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Abstract: Runoff forecasting is of great importance for flood mitigation and power generation plan
preparation. To explore the better application of time-frequency decomposition technology in runoff
forecasting and improve the prediction accuracy, this research has developed a framework of runoff
forecasting named Decomposition-Integration-Prediction (DIP) using parallel-input neural network,
and proposed a novel runoff forecasting model with Variational Mode Decomposition (VMD), Gated
Recurrent Unit (GRU), and Stochastic Fractal Search (SFS) algorithm under this framework. In this
model, the observed runoff series is first decomposed into several sub-series via the VMD method
to extract different frequency information. Secondly, the parallel layers in the parallel-input neural
network based on GRU are trained to receive the input samples of each subcomponent and integrate
their output adaptively through the concatenation layers. Finally, the output of concatenation layers
is treated as the final runoff forecasting result. In this process, the SFS algorithm was adopted to
optimize the structure of the neural network. The prediction performance of the proposed model was
evaluated using the historical monthly runoff data at Pingshan and Yichang hydrological stations in
the Upper Yangtze River Basin of China, and seven various single and decomposition-based hybrid
models were developed for comparison. The results show that the proposed model has obvious
advantages in overall prediction performance, model training time, and multi-step-ahead prediction
compared to several comparative methods, which is a reasonable and more efficient monthly runoff
forecasting method based on time series decomposition and neural networks.

Keywords: runoff forecasting; Decomposition-Integration-Prediction (DIP); parallel-input neural
network; variational mode decomposition; gated recurrent unit; stochastic fractal search

1. Introduction

Flood control and power generation are the two important operation objectives of
reservoirs; accurate runoff forecasting provides reliable information of inflow in the forecast
period so as to maximize the flood control benefits of the reservoir. It can also provide
effective and exact input conditions for the preparation of power generation plans of
hydropower stations to guide the economic and optimized operation of hydropower
stations [1]. Therefore, accurate runoff forecasting is crucial. However, the formation
process of hydrological runoff is affected by rainfall, evaporation, underlying surface
conditions, and human activities. The runoff time series usually shows nonlinear and
non-stationary characteristics [2–5]. In addition, many factors can impact the streamflow
from upstream to downstream, such as tributaries, agricultural utilization, and dams;
accurate runoff prediction is thus difficult and challenging [6–8].

In the past few decades, several runoff forecasting methods and models have been
developed, ranging from conceptual models based on physical formation processes to fully
data-driven models [9–12]. Although conceptual models can help people understand the
process of runoff formation clearly, they need substantial hydrological, meteorological,
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underlying surface conditions, other parameters, and empirical knowledge. Therefore,
there are many restrictive factors in the application of such models, resulting in poor pre-
diction performance and uncertainty. For example, it is difficult to obtain good prediction
results for some small basins lacking data [13,14]. In recent years, data-driven runoff
prediction models have been widely studied and applied. Such models do not need to
deeply understand the formation mechanism of the runoff process, but only need to predict
runoff by fitting the nonlinear mapping relationship between input and output samples.
Therefore, data-driven prediction models are becoming increasingly popular [1,15].

Data-driven forecasting models are also divided into two categories, namely the
time series analysis model and the machine learning model [11]. Common time series
analysis models include the Autoregressive model (AR), Moving Average model (MA),
Autoregressive Moving Average model (ARMA), and Autoregressive Integrated Moving
Average model (ARIMA) [16]. However, stationarity is a sufficient and necessary condition
for establishing time series models, which makes these models difficult to capture the
nonstationary of runoff time series [12]. In contrast, because of its strong nonlinear fitting
ability and advantages of nonstationary series processing, the machine learning models are
widely introduced into runoff forecasting research, from the Back Propagation (BP) neural
network model, which was initially applied to runoff forecasting to Support Vector Machine
(SVM) [1,17,18], Extreme Learning Machine (ELM) [8,19–21], and other machine learning
models [22,23]. However, these classical models are easy to fall into local optimum and
sensitive to parameter selection. Since the development of artificial intelligence, some deep
learning methods, such as Recurrent Neural Network (RNN), have been tried to predict
runoff because of its ability to learn long-term dependencies between runoff series [24].
Currently, the Long Short-Term Memory (LSTM) model is mostly studied [15,25], which can
effectively overcome the shortcomings of gradient explosion and gradient disappearance in
the general RNN model. Recently, Gated Recurrent Unit (GRU) [26], a variant of the LSTM
network, has attracted researcher’s attention. Compared with LSTM, GRU has a simpler
structure, fewer parameters, shorter training time, and has similar prediction performance
with LSTM [27]. GRU has also been proved to have good application potential in runoff
prediction [28].

Owing to the complexity of runoff series composition, the single runoff forecasting
model is difficult to fully extract the internal components and identify the trend of runoff
series, which affects the prediction performance [12]. Therefore, some researchers have
begun to introduce signal time-frequency decomposition technology to preprocess original
runoff series, fully extract useful information hidden in complex hydrological runoff series
and construct a decomposition-based hybrid forecasting model to improve the overall
prediction accuracy [16,29]. Discrete Wavelet Transform (DWT) is the most commonly
used time-frequency analysis method in the hydrological field and has been widely used
in runoff prediction [30,31]. However, the decomposition effect of DWT depends on the
selection of the mother wavelet function and the setting of decomposition level, and its
adaptability is poor [32]. Other wavelet analysis methods are more and more used in hydrol-
ogy, such as Cross Wavelet Transform (XWT), and Wavelet Coherence Transform (WCT),
which show good application results in the study of climate hydrological response [6,33].
Recently, some advanced wavelet time-frequency methods have been proposed, such
as Least-Squares Wavelet Analysis (LSWA) and Least-Squares Cross Wavelet Analysis
(LSCWA) [7]. These methods do not need any interpolation, gap-filling, or de-spiking, and
have outstanding advantages in analyzing hydrological time series. LSCWA can be used
to analyze the influence relationship between the two sequences and estimate the trend
and seasonal components of hydrological time series more accurately, it can effectively
reveal the possible consistency of climate and runoff time series components. In addition,
EMD is also the most commonly used time-frequency decomposition method in some
research [34,35]. This method can adaptively decompose the original time series into multi-
modal functions according to the characteristics of the original time series, which makes
up for the deficiency of DWT to a certain extent, but there is a problem of modal aliasing,
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which is easy to cause the in-complete separation of noise series [36]. Variational Modal
Decomposition (VMD) is an emerging signal time-frequency decomposition method [37].
It decomposes the original sequence into a set of modal functions with limited bandwidth
by solving the variational problem. It has better anti-noise ability and mathematical theory
foundation than classical DWT and EMD. It has been successfully applied to the prediction
of different time series [38–41]. In recent years, it has also been gradually introduced into
the analysis and prediction of runoff series [1,20].

At present, most of the decomposition-based hybrid runoff forecasting models with
time series decomposition are based on the framework of Decomposition-Prediction-
Reconstruction (DPR). Under this framework, the runoff forecasting results are obtained
by predicting the sub-series decomposed from the original runoff series respectively and
then aggregating the predicted values of the sub-series [1,12,20,42]. The research of hybrid
runoff forecasting models mainly focuses on combining different time-frequency decom-
position techniques and different machine learning methods, improving the prediction
accuracy of the model by selecting improved decomposition techniques and some new
machine learning models [9,12,43]. The prediction accuracy of the models can be improved
effectively in some models, but many works are similar. At the same time, in this frame-
work, the runoff decomposition level number determines the number of sub-prediction
models, which in turn require more training time for such hybrid models [44]. On the other
hand, the DPR framework obtains the final runoff forecasting result by overlaying the
prediction results of each sub-series, which is easy to cause the accumulation of prediction
error of each sub-series and make the runoff forecasting result deviate greatly, especially
in the peak part of runoff series. Moreover, due to the complexity of the structure of deep
learning models, such as LSTM and GRU, the inappropriate network structure will cause
the loss of prediction accuracy and training time. Therefore, it is necessary to adopt the
appropriate hyper-parameter optimization method with better global search ability to
select the best structure parameter configuration for neural network models [45].

In summary, to explore the better hybrid application model of time-frequency decom-
position technology and machine learning method for runoff forecasting, we developed a
novel runoff forecasting framework and proposed a runoff forecasting model under this
framework. The contributions of this research include:

(1) The development of a runoff forecasting framework named Decomposition-Integration-
Prediction (DIP) using parallel-input neural network, and proposed a novel runoff
forecasting model with VMD, GRU, and Stochastic Fractal Search (SFS) algorithm
under this framework;

(2) The application the model to the runoff forecasting of Pingshan and Yichang Hydro-
logical Stations in Upper Yangtze River Basin, China, and then verified the reliability
and prediction performance of this forecasting method;

(3) We further highlight the rationality and advantages of the proposed hybrid forecasting
model by employing the seven models as comparative forecast models in terms of
combinatorial principle and evaluating indicator, including AR, BP, LSTM, GRU,
and three decomposition-based hybrid models Variational Mode Decomposition-
Long Short-Term Memory (VMD-LSTM), Variational Mode Decomposition-Gated
Recurrent Unit (VMD-GRU), Variational Mode Decomposition-Gated Recurrent Unit-
Stochastic Fractal Search (VMD-GRU-SFS) based on the DPR framework.

The remainder of this paper is organized as follows: Section 2 briefly introduces
the above-mentioned methods and presents the details of the proposed framework for
monthly runoff forecasting. Section 3 contains several prediction performance evaluation
indicators selected. Section 4 presents the case studies of the monthly runoff forecasting
for the proposed method and contrast methods. Section 5 carries out result analysis and
discussion, and the conclusions are provided in Section 6. Abbreviation descriptions of
this paper are shown in Table A1.
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2. Methodologies
2.1. Variational Mode Decomposition

To address the limitations of EMD for sensitivity to noise and sampling, Variational
Mode Decomposition (VMD), an adaptive nonstationary signal decomposition method,
was proposed by Dragomiretskiy and Zosso [37]. EMD uses recursive decomposition to
extract sub-signals with different frequencies [46]. In contrast, the significant difference is
that VMD uses the non-recursive method to transform the signal decomposition into a con-
strained variational problem. Its goal is to minimize the sum of the estimated bandwidth
of each mode and uses the Alternate Direction Method of Multipliers (ADMM) algorithm
to continuously update each mode and its center frequency, and gradually shift the mode’s
frequency spectrum to “baseband”. Finally, each mode and its center frequency are ex-
tracted together. In this process, we need to assume that each mode is a finite bandwidth
with different center frequencies. The constrained variational problem can be expressed
as follows:

min
{uk},{ωk}

{
∑k ‖∂t

[(
δ(t) + j

πt

)
× uk(t)

]
e−jωkt‖

2

2

}
s.t. ∑k uk = f

(1)

where uk is the kth mode, wk is the center frequency of the kth mode, δ(t) is the Dirac
distribution, × denotes convolution, and f is the given observed signal.

In order to render the problem unconstrained. The quadratic penalty factor and
Lagrangian multiplier are introduced to transform the constrained variational problem
into an unconstrained problem of the following equation:

L({uk}, {ωk}, λ) := α∑k ‖∂t

[(
δ(t) + j

πt

)
× uk(t)

]
e−jωkt‖

2

2
+‖ f (t)−∑k uk(t) ‖2

2 + 〈λ(t), f (t)−∑k uk(t)〉
(2)

where α and λ are the penalty parameter and Lagrange multiplier, respectively. Parameter
α can effectively reduce the interference of Gaussian noise, and λ can enhance the strictness
of the constraint.

Therefore, the original minimization problem is now converted to an alternative
model, in which, ADMM is adopted to seek the saddle point of the Lagrangian function
by alternately updating the mode un+1

k , frequency ωn+1
k , and Lagrangian multiplier λn+1.

The iterative equations of un+1
k , ωn+1

k , λn+1, are as follows:

ûn+1
k =

f̂ (ω)−∑i 6=k ûi(ω)+
λ̂(ω)

2

1+2α(ω−ωk)
2

ωn+1
k =

∫ ∞
0 ω|ûk(ω)|2dω∫ ∞

0 |ûk(ω)|2dω

ωn+1
k =

∫ ∞
0 ω|ûk(ω)|2dω∫ ∞

0 |ûk(ω)|2dω

(3)

where n is the number of iterations, f̂ (ω), ûi(ω), λ̂(ω), and ûn+1
k denotes the Fourier

transforms of f (t), ui(t), λ(t), and un+1
k , respectively.

2.2. Gated Recurrent Unit

Gated Recurrent Unit (GRU) [26,27] is a neural network model first proposed by Cho
et al. in 2014 to capture the long-term dependence of time series. GRU network can be
regarded as a very effective variant of the LSTM network. Its structure is simpler than the
LSTM network and it requires less time for model training [28]. Therefore, the GRU model
has been widely used in the field of artificial intelligence [27,47], especially in processing
time series [48,49]. LSTM import three gate operations: input gate, forgetting gate, and
output gate to control input value, storage value, and output value [50]. In the GRU model,
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gate operations are simplified to update gate and reset gate. The specific structure of GRU
is shown in the following Figure 1:
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GRU cell is mainly composed of update gate zt and reset gate rt. The update gate
controls the degree to which the state information at the previous time step will be brought
into the current time step. The larger the value of the update gate is, the more the state
information at the previous time step is brought in; reset gate is used to control how
much information from the previous state is written into the current candidate set. More
historical information will be ignored when the reset gate approaches the biggest value 1.
The calculation equation between variables is as follows:

zt = σ(Wz × [ht−1, xt] + bz (4)

rt = σ(Wr × [ht−1, xt] + br) (5)

h̃t = tanh(Wh × [rt × ht−1, xt] + bh) (6)

ht = (1− zt) ◦ ht−1 + zt ◦ h̃t (7)

where, subscript t denotes the current time step, Wz, Wr, Wh represents the weights matrixes
of the reset gate, the update gate, the hidden state in the GRU cell, respectively. Parameters
bz, br, and bh denotes the different biases corresponding to the different weight matrices.
Parameter h̃t is the calculated element of the hidden state (ht), and the symbol ◦ is an
element-wise multiplication.

2.3. Stochastic Fractal Search Optimization

Stochastic Fractal Search algorithm (SFS) searches the optimal solution by the diffusion
property of fractal [51–53]. The algorithm mainly includes two processes: diffusion process
and update process. In diffusion process, the Gaussian distribution is selected as the
random walk mode, in which each individual is diffused around its current position
to generate a new generation. This step can be regarded as the exploitation phase of
SFS algorithm. For each individual that diffuses, the position of each new individual is
created through Gaussian walking and find the best individual among all individuals. The
Gaussian walking function can be expressed as one of the following two equations:

GW1 = Gaussian(µBP, σ) + (ε× BP− ε′ × Pi) (8)

GW2 = Gaussian(µP, σ) (9)

where ε and ε′ are random numbers between [0, 1], BP is the optimal individual, Pi is the
position of the ith particle, µBP and σ are Gaussian distribution parameters.

After, the update process is carried out, which can be considered as the exploration
stage of the SFS algorithm. The process consists of two updates. The first update is for
individual components, and the chance of individual component change is determined by
sorting individual fitness values and calculating performance indicators. The better the
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individual fitness, the greater the chance of individual component change. The change
equation of performance index and individual component is as follows:

Pai =
rank(Pi)

N
(10)

P′i (j) = Pr(j)− ε(Pt(j)− Pi(j)) (11)

where P′i is the new modified position of Pi, Pr and Pt are random selected individuals in
the population.

The second update process aims to change the position of an individual by considering
the position of other individuals in the population. This procedure improves the quality of
exploration and thus meets the attributes of diversity. Before the second update process
begins, all individuals obtained from the first update process need to be sorted again based
on Equation (10), and then modify the position of P′i as follows:{

P′′i = P′i − ε′ × (P′t − BP) ε′ ≤ 0.5

P′′i = P′i + ε′ × (P′t − P′r) ε′ > 0.5
(12)

where P′′i is the position of the individual after the second update, Pr and Pt are two
different random points selected from the group, BP is the best point and ε is a random
number within the range [0, 1].

2.4. The Novel Runoff Forecasting Model Based on DIP Framework

As a result of climate change and human activities, hydrological time series are often
nonlinear and nonstationary [2,54]. To explore the better application of time series decompo-
sition technology in runoff forecasting and enhance the prediction accuracy effectively, we
developed a framework of runoff forecasting named Decomposition-Integration-Prediction
(DIP) using a parallel-input neural network, and proposed a novel runoff forecasting model
using VMD-GRU-SFS (DIP) with VMD, GRU, and SFS algorithms under this framework,
as shown in the Figure 2, the parallel-input neural network structure illustrated in Figure 3.
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In the developed DIP framework, the observed runoff series is first decomposed into
several sub-series via the time series decomposition method to extract different frequency
information and reduce the difficulty of the model prediction. Secondly, the parallel
layers in the parallel-input neural network are trained to receive the input samples of each
subcomponent and integrate their output adaptively through the concatenation layers.
Finally, the output of concatenation layers is treated as the final runoff forecasting result. In
this process, the hyper-parameter optimization algorithm is used to optimize the structure
of the neural network to obtain the best prediction performance. Under the DIP framework,
VMD, GRU, and SFS are adopted to form a model of a novel runoff forecasting hybrid
model VMD-GRU-SFS (DIP), in which VMD is used to decompose the original runoff
series, GRU is selected to establish the parallel-input neural network, SFS is adopted to
optimize hyper-parameter of the model. Meanwhile, it is important to note that when
we train the model, the output samples of the model are the raw observed series, not the
sub-series of decomposition.

The structure of the constructed parallel-input neural network mainly includes two
composite layers. The first layers are the parallel layers, in which several parallel neural
networks are used to receive the input variable samples of each runoff sub-components.
The second layers are the concatenation layers, the output of each parallel neural network
is adaptively aggregated through the concatenation layer network to output the predicted
runoff value.

The overall procedure used by the proposed forecasting method can be described as
the following steps.

(1) Data Pre-processing. Data cleaning is first used to process the runoff time series
if the consistency check result is rejected. Next, we use VMD to decompose the
runoff data into a set of sub-series with different frequencies. For optimal selection
of decomposition level, check whether the last extracted component exhibits central-
frequency aliasing. Then, the data in all sub-series are divided into training and
testing datasets that are normalized to a range of [0, 1] as

x′norm =
xi − xmin

xmax − xmin
(13)

where x′norm and xi are the normalized and raw value of the ith runoff data sam-
ple, respectively. Parameters xmax and xmin are the maximum and minimum of
data samples.

(2) Lag period selection. For each sub-series decomposition by VMD, Partial Autocor-
relation Function (PACF), is used to select the optimal Lag period for generating
modeling samples, where the PACF lag count is set to 36. Assuming xk(t) is the value
to be predicted of the kth runoff component, we select the values which PACF exceeds
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95% confidence interval in the 36 delay periods of time t as the input variables for
this sub-series.

(3) Model training & Hyper-parameters optimization. Using some open-source software
libraries, such as Tensorflow and Keras, to build and training the multi-input neural
network. To improve the forecasting performance, SFS is applied to optimize the
hyper-parameters of the proposed framework. In this work, we mainly consider the
numbers of hidden layers and hidden nodes for parallel layers and concatenation
layers in parallel-input neural network. The number of hidden layers is initialized
from 1 to 3 and the number of hidden nodes ranging from 5 to 100.

(4) Forecasting application. In the third step, the parallel-input neural network has
been trained. In forecasting application, the prediction result of the model should be
denormalized to obtain the final predicted value.

3. Model Evaluation

In this section, four statistical indicators are employed for evaluating the forecasting
performance of the proposed framework, namely Root Mean Square Error (RMSE), Nor-
malized Root Mean Square Error (NRMSE), Mean Absolute Percentage Error (MAPE), and
Nash-Sutcliffe Efficiency coefficient (NSE). RMSE and NRMSE can effectively describe the
loss of regression; MAPE is used to test the relative error between the predicted value and
the observed value; NSE is adopted to measure the consistency between the runoff forecast
process and the actual process, and can evaluate the stability of the prediction results.
Generally, forecast models with larger values of NSE or smaller values of RMSE, NRMSE,
and MAPE provide better forecasting performance. These four performance metrics are
defined as follows:

δRMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2

δNRMSE =
RMSE

ymax − ymin
× 100%

δMAPE =
1
n

n

∑
i=1

|yi − ŷi|
yi

× 100%

δNSE = 1−

n
∑
i
(yi − ŷi)

2

n
∑
i
(yi − y)2

where n is the length of observed runoff series, ŷi stands for the forecasting value, yi
represents the observed value, y denotes the average observed value of runoff, ymax and
ymin represent the maximum and minimum values of observed runoff series respectively.

4. Case Studies
4.1. Study Area and Dataset

In this research, the Upper Yangtze River (UYR) Basin, from the source of the Yangtze
River to Yichang, Hubei Province, is considered as the study object. As shown in Figure 4,
the basin area is about of 1 × 106 km2 (90◦55′–111◦52′ E, 24◦49′–35◦71′ E), approximately
55% of the total area of the Yangtze River Basin [55]. The UYR includes nine provinces,
autonomous regions, and municipalities, including Qinghai, Tibet, Sichuan, Yunnan,
Chongqing, and Hubei. The topography of the basin is complex and diverse, includ-
ing the plateau (Qinghai Tibet Plateau) and the basin (Sichuan Basin), with an altitude level
ranging from about 40 to 7143 m above sea level. Influenced by the southeast monsoon,
southwest monsoon and Qinghai Tibet Plateau, the climate in this area is very sensitive
and the rainfall distribution is significantly uneven. The flood season usually occurs from
May to September, which accounts for 78% of the total annual rainfall, while the dry season



Water 2021, 13, 3390 9 of 21

is affected by water shortage. Therefore, the impact of climate diversity has brought many
difficulties to the development and utilization of water resources in the region [43].
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The monthly runoff data analyzed in this paper are from the Pingshan and Yichang
hydrological station in UYR Basin, two key control stations in Upper Yangtze River. Their
position is shown in Figure 4. The monthly runoff data covers the period from January
1940 to December 2010 for Pingshan, and January 1884 to December 2020 for Yichang,
respectively. 80% of the monthly runoff data were used for training, 20% were used for
testing. In the training dataset, approximately 90% of the data were utilized for model
parameter optimization and the remainder were utilized for validation. In this work, all of
the data preprocessing and management was performed by Numpy and Pandas scientific
computing package in Python.

4.2. Data Preparation

To reduce the difficulty of prediction, VMD was utilized to decompose the original
runoff series. The setting of decomposition parameter K is crucial to the decomposition
result; too large or too small will affect the prediction accuracy directly. In our work,
through the iterative calculation of K from 2 to 20, when K = 9, there was mode aliasing, so
we could determine the optimal number of decomposition levels K = 8 [56]. The frequencies
of the generated subseries varied from low to high, which indicates the components of
the runoff series are quite complicated. After decomposition, the complexity level of the
forecast greatly decreased due to the more regular data pattern.

Generally, the selection of input variables of the prediction model is of significance in
the performance of predictions, so it is necessary to optimize the selection of input variables.
Previous research has established that sequence decomposition may reduce the correlation
between subcomponents and meteorological factors [57]. Therefore, in this study, we
only used historical data autocorrelation to predict runoff. According to the procedure of
Section 2.4, PACF is used to determine the optimal lag period. After calculation, the PACF
of each subsequence was different. On the basis of fully considering the information in
PACF and domain knowledge in practical application, the input variables for each series
of the Yichang station monthly runoff forecasting model are listed in Table 1, where Xt-n
denotes the nth antecedent variables of the sample to be predicted. The different number of
input variables for each sub-series prediction model also explains the complexity of runoff
sequence composition and the difficulty of forecasting.
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Table 1. Optimal input variables of each IMF for Yichang Hydrological station.

IMFs Input Variables Numbers of Input

IMF1 Xt-1~Xt-11, Xt-14, Xt-15, Xt-17~Xt-19 16
IMF2 Xt-1~Xt-11, Xt-14~Xt-19 17
IMF3 Xt-1~Xt-10, Xt-12, Xt-14, Xt-17~Xt-22 18
IMF4 Xt-1~Xt-10, Xt-14, Xt-15, Xt-17, Xt-20~Xt-23, Xt-27, Xt-29 19
IMF5 Xt-2, Xt-4~Xt-9, Xt-13~Xt-16, Xt-18~Xt-20, Xt-24, Xt-27 16
IMF6 Xt-1~Xt-8, Xt-10~Xt-12, Xt-16, Xt-20, Xt-23, Xt-35 15
IMF7 Xt-1~Xt-12, Xt-16~Xt-20, Xt-23~Xt-28, Xt-30~Xt-32, Xt-36 27
IMF8 Xt-1~Xt-3, Xt-5, Xt-6, Xt-8, Xt-13, Xt-14, Xt-16, Xt-25~Xt-29 14

4.3. Model Parameter

After data preparation of monthly runoff series for two hydrological stations, a
proper forecasting model was selected, which can be used for runoff series. Accord-
ing to Section 2.4, we built a VMD-GRU-SFS (DIP) runoff forecasting model based on the
DIP framework. The model parameters of VMD-GRU-SFS (DIP) for Pingshan and Yichang
stations were optimized by the SFS algorithm, including the number of hidden layers and
node number of hidden layers of each parallel GRU neural network, the hidden layers,
and the number of node number of hidden layers of concatenation layers. The optimized
network parameters are summarized in Table 2, where Adam, an extension to stochastic
gradient descent, is selected as the optimizer [58].

Table 2. Summary of the parameter configuration of forecasting Model.

Station Layers Hidden
Layers

Hidden
Nodes

Activation
Function

Loss
Function Optimizer Epochs Batch

Size

Pingshan
multi-input layers 2

22 softsign

mse adam 20 8
29 softsign

concatenation layers 2
37 softsign
12 linear

Yichang
multi-input layers 2

27 softsign

mse adam 20 8
43 softsign

concatenation layers 2
34 softsign
19 linear

4.4. Comparative Experiment Develop

To verify the rationality and prediction accuracy of the proposed runoff forecasting
method, seven forecasting models were developed for comparison: four single forecasting
models of AR, BP, LSTM, and GRU and three decomposition-based hybrid models of
VMD-LSTM, VMD-GRU, and VMD-GRU-SFS. These models were implemented in Python
programming. For the standard BP, LSTM, and GRU neural network models, the prediction
problem can be directly transformed into a supervised learning problem, in which the
observed runoff series of length N were divided into N−L data samples (where L is the
length of the lag period), the input of the model is the L observation data before the forecast
value, and the output is the forecast target. In general, the three-layer structure is proven
to be able to fit arbitrary nonlinear functions [41]. Therefore, a three-layer structure was
selected for these models. By contrast, for the hybrid forecasting method VMD-LSTM and
VMD-GRU, the original runoff was first divided into several sub-series utilizing VMD.
Each sub-components were then modeled utilizing a standard LSTM or GRU, respectively,
and finally aggregated results of individual sub-series to obtain the final forecasting results.
In addition, VMD-GRU-SFS combined with the SFS method to optimize the parameters of
the model based on VMD-GRU, which is helpful in the selection of a more suitable model
structural hyper-parameters. It should be noted that the above three hybrid models are
based on the DPR prediction framework.
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5. Result Analysis and Discussion

Based on the descriptions above, the forecast results of the proposed method and
the contrast methods including AR, BP, LSTM, GRU, VMD-LSTM (DPR), VMD-GRU
(DPR), and VMD-GRU-SFS (DPR) are discussed in this section. Figures 5 and 6 show the
comparison chart of prediction process and residual process of eight different prediction
models in testing period for the Pingshan and Yichang stations. Figures 7 and 8 show the
scatter plot of the runoff series prediction results in testing period for the Pingshan and
Yichang stations. In general, the prediction accuracy of the hybrid runoff forecasting model
based on time series decomposition is higher than that of the single prediction model,
and after SFS hyper-parameters optimization, the prediction accuracy of model has been
effectively improved.
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Figure 5. Prediction results and residual of different methods for the Pingshan station. (a) AR model prediction residual;
(b) BP model prediction residual; (c) LSTM model prediction residual; (d) GRU model prediction residual; (e) VMD-
LSTM (DPR) model prediction residual; (f) VMD-GRU (DPR) model prediction residual; (g) VMD-GRU-SFS (DPR) model
prediction residual; (h) Proposed model prediction residual.
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Figure 6. Prediction results and residual of different methods for the Yichang station. (a) AR model prediction residual;
(b) BP model prediction residual; (c) LSTM model prediction residual; (d) GRU model prediction residual; (e) VMD-
LSTM (DPR) model prediction residual; (f) VMD-GRU (DPR) model prediction residual; (g) VMD-GRU-SFS (DPR) model
prediction residual; (h) Proposed model prediction residual.

It can be seen from Figures 5 and 6 that the prediction results of various models are
essentially in line with the fluctuation process of runoff series in Pingshan and Yichang
stations, and the prediction accuracy is ranked from high to low as: proposed model >
VMD-GRU-SFS (DPR) > VMD-GRU (DPR) > VMD-LSTM (DPR) >GRU > LSTM > BP > AR.
In the single prediction model, the AR and BP models have poor fitting ability and high
prediction error. Compared with AR and BP, the LSTM model has recurrent neural network
structure, which can better learn the long-term dependence of runoff series, the prediction
accuracy of the model is improved. GRU model is a variant of LSTM, which simplifies
the model structure without losing the prediction accuracy, and the prediction accuracy is
basically consistent with LSTM. By contrast, the prediction performance of hybrid model
is always better than single model, which can better fit the peak flow and have better
prediction accuracy. However, the neural network model parameters are more difficult
to select, which may lead to under-fitting and over-fitting. By using the SFS optimization
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algorithm to optimize the parameters of the GRU model, the prediction performance of
the model can be obviously improved. Moreover, it is apparent from these figures that the
prediction results of the proposed VMD-GRU-SFS (DIP) method based on DIP framework
are always better than the other seven comparison models.
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It can be clearly seen from the scatter diagram of Figures 7 and 8 that the prediction
performance of various models is obviously different. The scattered points of AR and BP
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models deviate far from the ideal line, especially the peak part of runoff. The prediction
effects of LSTM and GRU models are similar, which are improved compared with above
two models on the whole, but the scatter points are still relatively scattered. In general, it
is obvious through the scatter plot that the prediction performance of the decomposition
-based hybrid model is significantly better than that of the single model. However, at the
peak of runoff, the scatter points of the VMD-LSTM (DPR) and VMD-GRU (DPR) model
deviated from the ideal fitting line. By comparison, the VMD-GRU-SFS (DPR) model
optimized with hyper-parameters has less deviation at the peak. The most striking finding
is that for two hydrological stations, the forecasted and observed data scatter points of
the proposed model are very close to the ideal baseline, whether it is the whole or the
peak prediction part, which shows that the proposed method can effectively improve the
generalization ability of the runoff forecasting model.

Although the predicted-observed runoff comparison hydrograph and scatter diagram
can intuitively evaluate the corresponding relationship between the predicted value and
the observed data, the statistical indicators can more accurately evaluate the prediction
ability of a different model. To decrease the accidental error of neural network model, the
statistical indexes were obtained after 10 trainings and the average value was calculated.
Tables 3 and 4 show the evaluation results of eight models in Pingshan and Yichang
stations during training period and testing period. Figures 9 and 10 show the prediction
performance improvement ratio of the proposed model compared with other models for
two stations.

Table 3. Results of different forecasting methods for the Pingshan station.

Model
Training Testing

RMSE NRMSE MAPE NSE RMSE NRMSE MAPE NSE

AR 1464.36 10.89 24.2 0.835 1771.89 13.18 25.6 0.791
BP 1378.41 10.26 20.9 0.854 1724.55 12.83 20.3 0.805

LSTM 1302.25 9.69 13.7 0.869 1688.15 12.56 18.4 0.813
GRU 1282.78 9.54 15.9 0.873 1700.87 12.65 19.3 0.811

VMD-LSTM (DPR) 1228.62 9.14 21.8 0.883 1496.11 11.13 21.7 0.853
VMD-GRU (DPR) 1178.06 8.76 20.2 0.892 1449.76 10.79 19.7 0.862

VMD-GRU-SFS (DPR) 1134.25 8.44 19.2 0.901 1399.51 10.41 18.9 0.871
Proposed 1056.28 7.86 19.6 0.914 1310.62 9.75 17.9 0.887

Table 4. Results of different forecasting methods for the Yichang station.

Model
Training Testing

RMSE NRMSE MAPE NSE RMSE NRMSE MAPE NSE

AR 3946.35 10.38 19.9 0.852 4433.03 11.67 22.9 0.757
BP 3785.58 9.96 18.3 0.863 4343.23 11.43 22.1 0.771

LSTM 3562.45 9.37 14.7 0.879 4204.73 11.06 20.1 0.784
GRU 3469.44 9.13 13.9 0.885 4098.51 10.78 17.6 0.794

VMD-LSTM (DPR) 3241.23 8.53 18.2 0.899 3828.96 10.08 20.9 0.821
VMD-GRU (DPR) 3202.11 8.43 15.4 0.902 3670.41 9.66 20.1 0.834

VMD-GRU-SFS (DPR) 2917.92 7.68 16.9 0.918 3414.16 8.98 19.1 0.856
Proposed 2943.65 7.75 16.6 0.917 3145.08 8.28 16.2 0.878

In summary, the application of time series decomposition algorithm and hyper-
parameter optimization method can enhance the prediction performance of the runoff
forecasting model. Compared with GRU and VMD-GRU (DPR), the NSE of VMD-GRU-SFS
(DPR) model in the testing set of both Pingshan and Yichang stations can be increased by
more than 7% and 1%. It shows that time series decomposition can effectively reduce the
difficulty of prediction by extracting the internal variation characteristics of runoff series,
and also demonstrating the importance of hyper-parameter optimization to improve the
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accuracy of the forecasting model. Furthermore, one can clearly see from the table that
the statistical indexes of the proposed runoff forecasting method are optimal in both the
training period and the testing period. Taking Yichang station as an example, the RMSE,
NRMSE, MAPE, and NSE in the test period are 3145.08, 8.28, 16.2, and 0.878, respectively.
As shown in the Figure 10, the predicted statistical indexes during the test period of the
proposed model have been improved to varying degrees compared with the other seven
models. Compared with the single GRU model, the RMSE and NRMSE decreased by 23.3%,
the MAPE decreased by 7.95% and the NSE increased by 10.6%. Compared with the VMD-
GRU-SFS (DPR) hybrid model, RMSE and NRMSE decreased by 7.88%, MAPE decreased
by 15.2%, and NSE increased by 2.57%. The analysis shows that the proposed runoff fore-
casting method can provide more satisfactory prediction results for runoff forecasting than
other methods, and also demonstrates that the DIP prediction framework developed in this
paper has better prediction performance than DPR framework for complex hydrological
time series.
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rate; (c) NSE improvement rate.

In addition, one interesting finding is that the training time of our proposed model is
significantly less than that of other VMD-LSTM, VMD-GRU, and VMD-GRU-SFS hybrid
models based on the DPR framework. Figure 11 shows the training time of different runoff
forecasting models for the two stations. In general, the training time of a single model
is much less than that of the hybrid model because of its simpler model structure and
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only requires training one runoff series. It should be pointed out that for the method with
hyper-parameter optimization, the time for hyper-parameter optimization is not included,
because the process of hyper-parameter optimization is very time-consuming.
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Here we focus on the comparison of training time between hybrid models. As shown
in the Figure 11, the training time of VMD-LSTM (DPR), VMD-GRU (DPR), VMD-GRU-SFS
(DPR), and the proposed method in Pingshan station and Yichang station is shortened in
turn. The VMD-LSTM (DPR) model in Pingshan station and Yichang station has 108 and
182.5 s training time respectively, and the total training time is the longest. Compared with
VMD-LSTM (DPR), training time of the VMD-GRU (DPR) model is reduced because of its
more concise structure, this finding is consistent with that of Gao et al. [28]. VMD-GRU-SFS
(DPR) combines SFS hyper-parameter optimization based on VMD-GRU (DPR), it is helpful
to find the best and most concise model structure, and the training time of the model is
also significantly shortened. It is worth noting that the training time of the proposed
model is the least in the hybrid model. The training time in the two stations is 64.9 s and
98.3 s, respectively, which is significantly reduced compared to the other three hybrid
models. Taking Yichang station as an example, the training time of the proposed model is
reduced by 46%, 42%, and 37% respectively compared with VMD-LSTM (DPR), VMD-GRU
(DPR) and VMD-GRU-SFS (DPR). Therefore, the proposed method can save substantial
model training time and has better practicability, which again proves the advantages of the
method in runoff forecasting.

The studies above show that the performance of AR, BP, LSTM, GRU, VMD-LSTM
(DPR), VMD-GRU (DPR), VMD-GRU-SFS (DPR), and the proposed model in single-step-
ahead monthly runoff forecasting is different. The NSE of the proposed VMD-GRU-SFS
(DIP) method of the testing set can reach 0.87 both in Pingshan and Yichang station, and
both RMSE and MAPE are small. Compared with other models, the performance of the
proposed model is improved to varying degrees, which shows a satisfactory monthly runoff
forecasting ability. In addition to the accuracy of one-step prediction, multi-step monthly
runoff forecasting is also of great significance for flood control and disaster reduction of
reservoirs and compilation of long-term operation plans. Therefore, we can move on to
discuss the multi-step-ahead forecasting performance of the proposed method next. The
proposed method and VMD-GRU-SFS (DPR) model can be used as an example to compare
the prediction results of the two models when the prediction steps are 1, 2 and 3. The
scatter diagrams of the predicted and observed values of the two models with different
prediction steps ahead are shown in Figure 12. Table 5 shows forecast results for the above
two models for under the prediction steps of 1, 2 and 3.
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Table 5. Results of different forecasting methods for the Yichang station.

Steps
VMD-GRU-SFS(DPR) The Proposed

RMSE NRMSE MAPE NSE RMSE NRMSE MAPE NSE

1-step-ahead 3414.16 8.98 19.1 0.856 3145.08 8.28 16.2 0.878
2-step-ahead 3913.61 10.30 23.7 0.812 3405.01 8.96 20.9 0.857
3-step-ahead 4368.91 11.50 29.9 0.765 3905.09 10.28 21.1 0.813

It can be seen from the above figure that, on the whole, the prediction performance of
the proposed method is better than the VMD-GRU-SFS (DPR) model for different prediction
steps of 1, 2 and 3, and the scatter is relatively more concentrated. Especially in the peak
part, the scatter of the proposed method is closer to the baseline when the flow exceeds
30,000 m3. With the increase of the prediction step size, the scattered points become more
dispersed, and the prediction accuracy of the model decreases gradually. It seems that
these results are due to the accumulation of prediction errors with the increase of prediction
steps. It can be seen from Table 5 that with the increase of prediction steps, RMSE, NRMSE,
and MAPE of VMD-GRU-SFS (DPR) model and the proposed model gradually increase,
and the NSE value also decreases. When the three-step-ahead prediction is carried out,
the NSE of VMD-GRU-SFS (DPR) model is 0.765, while NSE of the proposed model can
still reach more than 0.8, indicating the better performance of the proposed model in
multi-step prediction, it further shows the outstanding advantages of the proposed model
in forecasting stability and extending the forecast period.

Via the above comparative analysis, the prediction results of the proposed VMD-
GRU-SFS (DIP) method based on DIP framework are always better than the other seven
comparison models in overall prediction performance, model training time, and multi-step-
ahead prediction, mainly reasons for the superiority of the hybrid method are analyzed
below. On the one hand, the parallel-input neural network in the proposed method
adaptively aggregates the output of each parallel GRU model to obtain the prediction
result. The model structure has the function of error self-calibration, which can effectively
avoid the error accumulation in the integration of subsequence prediction results, thus
achieving better single-step and multi-step prediction performance compared with other
models. On the other hand, the parallel-input neural network obtains the decomposed
runoff sub-series samples as the input and the original runoff sequence samples as the
output. Although the structure of the model is more complex than that of single input,
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it only needs one model training, and does not need to train each sub-series separately.
Therefore, it can save the training time of prediction model to a great extent.

6. Conclusions

In this paper, to improve the prediction performance of nonlinear, nonstationary
runoff series, we proposed a novel runoff forecasting method based on the Decomposition-
Integration-Prediction (DIP) framework. This method first involved obtaining the sub-
series samples decomposed from the original runoff series by VMD as the model input.
Then, several parallel GRU of the parallel-input neural network were used to fit trend, cycle,
and seasonal variation characteristics of runoff subcomponents and integrate their output
adaptively through the concatenation layers. Finally, the output of concatenation layers
was treated as the final runoff forecasting result. In this process, we used the SFS algorithm
to optimize the hyper-parameters of the model. In addition, using RMSE, NRMSE, MAPE,
and NSE as the performance evaluation indices, the prediction results of the proposed
method were compared with those of seven prediction models: AR, BP, LSTM, GRU,
VMD-LSTM (DPR), VMD-GRU (DPR), and VMD-GRU-SFS (DPR).

In general, the method proposed in this paper can significantly improve the prediction
performance of monthly runoff. Compared with the other seven runoff forecasting models,
the key features of the proposed method lie in the following aspects:

(1) This method can more effectively identify the internal variation characteristics of
runoff series, adaptively aggregate the prediction results of sub-series, and improve
the overall prediction accuracy of the model.

(2) Compared with other hybrid runoff forecasting models based on DPR framework,
this method can significantly shorten the training time of the model and has better
practical value.

(3) Compared with the VMD-GRU-SFS hybrid model based on DPR, the proposed
method has better multi-step prediction ability and can effectively extend the predic-
tion period.

The prediction results show that among all methods mentioned, the proposed method
in this paper is the best on prediction accuracy, model training time, and multi-step-ahead
prediction. Overall, the proposed new framework is a useful tool for forecasting nonlinear
and nonstationary runoff series and is thus a promising model for runoff forecasting.
However, it is worth noting that the main limitation of this study is that only the data series
of two stations are used for model verification. Future research needs to be extended to
stations in other basins to verify the robustness of the model. In addition, the proposed
model needs interpolation pretreatment for the missing values in the runoff series. In the
future, we will use advanced time-frequency analysis methods such as LSWA for runoff
prediction research.
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Appendix A

Table A1. Abbreviation descriptions.

Acronym Full Name

DIP Decomposition-IntegrationPrediction
VMD Variational Mode Decomposition
GRU Gated Recurrent Unit
SFS Stochastic Fractal Search
AR Autoregressive
MA Moving Average

ARMA Autoregressive Moving Average
ARIMA Autoregressive Integrated Moving Average

BP Back Propagation
SVM Support Vector Machine
ELM Extreme Learning Machine
RNN Recurrent Neural Network
LSTM Long Short-Term Memory
DWT Discrete Wavelet Transform
XWT Cross Wavelet Transform
WCT Wavelet Coherence Transform

LSWA Least-Squares Wavelet Analysis
LSCWA Least-Squares Cross Wavelet Analysis

EMD Empirical Mode Decomposition
DPR Decomposition-Prediction-Reconstruction

VMD-LSTM (DPR) Variational Mode Decomposition-Long Short-Term Memory based on Decomposition-Prediction-Reconstruction
VMD-GRU (DPR) Variational Mode Decomposition-Gated Recurrent Unit based on Decomposition-Prediction-Reconstruction

VMD-GRU-SFS (DPR) Variational Mode Decomposition-Gated Recurrent Unit-Stochastic Fractal Search based on Decomposition-Prediction-Reconstruction
VMD-GRU-SFS (DIP) Variational Mode Decomposition-Gated Recurrent Unit-Stochastic Fractal Search based on Decomposition-Integration-Prediction

PACF Partial Autocorrelation Function
RMSE Root Mean Square Error

NRMSE Normalized Root Mean Square Error
MAPE Mean Absolute Percentage Error
NSE Nash-Sutcliffe Efficiency
UYR the Upper Yangtze River
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