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Abstract: The removal of heavy metals from industrial waste has become crucial in order to main-
tain water quality levels that are suitable for environmental and species reproductive health. The
biosorption of Zn+2 and Fe+3 ions from aqueous solution was investigated using Ulva lactuca green
algal biomass and Corallina officinalis red algal biomass, as well as their activated carbons. The effects
of biosorbent dosage, pH, contact time, initial metal concentration, and temperature on biosorption
were evaluated. The maximum monolayer capacity of Ulva lactuca and Corallina officinalis dry algal
powder and algal activated carbon was reached at pH 5 and 3 for Zn+2 and Fe+3, respectively, while
the other factors were similar for both algae, which were: contact time 120 min, adsorbent dose 1 g,
temperature 40 ◦C and initial concentrations of metal ion 50 mg·L−1. The batch experimental data can
be modelled using the Langmuir and Freundlich isotherm models. Thermodynamic characteristics
revealed that the adsorption process occurs naturally and is endothermic and spontaneous. For
the adsorption of Zn+2 and Fe+3 ions, the value of G◦ was found to be negative, confirming the
practicality of the spontaneous adsorption process, which could be helpful for remediation in the era
of temperature increases.

Keywords: aquatic organisms; Ulva lactuca; Corallina officinalis; activated carbon; biosorption;
thermodynamics; isotherm; temperature changes effect; bioremediation; sustainability

1. Introduction

Environmental concerns have developed as a result of greater industrial expansion
to close the gap in human demands [1]. Water pollution is a prevalent form of pollution
that the planet is grappling with at the moment, and is considered one of the highest risk
factors for sickness, disease and biodiversity loss [2–5]. According to global databases and
statistics, heavy element contamination is among the most serious of the environmental
concerns due to its very detrimental effects on environmental balance, human feeding, and
species sustainability [6–9], especially under climate change conditions [10–12]. Wastewater
can contain a wide variety of heavy metals, especially waste that has resulted mainly from
industrialization, such as Cu, Cr, Cd, Fe, Zn and Hg [5,13–17]. Zinc and iron are very
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common pollutants in the environment; their occurrence negatively affects water ecology,
and consequently, humans [18].

Mining and smelting activities in addition to the petrochemical, medical drugs and
fertilizer industries are some of the primary sources of heavy-metal pollution [11,13,19,20].
High zinc and iron levels, on the other hand, can cause serious health issues such as stomach
pains, vomiting, skin irritations, anemia, nausea, and asymmetry [21,22]. Ion-exchange,
chemical precipitation, membrane filtration, adsorption, and electrochemical treatment
technologies are all available to extract and separate these heavy metals from water and
wastewater [23]. Because it is frequently employed in wastewater treatment procedures,
adsorption is one of the safest, easiest, and most cost-effective approaches [24]. Heavy
metals are a dangerous problem due to their non-biodegradable nature and excessive
environmental accumulation [25,26]. Accumulation of heavy metals in the food chain
influences the health of living organisms, particularly humans [27–30]. To maintain water
quality levels that are acceptable for environmental and human health, it has become
critical to remove heavy metals from mine drainage and other industrial waste.

Traditional techniques such as reverse osmosis, electrodialysis, ultrafiltration, the in-
dustrial ion-exchange process, and chemical precipitation are used to remove heavy metals
from industrial wastewater [31–33]. Unfortunately, the majority of these commonly used
methods are constrained by critical barriers such as low selectivity, high cost, inefficient
removal, significant energy consumption, and the inability to handle massive amounts
of hazardous waste [34,35]. The adsorption method is the most extensively utilized of all
the removal processes mentioned above, since it is a low-cost, environmentally friendly,
reversible, and rapid-acting technology that can be readily used in many circumstances
to control pollution [36–38]. Activated carbon is known to be a highly effective absorbent
material in the removal of a wide range of organic and inorganic pollutants and gases
from various media and is the most commonly utilized material for the treatment of
wastewater contamination [39–41]. However, the cost of the materials required to pro-
duce higher-quality activated carbon is considerable [42]. Therefore, establishing low-cost
activated-carbon solutions is vital for the removal of heavy metals from wastewater [43,44].

Generally, any natural material has its adsorptive properties and can be used for
heavy-metal removal, such as the microbial cultures of fungi, algae and plants [45]. The
performance of different natural biosorbents, on the other hand, is dependent on the char-
acteristics of the biomass as well as the affinity of the target heavy metal. The biosorption
mechanism may be based on chemical adsorption that involves covalent binding between
cationic ions and the negative charge on the cell surface and/or on physical adsorption in
the form of electrostatic attraction.

Therefore, the search for cost-effective, environmentally friendly, and widely available
adsorbents, particularly of biological, natural materials, is presently the subject of intense
research [46]. The ability to absorb heavy metals by using plants requires an acidic medium,
which may affect the environmental balance in the long run, in addition to increasing
the economic cost of the adsorption process; moreover, it also competes with agricultural
crops in the exploited agricultural area [47]. On the other hand, bacteria and fungi may
not be safe enough to be used as biosorbents on a large economic scale [48]. Zayadi and
Othma [49], in a study that focused on the bioremediation of Fe and Zn ions from aqueous
solution using Tilapia fish scales, reported that biosorption efficiency was 64.2% and 79.4%,
respectively, for these ions. However, efficiency reached 85% and 89%, respectively, after
two hours of contact with dead cyanobacterial [50]. In another study, the biosorption
efficiency of zinc by Sargassum lipendula was approximately 41.8%, while it was 27.5% and
61.8% using anaerobic biological sludge and Bacillus firmus, respectively [51].

Algal biomasses represent a rich source of biosorption material that is capable of accu-
mulating a high metal content while being ecologically safer and needing relatively inexpen-
sive processing. Due to the presence of proteins, hetero-polysaccharides or lipids in the al-
gal cell-wall structure, as well as large surface-area-to-volume ratios, these biomasses have
high metal-binding capacities [48]. Marine macro-algae possess strong metal-biosorption
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capacities due to the presence of active functional groups on the surface of their cell walls.
Using marine macroalgae-activated carbon provides a number of advantages, including
low cost, wide availability, and high metal-binding capability [52,53]. The marine green
alga Ulva lactuca and the red alga Corallina officinalis are the two species that were tested in
this study for the removal zinc and iron ions from an aqueous solution. Both of these algae
are available in considerable quantities and are used for many other environmental as well
as human purposes such as “functional foods” or “nutraceuticals”, etc. [54,55]. Further-
more, because of its high surface area, relatively simple structure, and modest and uniform
distribution of binding sites, this material is very useful in heavy-metal processing [56,57],
and it may be utilized directly for heavy-metal recovery as a biosorbent [56–58].

The main objective of this research was to use dried algal powder (DAP) and algal
activated carbon (AAC) of Ulva lactuca and Corallina officinalis as biosorbents to eliminate
Zn+2 and Fe+3 ions from aqueous solution. Additionally, the influence of several operating
parameters such as temperature, adsorbent dosage, contact time, pH and initial concen-
tration was investigated in order to evaluate the maximum adsorption capacity and the
optimum adsorption conditions. Equilibrium isotherms and thermodynamic modelling
were used to deduce the possible mechanism of the adsorption process.

2. Materials and Methods
2.1. Collection of Algal Biomass

Two macroalgal species, the green alga Ulva lactuca (L.) and the red alga Corallina
officinalis (L.), were handpicked during mid-autumn at a depth of 0.2 m or less from the
rocks of Alexandria’s Eastern Harbor, which is a small, shallow, semi-circular basin located
between longitudes 29◦53′ and 29◦54.4′ E and latitudes 31◦12′ and 31◦13′ N. According to
the rules of the Egyptian Environmental Affairs Agency (EEAA), the size of the collected
living algal biomass samples (fresh weight) was strictly in order to maintain the bio-
conservation of the protected area. Both U. lactuca and C. officinalis were selected due to
the commonly large quantities of their blooms. The algal biomass samples were collected
according to the Londo scale [59] and identified at the genus and species levels based on
their morphology and anatomy [60,61].

2.2. Preparation of Biosorbent

Preparation of dried algal powder (DAP)
In order to remove sand, impurities, and salts, the algal samples were rinsed several

times, first with excessive amounts of tap water and then with distilled water. The washed
algal biomass was air-dried for 72 h before being oven-dried for 24 h at 60 ◦C until no
further weight change was achieved. The biomass was then crushed and sieved into
particles ranging in size from 0.2 to 1.0 mm. The dried seaweeds were stored at room
temperature away from light and moisture in a well-sealed amber-colored jar.

Algal activated carbon (AAC) preparation
In a stainless-steel reactor tube (40× 600 mm), the dried algal material was carbonized

for 3 h at 600 ◦C. The samples were soaked for 48 h in potassium hydroxide (in ratio: 3 g
potassium hydroxide to 1 g carbonized sample). The samples were calcined at 800 ◦C for
3 h. The activated carbon was rinsed multiple times with distilled water until a neutral
filtrate was obtained. The washed samples were maintained for adsorption investigations
after drying at 110 ◦C [62].

Adsorbate solutions (synthetic solution) preparation
Stock standard solutions of Fe+3 and Zn+2 ions were prepared by dispersing 0.210 g of

zinc sulfate (ZnSO4.7H2O) and 0.249 g of ferrous sulphate (FeSO4.7H2O) in 1 liter of water,
respectively. In order to ensure purity, Fe+3 and Zn+2 ions were prepared with double-
deionized water. Hydrochloric acid (0.1 mol. L−1) and sodium hydroxide (0.1 mol.L−1)
were used to adjust the pH. One-liter aliquots of this stock solution were used for all of the
following adsorption tests.
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2.3. Adsorption Procedure

Determination of optimum pH
In order to test the effect of pH, the parameters of initial metal concentration, algal

dose and contact time were set at 50 mg.L−1, 1.0 g.L−1 and 120 min., respectively, at
38 ± 1 ◦C. The impact of pH was evaluated by varying pH from 2 to 8 for Zn+2 and from
1 to 6 for Fe+3 (the range was unaffected by the metal precipitation) [63]. The solutions
were pH-adjusted with 1 M HCl and 1 M NaOH. The samples were assessed for the
corresponding metal-ion concentration using an atomic absorption spectrophotometer
(Analytikjena Model Nova350).

Determination of optimum biomass dosage
Different biomass weights (0.20, 0.50, 0.75, 1.0, 1.5 and 2.0 g.L−1) were added to

volumetric flasks containing 50 mg.L−1 of each metal solution in order to investigate the
optimal biomass dose of each tested algae for heavy-metal biosorption. Flasks were shaken
at pH 5 for Zn+2 and pH 3 for Fe+3 at 38 ± 1 ◦C for 120 min., after which the samples were
analyzed using AAS to determine the metal-ion concentration.

Determination of optimum contact time
One gram each of DAP and AAC were added to 50 mg.L−1 of a heavy-metal solution

that was adjusted to pH 5 for Zn+2 and pH 3 for Fe+3 at room temperature. Contact times
of 30, 60, 90, 120, 180 and 240 min were tested. The mixtures were filtered and analyzed for
metal-ion concentration using the AAS after each contact time.

Determination of optimum temperature
One gram each of DAP and AAC were added to 50 mg.L−1 of heavy-metal solutions in

order to investigate the impact of temperature. Solution temperatures of 20, 30, 40, 50 and
60 ◦C were each tested for 120 min and at pH 5 and pH 3 for Zn+2 and Fe+3, respectively.

Determination of optimum initial heavy-metal concentration
Different metal-ion concentrations of 10, 20, 50, 70, 80 and 100 mg.L−1 were tested at

constant parameters of pH 5 for Zn+2 and pH 3 for Fe+3 with 1.0 g.L−1 of the biosorbent
material at 38 ± 1 ◦C for 120 min in order to determine the effect of the initial concentration
of metal on the efficiency of adsorption. Finally, the resulting suspension of each metal ion
was filtered and analyzed by AAS for the corresponding metal-ion concentration.

Metal removal efficiency
The efficiency of biosorption (qe) is defined as the amount of metal adsorbed per gram

of biosorbent and can be calculated in mg.g−1 as follows (Chen, 2005):

qe = (C0 − Ce) × V/M (1)

where Ce is the equilibrium concentration of metal ions (mg.L−1), C0 is the initial metal-ion
concentration (mg.L−1), m is the mass of biosorbent (g) and V is the volume of solution (L).
The following formula can be used to calculate the percentage of metal removed [64,65]:

Removal efficiency (%) = (Co − Ce)/Co × 100 (2)

Adsorption thermodynamic study
Thermodynamic parameters are very important because they provide the details of the

spontaneity of the processes. Therefore, for the Zn+2 and Fe+3 adsorption on Ulva lactuca,
Corallina officinalis and activated carbon, temperature conditions were varied between 20 ◦C
and 60 ◦C while other factors remained fixed in order to obtain changes in free energy (G◦),
enthalpy (H◦), and entropy (S◦) by using the expressions described below:

The adsorption process Gibbs free energy is estimated as [66]:

∆G◦ = −RT ln(kd) (3)

where ∆G◦ is the standard Gibbs-free-energy change for adsorption (J.mol−1), R denotes
the universal gas constant (8.314 J.mol−1.K−1), T denotes the temperature in Kelvin (K),
and kd denotes the adsorbate distribution coefficient, which is equal to qe/Ce (L.g−1). The
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plot of ln(kd) versus 1/T yields a straight line with the values of ∆H◦ and ∆S◦ representing
the slope and intercept, respectively:

ln(kd) = ∆S◦/R − ∆H◦/RT (4)

These values can be used to compute ∆G◦ in the Gibbs relation:

∆G◦ = ∆H◦ − T∆S◦ (5)

These parameters were calculated at temperatures of 293, 303, 313, 323 and
333 K [59,67].

Biosorption isotherm
At optimal pH, various concentrations of Zn+2 and Fe+3 (10, 20, 30, 50, 70, and

100 mg.L−1) were used to assess the adsorption isotherm. The Langmuir and Freundlich
models were used to determine which concentration was best for describing the biosorp-
tion isotherm of two commonly used metals at a constant temperature. The Langmuir
isotherm’s linear form is given by the following equation [68]:

Ce/qe = 1/(b qmax) + Ce/qmax (6)

where Ce represents the metal residual content in solution, qe represents milligrams of
metal accumulated per gram of biosorbent material, b represents the ratio of adsorption
and desorption rates, and qmax represents the maximum specific uptake corresponding to
saturation of the binding site. The linear form of the Freundlich equation [69] is given as:

log qe = log KF + 1/n × log(Ce) (7)

where KF represents the Freundlich constant, which indicates adsorption capacity, and 1/n
represents the adsorption intensity.

2.4. Statistical Analysis

In order to ensure the accuracy of the data, all biosorption studies were carried out
in triplicate. Data points in the figures depicted are mean ± standard deviation (SD) for
independent samples that were analyzed by using SPSS 23.0 (SPSS Inc., Chicago, IL, USA),
and the minimum significant level was set at 0.05.

3. Results

The Optimum Condition for Zn+2 and Fe+3 Ions Removal by Ulva lactuca and Corallina
officinalis and their activated carbons.

Effect of Adsorbent Dosage
Figure 1 show the removal efficiency (%) of various algal dosages (g.L−1), revealing

that raising the adsorbent algal dosage from 0.2 to 1.0 g.L−1 improved the adsorption
efficiency of the two metal ions by both DAP and AAC. The recorded maximum removal
efficiency was up to 98.9% for Zn+2 and 97.6% for Fe+3 by AAC of Ulva lactuca. However, it
reached 95.0% and 96.1% for Zn+2 and Fe+3, respectively, by AAC of Corallina officinalis. The
same pattern was observed in the case of DAP for both algae, but with a lower percentage
of adsorption of Zn+2 and Fe+3 for U. lactuca (93.6% and 91.6%, respectively), as well as by
C. officinalis (87.9% and 91.6%, respectively).

Effect of contact time
Figure 2 reflect that removal efficiency was highly influenced by contact time. Using

1.0 g.L−1 of adsorbent, the removal of both Zn+2 and Fe+3 reached a high level even after
only 30 min of contact (85.1% and 91.5% for DAP and AAC, respectively, of U. lactuca)
and continued to increase significantly until 120 min (the equilibrium point) after which
there was no further change in the removal efficiency. The maximum removal efficiency
was recorded for U. lactuca AAC for both Zn+2 (98.9%) and Fe+3 (97.6%). The same trend
was found for C. officinalis DAP with 87.8% and 88.4% removal efficiency for Zn+2 and
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Fe+3, respectively, and for its AAC with 94.7% and 96.2% removal efficiency for Zn+2 and
Fe+3, respectively.
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Effect of pH
As shown in Figure 3, the impact of pH on the metal-ion adsorption efficiency was

estimated at pH values of 2.0 to 8.0 for Zn+2 and 1.0 to 6.0 for Fe+3. Figure 3 clearly
shows that the maximum percentage of removal for Zn+2 ions by the DAP and AAC of
U. lactuca and C. officinalis was observed at pH 5, and that the removal efficiency substan-
tially decreased at lower pH values and slightly decreased at higher pH values. As the pH
was raised from 2 to 5, the effectiveness of metal-ion removal improved, with the percent-
age of removal efficiency increasing from 88.2% to 93.2% and from 91.1% to 98.7% for the
DAP and AAC of U. lactuca, respectively, and increasing from 82.3% to 87.5% and 89.0% to
94.5% for the DAP and AAC of C. officinalis, respectively. Hence, the optimum acidity for
Zn+2 ion removal was at pH 5. However, as shown in Figure 3, the maximum percentage of
removal of Fe+3 ions was found at pH 3 and declined considerably at lower and higher pH
values. As the pH increased from 1 to 3, the Fe+3 removal efficiency increased from 86.0%
to 91.4% and from 90.3% to 97.4% for the DAP and AAC of U. lactuca, respectively, and
increased from 82.7% to 88.1% and 87.7% to 95.8% for the DAP and AAC of C. officinalis,
respectively. Hence, pH 3 was established as the optimal pH value for Fe+3 removal, which
can be used in further studies.
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Effect of initial concentration of metal ions
An inspection of Figure 4 reveals that the initial concentration of metal ions was

inversely related to the removal efficiency. As the initial metal-ion concentrations increased
from 10 to 50 mg.L−1, the removal efficiencies decreased from 97.1% to 93.2% and from
96.8% to 91.4% for Zn+2 and Fe+3, respectively, using dried U. lactuca, and decreased from
91.1% to 87.5% and from 92.6% to 88.1% for Zn+2 and Fe+3, respectively, for the dried
red alga C. officinalis. Additionally, when the initial ion concentrations varied from 10
to 100 mg.L−1, the removal efficiencies decreased from 99.7% to 98.6%, and from 99.1%
to 97.1% for Zn+2 and Fe+3, respectively, using the activated carbon of U. lactuca, and
decreased from 96.7% to 94.3% and from 97.0% to 95.7% for Zn+2 and Fe+3, respectively,
using the activated carbon of C. officinalis.
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Effect of Temperature
The evaluation of the removal efficiency of heavy metals under the influence of

different temperatures revealed a large temperature effect. As shown in Figure 5, the
removal of both Zn+2 and Fe+3 increased as temperature increased from 20 to 30 ◦C, until
equilibrium was attained at 40 ◦C, at which point the biosorption rate became almost
constant. This was true for both the dried green algae and dried red algae, as well as for
their activated carbon forms. The maximum removal efficiency was recorded using the
AAC of U. lactuca for both Zn+2 (98.9%) and Fe+3 (97.7%). The same trend was found for
C. officinalis with a DAP removal efficiency of 87.9% for Zn+2 and 88.47% for Fe+3 and an
AAC removal efficiency of 94.7% for Zn+2 and 96.3% for Fe+3.
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Adsorption thermodynamic
The slope and intercept of the plot of 1/T vs. ln(kd) (Equation (4) that was used to cal-

culate the enthalpy change (∆H◦) and entropy change (∆S◦) resulted in the positive values
shown in Table 1. Table 1 and Figure 6 show the results obtained for the thermodynamic
properties of zinc and iron, respectively. The values of the Gibbs-free-energy change (∆G◦)
for the adsorption processes of Zn+2 and Fe+3 onto U. lactuca, C. officinalis and activated
carbon are shown at each of the tested experimental temperatures (273–333 K) and with
an initial metal concentration of 50 mg.L−1, pH 5 for Zn+2, and pH 3 for Fe+3. These are
confirmed by thermodynamic parameters such as free-energy (∆G◦, kcal mol−1), enthalpy
(∆H◦, kcal mol−1) and entropy (∆S◦, cal mol−1 k−1) changes during the process. As the
temperature increased (T1–T5), the values of ∆G◦ became more negative for each metal.

Table 1. Thermodynamic parameters for adsorption of Zn+2, Fe+3 onto DAP and AAC of both Ulva lactuca and
Corallina officinalis.

Adsorbate Adsorbent
∆H◦

(KJ.mol−1)
∆S◦

(KJ.mol−1)

∆G◦

(KJ.mol−1)

T1 (20 ◦C) T2 (30 ◦C) T3 (40 ◦C) T4 (50 ◦C) T5 (60 ◦C)

Zn

DAP U. lactuca 0.83 0.0340 −9.13 −9.47 −9.81 −10.15 −10.49

ACC U. lactuca 1.37 0.0372 −9.47 −9.84 −10.21 −10.58 −10.95

DAP C. officinalis 1.72 0.0384 −9.41 −9.79 −10.17 −10.55 −10.93

ACC C. officinalis 1.36 0.0360 −9.35 −9.54 −9.9 −10.26 −10.62

Fe

DAP U. lactuca 1.15 0.0357 −9.31 −9.66 −10.07 −10.38 −10.73

ACC U. lactuca 1.57 0.0372 −9.32 −9.70 −9.95 −10.44 −10.81

DAP C. officinalis 1.16 0.0355 −9.24 −9.59 −9.74 −10.30 −10.66

ACC C. officinalis 1.34 0.0350 −9.03 −9.38 −10.07 −10.09 −10.44

Biosorption Isotherm
The characteristics of the biosorption of Zn+2 and Fe+3 ions by Ulva lactuca, Corallina

officinalis and their activated carbons have been calculated using various isothermal
models. In this study, models from Langmuir and Freundlich were applied. The basic
assumption of the isotherm model of Langmuir is that biosorption occurs within the
biosorbent at specific locations. No more biosorption occurs at a binding site once it is
occupied by a biosorbate, which confirms the hypothesis that the biosorption process
is monolayer.

The values of qmax and b from Equation (6) indicate the preference of heavy metals
to attach to binding sites on the biosorbent. The constants were calculated from the slope
1/qmax and intercept 1/bqmax of the linear plot between 1/Ce on the y-axis and 1/qe on
the x-axis, as illustrated in Figure 7a,b for Zn+2 and in Figure 8a,b for Fe+3. From Table 2,
the maximum adsorption capacity (qmax) of dried U. lactuca for Zn+2 and Fe+3 was 23.6
and 46.5 mg.g−1, respectively. However, the maximum adsorption capacity (qmax) of
AAC U. lactuca for Zn+2 and Fe+3 was 13.0 and 294 mg.g−1 respectively. The maximum
adsorption capacity (qmax) of C. officinalis and its activated carbon was obtained as 12.8
and 44.4 mg/g, respectively, for Zn+2 and 16.6 and 94.3 mg.g−1, respectively, for Fe+3. The
values of the correlation coefficients (R2) for Zn+2 and Fe+3 obtained from the plot were
significant (ranged from 0.979 to 0.998), which represents the good fitness of this model for
the biosorption of U. lactuca, C. officinalis, and their activated carbons.
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Figure 7. (a,b). Langmuir’s adsorption isotherm for Zn+2 on DAP and AAC of (a) Ulva lactuca (b) Corallina officinalis. Each
data point represents the mean ± SD.
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Figure 8. (a,b). Langmuir adsorption isotherms for Fe+3 on DAP and AAC of (a) Ulva lactuca (b) Corallina officinalis. Each
data point represents the mean ± SD.

Table 2. Langmuir and Freundlich constants for the adsorption of Zn+2 and Fe+3 by DAP and AAC of both Ulva lactuca
and Corallina officinalis.

Metal Ions Biosorbent
Langmuir Constants Freundlich Constants

qmax
(mg.g−1)

b
(l.mg−1) R2 Kf

(mg.g−1) 1/n R2

Zn+2

DAP U. lactuca 23.5 1.65 0.982 14.6 0.677 0.976

AAC U. lactuca 13.0 7.83 0.982 34.5 0.488 0.975

DAP C. officinalis 12.8 1.95 0.987 11.4 1.02 0.980

AAC C. officinalis 44.4 0.401 0.981 13.4 0.732 0.963

Fe+3

DAP U. lactuca 46.5 0.330 0.981 17.7 0.756 0.961

AAC U. lactuca 294 0.047 0.994 29.2 0.561 0.953

DAP C. officinalis 16.6 1.45 0.979 11.2 0.882 0.916

AAC C. officinalis 94.3 0.185 0.998 21.3 0.655 0.978

Using the same set of experimental data of dried green alga, dried red alga, and their
activated carbons, the application of the empirical Freundlich isotherm was investigated
based on sorption on heterogeneous surfaces and perhaps in multi-layer biosorption. From
the linear form of Freundlich Equation (7), the Freundlich parameters may be calculated
by graphing log qe vs. log Ce; the slope of the resulting line is equal to 1/n, representing
adsorption intensity, and the intercept is equal to log KF, where KF represents adsorption
capacity. The plotted linear Freundlich equation is shown in Figure 9a,b for Zn+2 and
in Figure 10a,b for Fe+3. Table 2 lists the Freundlich constants. The values of correlation
coefficients (R2) for Zn+2 and Fe+3 obtained from the plot ranged from 0.916 to 0.980, which
are generally lower than those obtained using the Langmuir adsorption model.
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4. Discussion

Biosorption has been found to be the most effective method for removing non-
biodegradable pollutants from aqueous solutions. Activated carbons, due to their potency
and versatility, are the most popular adsorbent for this method. Activated carbons are
typically derived from high-carbon materials and have a high adsorption ability, which
is primarily determined by their porous nature [70]. The biosorption process is a compli-
cated system, and various factors influence its efficiency, including the type of biomass
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used as an adsorbent material, the heavy-metal concentrations, and the physicochemical
characteristics such as temperature, pH, and contact time.

One of the most important factors impacting metal-ion biosorption is solution acid-
ity [71–73]. Both the metal-binding sites on cell walls and the metal-ion chemistry in water
influence the pH of the solution. Several authors have demonstrated that the pH of the
solution has a significant impact on metal biosorption by algal biomass [52,53,74,75]. On
the algal biomass, there are several amino, hydroxyl, carboxyl, and sulfate groups that are
affected by changes in the pH of the solution [56,76].

At different pH settings, the greatest biosorption effectiveness for Zn+2 and Fe+3 was
observed. This could be due to differences in the metals’ properties (size, electronegativity),
or perhaps the more accessible metal exhibited better biosorption onto the adsorption
sites [77]. Because Fe+3 has a larger electronegativity than Zn and hydronium ions, it
exhibited a maximal biosorption at a lower pH (pH 3 vs. pH 5 for Zn+2); Hence, the affinity
of Fe for the surface functional groups of the cell wall at a low pH is higher than that of
Zn and hydronium ions. The decrease in biosorption yield at a higher pH was not only
due to the formation of soluble hydroxylated metal-ion complexes (iron ions in the form
of Fe (OH)3 [78]), but also to the ionized state of the cell wall surface of the biomass at
the measured pH. In addition, chelation appears to be the main zinc-cation-sequestration
mechanism used by the algal biomass, whereas iron cations have a higher affinity for
the algal biomass and their binding mechanism includes a combination of ion exchange,
chelation, and reduction reactions, as well as metallic-iron precipitation onto the cell wall
matrix [79].

The initial concentration of metal ions acts as a powerful driving force between the
aqueous and solid phases to overcome all of the resistance that is associated with the
mass transfer of metal ions [80]. This finding implies that when the initial concentration
of all metal ions rises, the percentage of Zn+2 and Fe+3 removal decreases. This could
be explained by the fact that all of the adsorbents had a minimal number of active sites
that were saturated above a specific concentration [81]. Another explanation for the
decrease in the percentage of removal is the larger increase in the denominator (Co) value
in comparison to the numerator (Co − Ce) value, per the equation R = (Co − Ce)/Co. In
addition, for higher concentrations, the adsorption capacity (qe) of the Zn+2 and Fe+3 that
was removed from the adsorbent (mg per gram) increased. For this purpose, for both metal
ions, 50 mg.L−1 was selected as the optimum initial concentration. This finding agrees with
Habtegebrel and Khan [82], who stated that the optimum initial concentration for Zn+2

was 50 mg.L−1 when using dried Prosopis juliflora, and also agrees with Bouzit et al. [83],
who stated that the optimum initial concentration for Fe+3 was 50 mg.L−1 when using
Scenedesmus obliquus.

The extent of biosorption is proportional to the specific area, i.e., the portion of the
entire surface that is available for biosorption [80], because it is strongly dependent on the
initial adsorbent concentration. The fact that the greatest metal adsorption occurred at a
larger adsorbent dose (1.0 g.L−1) could be due to a greater number of active sites for DAP
and AAC, which accelerate metal-ion absorption [84,85] due to adsorption site saturation
at higher biosorbent concentrations [84,85]. This result was accepted because increasing
the adsorbent dose provides a higher surface area and, consequently, more pore volume
will be accessible for the biosorption [86,87]. Our findings are consistent with those of
prior studies [54,88,89]. One gram of the sorbent was determined as the best dosage in all
subsequent studies, and this agrees with the study by Lee and Chang [90], wherein they
used Spirogyra and Cladophora filamentous macro algae.

Ideal biosorption materials can rapidly absorb large quantities of heavy metals from
waste discharges and desorb heavy metals from biosorption materials using chemical
agents [91]. For these reasons, the results of the adsorption of Zn+2 and Fe+3 ions by
U. lactuca, C. officinalis powder (DAP) and their activated carbons (AAC) were dependent
on the relation between the adsorption of heavy metal and contact time, and the outcome
clearly showed that the adsorption procedure took place in two steps [92,93]. The ad-
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sorption rate was higher in the first stage, which may be related to the driving force of
heavy-metal ions into the DAP and AAC surfaces, as well as the abundance of active
adsorbent sites [94,95]. When these sites were exhausted, the adsorption effectiveness
increased with an increase in contact time up to 120 min, after which it remained more
or less constant because the adsorbate had moved from the outer to the inner sites of
the adsorbent particles. As a result, the best contact duration for both metal ions was
determined to be 120 min, which is consistent with El-Sikaily et al. [86]. These findings are
also consistent with those of Bakatula et al. [96], who showed that there are two phases
of biosorption: the first step includes the dissociation of the complexes formed between
solution metals and water hydronium ions, followed by the interaction of metals with the
functional groups of algae. The adsorption efficiency of DAP and AAC U. lactuca was
found to be significantly higher than that of DAP and AAC C. officinalis algae because of
the differences in the composition of proteins, lipids or other carbohydrates that influence
the number of adsorption sites. It can be concluded that the activated carbon adsorption of
Zn+2 and Fe+3 is far superior to that of dried green alga U. lactuca and red alga C. officinalis.

Temperature affects the biosorption efficiency of algae species for each metal
ion [85,97,98]. Although the constants for metal–ligand complex formation are predom-
inantly temperature-dependent, some studies have suggested that an increase in algal
culture temperatures is responsible for an increase in metal-ion biosorption, without con-
sidering the changes in the formation constants [99,100]. The percentage of Zn+2 and Fe+3

ions that were removed from DAP and AAC of U. lactuca and C. officinalis increased as the
temperature increased, indicating an endothermic adsorption process, which is a positive
effect when considering the use of these algae in the environment, as well as their potential
conservation and sustainability. However, other research has suggested that metal-ion
uptake in some algae is exothermic, meaning that reducing the temperature enhances the
uptake capability. Several studies have found a link between temperature and metal-ion
intake by living algal cells, while others have found no link between temperature and
metal-ion uptake by dead algal cells [101]. The following factors may contribute to an
increase in biosorption as temperature rises: an increase in the number of active sites
involved in metal-ion uptake; an increase in the tendency of active sites to absorb metal
ions; a decrease in mass transfer resistance in the diffusion layer due to a reduction in
the diffusion boundary layer thickness around the biosorbent groups; or a change in the
composition of the biosorbent groups [89]. In comparing our results with other natural
sources, the maximum biosorption capacity of Zn+2 was 54, 83, and 87% by bacteria [102],
fungi [103] and plants [50,104], respectively, while the obtained results from this study
reached 98.74% efficiency by using the activated carbon of Ulva lactuca.

The maximum biosorption capacity of Fe+3 was 90.84, 86 and 70% by bacteria [105],
fungi [103] and plants [106], respectively, while the obtained results from this study reached
97.43% efficiency by using the activated carbon of Ulva lactuca. From these findings, algae
in general were more efficient. In fact, the brown macroalgae Sargassum and Colpomenia
sinuosa, when in contact with Zn+2 toxic elements, have a maximum biosorption capacity
of 90.65% [107] and 96.98% [108], respectively, whereas the microalgae Oscillatoria absorbs
at 95% [109]. Furthermore, many studies have been performed on the green macroalgae
Ulva fasciata, AAC Gracilaria, AAC U. lactuca, and Chlorella vulgaris, in contact with the toxic
elements Cd+2, Ni+2, Cr+3, Cd+2, respectively, which indicated a very high biosorption
efficiency [86,110–112].

The increase in the negative value of ∆G◦ with increasing temperature indicated
that the adsorption of Zn+2 and Fe+3 ions by DAP and AAC of both U. lactuca and
C. officinalis increased with increasing temperature, indicating a greater number of ac-
tive sites available for spontaneous adsorption of Zn+2 and Fe+3 ions [113]. The presence of
endothermic adsorbents for the adsorption of Zn+2 and Fe+3 ions in the examined tempera-
ture range of 20–60 ◦C was verified by the positive values of ∆H◦. The randomness of the
adsorption process was confirmed by the positive values of ∆S◦. This finding agrees with
Zaib et al. [114], who used the red algal biomass of Porphyridium cruentum. The equilibrium
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biosorption data was analyzed using biosorption isothermal models, which revealed a
correlation between the mass of the solute adsorbed per unit mass of the equilibrium
sorbent. Langmuir and Freundlich isotherms were used in order to determine biosorption
isotherms [115]. Isotherm studies have shown that the Langmuir isotherm model is more
appropriate for adsorption data than the Freundlich isotherm model, which indicates that
U. lactuca, C. officinalis, and their activated carbons are all homogeneous. In other words,
the biosorption of Zn+2 and Fe+3 onto U. lactuca, C. officinalis, and their activated carbons
occurred as a monolayer biosorption on the functional groups’ binding sites. This finding
agrees with Areco et al. [116], Kumar et al. [117], and Anilkumar et al. [118], who stated
that the best fit of the Langmuir model in the case of Zn+2 biosorption using the dried
biomasses of green alga U. lactuca and red algae Gracilaria corticata suggests that effective
interactions, most likely of the ion-exchange type, occur between both the algal biomass’s
superficial functional groups and the Zn+2 ions from the aqueous solution, and also agrees
with Benaisa et al. [119], who reported that the Langmuir model is considered the best
model for describing the biosorption of Fe3+ onto brown algae Sargassum vulgare. On the
contrary, Liu et al., [120] reported the best fitting of the Freundlich model in the case of
Zn biosorption using the brown alga Saccharina (Laminaria) japonica. The value of ∆G◦

was found to be negative for the adsorption of Zn+2 and Fe+3 ions, which confirmed the
feasibility and spontaneous adsorption process, which could be useful for remediation in
the era of temperature increases in order to save the environmental and the reproductive
health of aquatic species.

5. Conclusions

Both U. lactuca and C. officinalis dried algal powders (DAP) and their KOH-activated
carbons (AACs) were produced and evaluated for Zn+2 and Fe+3 sorption. The optimum
adsorption conditions were found to be approximately pH 5.0 and 3.0 for Zn+2 and Fe+3,
respectively, a contact period of 120 min, 40 ◦C, an adsorbent dose 1.0 g.L−1 and an
initial concentration of 50 mg.L−1. The Langmuir isotherm model provides the best fit
for the experimental results. The adsorption of Zn+2 and Fe+3 ions increased when the
temperature was raised, according to the results of thermodynamic studies. The results
of the thermodynamic parameter determinations revealed that the adsorption process is
spontaneous and endothermic in nature, and that increasing the temperature promotes the
adsorption of Zn+2 and Fe+3 ions onto U. lactuca, C. officinalis, and their activated carbons. In
terms of heavy-metal removal, KOH-activated carbon outperformed algal powder. Finally,
it was concluded that KOH-activated-carbon-dependent U. lactuca and C. officinalis can be
used as an economically effective technology for removing and controlling the rising levels
of heavy-metal pollution in the environment that are caused by many industries, in order
to limit their negative effects on environmental health and aquatic organism sustainability.
Based on these results, both the DAP and AAC of U. lactuca and C. officinalis can be used
in wastewater treatment processes for the removal of heavy-metal residues, especially
in industrial wastewater. We recommend conducting more extensive studies in order to
test a larger number of algae, as they have proven to have higher biosorption efficiency
compared to other natural sources. In addition to their formidable ability to rid wastewater
of heavy metals, which may reach 100% removal efficiency, these algal biomasses are
characterized as being safe and environmentally friendly, and are readily available at low
cost. Finally, the use of these algal biomasses (either as dried powders or activated carbons)
is strongly recommended as an efficient method for the removal of heavy metals from
polluted effluents.
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