 78.3 81.8 9.9 12.2 90.1 87.8
2018 0.8 1.2 77.3 73.3 78.1 74.5 1.0 1.6 99.0 98.4

Mid-season
2017 3.9 7.9 302.9 214.2 306.9 222.1 1.3 3.5 98.7 96.5
2018 5.5 8.6 306.4 218.3 311.9 226.9 1.8 3.8 98.2 96.2

Late-season
2017 2.4 4.2 84.2 77.2 86.6 81.4 2.8 5.2 97.2 94.8
2018 7.9 12.6 68.3 62.9 76.3 75.5 10.4 16.7 89.6 83.3

Whole season
2017 32.0 43.6 476.0 385.3 507.9 428.9 6.3 10.2 93.7 89.8
2018 35.2 43.4 484.0 387.5 519.1 430.9 6.8 10.1 93.2 89.9

Previous studies have shown that drip irrigation under mulch can effectively reduce
soil evaporation, thus improving the effective water use efficiency of crops or increas-
ing Tr/ETc, thereby promoting the growth of biomass and yield [23]. Ding et al. [20]
found that for maize for seed under film conditions (fm = 0.7) in arid regions of North-
west China, Es decreased by 55.7% compared to film-free conditions, while Tr was higher.
Martins et al. [36] found that the Es/ETc ratio in a maize field was 8–9% under drip irriga-
tion with straw mulch. Li et al. [19] found that that the maize Es/ETc ratio was 19.85–20.29%
with film-mulched treatment but 26.15–27.23% without mulch in northeastern Inner Mon-
golia. Kang et al. [43] studied irrigated maize without mulch in the Guanzhong area,
concluding that the Es/ETc ratio was 26%. In this study, the Es/ETc ratio of the two
treatments under the condition of mulching drip irrigation were 6.3–10.2%, which is lower
than the results of previous studies, indicating that drip irrigation under mulching mainly
increases the effective transpiration rate of crops by reducing soil evaporation to save water
and increase yield.

The Es/ETc ratios were 10.1% and 10.2% for T2 for the two years, respectively, which
is slightly higher than those of T1, at 6.3–6.8%. We started to implement water deficits in
the late growth period after the canopy covered the ground, which might cause leaf curling,
reduce the canopy coverage, and increase the area of bare soil and evaporated surface.
Comas et al. also found that in addition to reducing crop growth and leaf area, water deficit
also increased the proportion of rolled leaves, thereby reducing canopy coverage [27]. In
this study, due to the use of drip irrigation under the mulch, the area of irrigated wetness
and bare soil was small. Even though RDI reduced the canopy coverage and increased
the bare soil area, the actual wet soil evaporation area did not increase, so there was no
significant increase in Es. These results indicate that in the practices of efficient water



Water 2021, 13, 3169 11 of 13

management for crops, sufficient irrigation in the early stage of growth can be used to
quickly cover the ground in the canopy and then implement the strategic stage of RDI. At
the same time, combined with high-efficiency water-saving irrigation methods such as drip
irrigation under mulch, it can reduce water use but does not increase the proportion of
effectless water.

Although our study area is arid and cold with an annual average temperature of 8 ◦C,
our methods and result patterns can be extended to other areas. The purpose of our
study was to estimate ETc and its components to support irrigation scheduling using the
SIMDualKc model based on daily soil water balance. The estimation accuracy can be
improved if ones take into account soil water infiltration together with the root water
uptake [44–46]. Further work will be needed to incorporate the two processes into dynamic
soil water equations, e.g., using the Richards equation, for accurate partitioning of ETc and
soil water flow.

4. Conclusions

A two-year experiment of full irrigation and regulated deficit irrigation of maize
with drip irrigation under mulch was conducted in an arid region of Northwest China.
The daily evapotranspiration (ETc), soil evaporation (Es), and transpiration (Tr) of maize
during its whole growth period and their ratios were calculated using the calibrated
dual crop coefficient model SIMDualKc. Then, the differences in ETc and its components
between the two treatments were analyzed, drawing the following conclusions: (1) The
SIMDualKc model can well simulate the dynamic variations of soil water content and
plant transpiration in the maize field with drip irrigation under mulch, and can be used
to calculate the evapotranspiration, soil evaporation, and transpiration of maize during
its whole growth period; (2) a local basic crop coefficient was obtained for maize with
drip irrigation under mulch in an arid region of Northwest China; (3) drip irrigation
under mulch can significantly reduce the proportion of soil evaporation, and increase
the proportion of plant transpiration that is effective for crop production. Growth-based
strategic RDI can reduce crop water use without significantly increasing the proportion of
ineffective soil evaporation.
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