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Abstract: A lack of adequate consideration of underwater image enhancement gives room for more
research into the field. The global background light has not been adequately addressed amid the
presence of backscattering. This paper presents a technique based on pixel differences between
global and local patches in scene depth estimation. The pixel variance is based on green and red,
green and blue, and red and blue channels besides the absolute mean intensity functions. The global
background light is extracted based on a moving average of the impact of suspended light and the
brightest pixels within the image color channels. We introduce the block-greedy algorithm in a novel
Convolutional Neural Network (CNN) proposed to normalize different color channels’ attenuation
ratios and select regions with the lowest variance. We address the discontinuity associated with
underwater images by transforming both local and global pixel values. We minimize energy in the
proposed CNN via a novel Markov random field to smooth edges and improve the final underwater
image features. A comparison of the performance of the proposed technique against existing state-of-
the-art algorithms using entropy, Underwater Color Image Quality Evaluation (UCIQE), Underwater
Image Quality Measure (UIQM), Underwater Image Colorfulness Measure (UICM), and Underwater
Image Sharpness Measure (UISM) indicate better performance of the proposed approach in terms of
average and consistency. As it concerns to averagely, UICM has higher values in the technique than
the reference methods, which explainsits higher color balance. The µ values of UCIQE, UISM, and
UICM of the proposed method supersede those of the existing techniques. The proposed noted a
percent improvement of 0.4%, 4.8%, 9.7%, 5.1% and 7.2% in entropy, UCIQE, UIQM, UICM and UISM
respectively compared to the best existing techniques. Consequently, dehazed images have sharp,
colorful, and clear features in most images when compared to those resulting from the existing state-
of-the-art methods. Stable σ values explain the consistency in visual analysis in terms of sharpness of
color and clarity of features in most of the proposed image results when compared with reference
methods. Our own assessment shows that only weakness of the proposed technique is that it only
applies to underwater images. Future research could seek to establish edge strengthening without
color saturation enhancement.

Keywords: ambient light; block-greedy; CNN; depth estimator; underwater image dehazing

1. Introduction

The rise of the digital world has driven up the consumer market for various applica-
tions [1–13]. Recently, haze removal has gained increased attention [14]. Image dehazing
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has been extended from outdoor images to underwater images [15]. This is due to the
rise of visual data analysis and comprehension to aid various applications. The human
brain has a cortical area, which aids in analyzing the visual data [16]. The improved image
clarity helps image processing tasks vital for significant applications such as those used for
surveillance and in environmental studies.

The need for image dehazing arises from light scattering caused by suspended par-
ticles or aerosols in the atmosphere before reaching the camera [17,18]. The scattering of
the particles limits the ability of the camera to capture clear images [18]. As a result, the
images captured by cameras or sensors have degraded quality. This is because the particles
lead to substantial loss or gain of contrast and color in the images. The images thus lack
visual perceptibility, which hinders the image processing task.

Image dehazing aims to improve the visual and perceptual quality of hazed image,
making them suitable for image processing applications [19–21]. Dehazing is therefore
critical in many computer applications such as underwater image processing. However,
the existing state-of-the-art methods used for underwater image dehazing or enhancement
have various shortcomings. For this reason, better methods of image dehazing are needed.

We propose to implement underwater image dehazing technique via a novel CNN
and the block-greedy algorithm. The technique we propose intelligently selects pixels from
local and global patches to estimate optimal ambient light for underwater image dehazing.
The cross-layering of connection in the depth network in CNN preserves the feature details
such as edges of the proposed underwater dehazed images.

In addition, the use of Markov random field-based minimum cost function smooths
the edges and features of the underwater dehazed images based on the pixels in the local
and global neighboring patches. The technique seeks to solve one problem with existing
underwater dehazing algorithms, which is based on a misleading assumption about a
lack of difference in pixels in patches, leading to blurred images and overshadowing in
some areas. In the proposed algorithm, we compare by introducing constrained terms to
en-hance the smooth connection between local and global pixels. The minimum energy
in MRF is implemented via graph cut, cautioning proposed CNN from smoother, far
apart pixels.

The paper offers four objectives:

1. To estimate the scene depth based on the pixel differences between the color channels,
helping strengthen the scene artifacts of the final dehazed underwater images.

2. To transform the local and global pixels for the purpose of reducing discontinuity,
which increase the accuracy of the dehazed images, and preserves and improves the
color hue.

3. To correct the discontinuity often exhibited in underwater images by continuous
splitting invariance of the image pixels drawn from local and global pixels.

4. To estimate the ambient light based on the brightest pixels from all color channels.

The rest of the paper is organized as follows:
Section 2 presents a more recent underwater image dehazing techniques and their

shortcomings which has laid ground for our proposed technique. Section 3 presents the
proposed work in detail. Section 4 presents the experimental setup; the results obtained and
discusses the performance of the proposed method. Section 5 summarizes the strengths
and weaknesses of the proposed method.

2. Literature Review

Many scholars have presented various underwater image dehazing techniques. These
techniques have few shortcomings. For example, a recent method proposed by Xiong et al. [22]
offered an efficient underwater image enhancement model that makes ex-tensive use of the
Beer-Lambert law (the linear relationship between light radiation and light absorption by
the image pixels during transmittance). Xiong et al. [22] used mean and variance of natural
images as a reference to correct color cast in underwater images. The method recovered
better details of underwater images in two steps: establishing a linear model associated
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with the mean and variance, and presenting a nonlinear adaptive weight scheme using
locating information to recover image details and prevent partial over-enhancement. The
resultant images yielded better structural restoration and more natural color correction
in less time. However, this dehazing was only partially successful: the images had over-
saturated colors in some regions, specifically those near dark areas. This resulted in the
loss of some image properties.

Similarly, Park and Sim [23] proposed underwater image restoration that uses geodesic
color distance under a complete image formation model. In addition to the direct transmis-
sion and backward components that have been well established in many existing methods,
Park et al. [23] their method considers the forward-scattering component to refine the
transmission map via the geodesic color distance. Furthermore, scene radiance is esti-
mated by forward scattering term in the point spread function. The resultant images show
improvement in the quality of the estimated transmission maps, and the restored scene
radiance of the methods were better when compared with the existing state-of-the-art
methods. However, the two versions of the results indicate problems with color saturation
and with darkening of the horizons, making the results unsuitable for non-water image
dehazing tasks.

Li et al. [24] proposed underwater image enhancement based on dehazing and
color correction. Their first step entailed obtaining the dehazed image via fusion based
on calculating the difference between the maximum green-blue dark channels and the
maxi-mum red channels. Their second step entailed obtaining enhanced images via a
human-based visual system for color restoration. Their final stage entailed using a simple
weight fusion strategy for efficient and simple incorporation of dehazing and enhancing the
image to a high quality. Visual analysis indicated that the proposed results outper-formed
the existing state-of-the-art methods. However, the method had one major defect: excess
hue and grain with strong, sharp edges make the method unsuitable. The final images
exhibit blurriness and over-saturation of colors toward the horizon, making it unfit for a
number of applications.

Deng et al. [25] proposed a novel underwater image enhancement method in which
light is removed from the color source to attain a dehazed image. This method is known
as Removing Light Source Color and Dehazing (RLSCD). The technique explored a new
approach to scene depth based on a strong correlation between attenuations and different
light conditions. The method estimated the background light based on the gray open
operation. This helped avoid the wrong estimation of the pixels in the backgrounds of
the white objects. Deng et al. [25] further use the Lambertian model to estimate the light
source disturbance of the light in the dehazed image. The removal of these disturbances
led to effective correction of color distortion and light overcompensation. Yet although
the experimental results outperformed state-of-the-art methods in terms of providing
relatively natural color, increased contrast, and brightness, the blurriness of some regions
remains problematic.

Wang et al. [26] proposed a deep CNN method for underwater image enhancement.
Their method used an end-to-end framework where a CNN-based network called UIE
Net was trained in color correction and haze removal. UIE Net-enabled strong learning
of image features simultaneously. Wang et al. [26] also used a pixel disruptive strategy
to exploit local features. However, visual analysis of the resultant enhanced underwater
images indicate over-saturation of colors in most of the regions. This defect was due to the
method’s neglect of global pixel patches while exploiting local patches.

Seeking to avoid the weaknesses of these state-of-the-art methods, the proposed
technique considers the pixel difference between the global and local patches in scene
depth estimation. The pixel difference is based on the green and red channels’ absolute
mean intensity function, and specifically compares the green and blue channels, and the
red and blue channels. The use of absolute mean intensity function helps in the extraction
of image details and the strengthening of artifacts. The global background light is assumed
to be based on the moving average of the impact of suspended light and the brightest
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pixels within the image. This is in contrast to the existing research that uses 0.1% of the
brightest pixels suggested; instead, we use the brightest pixels from all the color channels.
This is achieved by selecting the top 0.01% lowest blurry and brightest pixels in all the local
and global patches. The image blurriness map is then used to select the regions with the
lowest variance, based on the normalized attenuation ratios of different color channels in
terms of the absolute mean intensity function, with the help of a block-greedy algorithm.
Underwater images are prone to discontinuous pixels, hence giving them low quality. We
transform both local and global pixel values to make them continuous by splitting the
invariance of the image pixels. This increases the continuity of the pixels, increasing the
accuracy and preserving and improving the color hue of the results. This is visible in the
improvement of color in results presented in figures presented later in the paper.

3. Proposed Work
3.1. Underwater Image Formation Model

Underwater image hazing is due to light absorption and scattering (see Figure 1).
The sunlight illuminating underwater scenes is attenuated by water molecules [27]. In
addition, the radiance is reflected and refracted as light travels from the source towards
the camera, causing further attenuation. Scene radiance transmission is regarded as direct
transmission. The ratio of scene radiance to direct transmission is the transmission [28].
Light attenuation underwater varies based on the wavelength of the light. Red is the most
attenuated, compared to blue and green [29–32]. Consequently, red channels disap-pear or
are absorbed more rapidly than green and blue. Thus, underwater images tend to appear
bluish or greenish, hazing the images.

Figure 1. Underwater hazing problem model showing back, forward and direct scattering. The
effect of light absorption due to the three types of scattering (back, direct and forward) results in the
in-camera hazing of assumed haze-free scenes.

Figure 1 shows how underwater scenes are degraded by light absorption and by
scattering caused by particles suspended in the water. The water and suspended particles
attenuate the scenic radiance and the reflected.

Existing attempts to solve the underwater image enhancement problem presented in
Figure 1 have used the physical model described by Equation (1). For example, Jordt [33]
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tried to solve the underwater image enhancement problem by explicitly modeling the
re-fraction in the water. Jaffe [34] included water properties like attenuation medium in
the model to improve the results. Chiang and Chen [31], and Jaffe [34] created a model
like traditional image dehazing process. In addition, Park and Sim [23] developed a
complete underwater image restoration model based on direct transmission of forward
and backward scattering components (see Equation (1)) [23].

Γc(x) = Λc(x)τc(x)
+Λc(x)τc(x) ∗ ηc(x) + Θc(1− τc(x))

(1)

where Γc(x) and Λc(x) denotes the intensities of the c ∈ { red, green, blue } color channel
at the pixel x in an input underwater image and scene radiance image, respectively. Θc is
the ambient light, Λc(x)τc(x) is the direct transmission representing the attenuated scene
radiance by transmission in Equation (2) [23].

τc(x) = e−Πcd(x), (2)

where d(x) denotes the distance at x between a target scene and camera, and Πc denotes
the attenuation coefficient of the c color channel.

Suppose we assume that attenuated light is isotropic and water is homogeneous. In
that case, we can express the total attenuation coefficient Πc as a sum of absorption coeffi-
cient ξc and scattering coefficient ζc. Thus, Πc = ξc + ζc. ζc describes the superposition of
all scattering events at all angles. ζc can be obtained by integrating the volume scattering
function γc(θ) over all solid angles as in Equation (3) [35,36].

ζc =
∫ π

0
γc(θ)dν = 2π

∫ π

0
ζc(θ) sin θdθ. (3)

The parameters Πc, ξc, ζc and γc(θ) are the inherent optical properties of the ocean or
water body. However, the real-time measurement of these parameters have proved a very
complex costly and time-consuming task; hence, we assume Πc ' 0.025 for the entire color
channel as guided by Figure 2 extracted from Ruben et al. [37].

Figure 2. Theoretical attenuation coefficient showing different regions in water. The light gray
shaded region has the grain-size distribution (GSD) ranging between (0.4–4 µm) and the darker gray
shaded region has the GSD ranging between (4–300 µm). The vertical dotted line represents the
mean particle radius (∼10.5 µm) [37].



Water 2021, 13, 3470 6 of 21

Λc(x)tc(x) ∗ ηc(x) in Equation (1) is the forward transmission where ηc(x) is the point
spread function of pixel x defined in Equation (4) [23].

ηc(x) =
(

e−Ωcd(x) − e−Πcd(x)
)
F−1

{
e−δcd(x)v

}
(4)

Ωc and δc are the empirical coefficients of the c color channel related to the hazed
image scene, such that |Ωc| < |Πc| . F−1 denotes the inverse Fourier transform and v is
the radial frequency. The term Θc(1− τc(x)) in Equation (1) is the backward scattering
term with Θc being the background light of the c color channel.

3.2. Scene Depth Estimation and Global Background Light
3.2.1. Scene Depth Estimation

We define the scene depth as [38]:

d(x) = φ0 + φ1ε(x) + φ2$(x), (5)

where d(x) is underwater depth scene at pixel x ∈ {i, j}. φi are linear coefficients depending
on the pixel difference plots between the global and local patches. ε(x) is the mean intensity
function showing the absolute difference between the pixel of the green and red channels.
$(x) is the mean intensity function showing the absolute difference between the pixel of
the green and blue channels. ε(x) is the mean intensity function showing the absolute
difference between the pixel of the red and blue channels. In the proposed method, we
design the scene depth to extract the pixel intensity difference. The difference helps
strengthen the scene artifacts, a component that is lacking in existing underwater dehazing
techniques [23–25,30,38,39]. We re-write Equation (5) as

d(x) = φ0+

φ1

∣∣∣∣[( argmax
(

min
x∈(i,j)

(
min

(i,j)∈{R,G}
ε(x)

)))
−
(

argmin

(
max
x∈(i,j)

(
max

(i,j)∈{R,G}
ε(x)

)))]∣∣∣∣
+φ2

∣∣∣∣[( argmax
(

min
x∈(i,j)

(
min

(i,j)∈{G,B}
$(x)

)))
−
(

argmin

(
max
x∈(i,j)

(
max

(i,j)∈{G,B}
$(x)

)))]∣∣∣∣
+φ3

∣∣∣∣[( argmax
(

min
x∈(i,j)

(
min

(i,j)∈{R,B}
ε(x)

)))
−
(

argmin

(
max
x∈(i,j)

(
max

(i,j)∈{R,B}
ε(x)

)))]∣∣∣∣,

(6)

Equation (6) suggests the scene depth value increases with an increase in the difference
between maximum and minimum values of RG, RB, GB. These differences exist in the
pixels of the hazed underwater images. Accurate estimation of scene depth and global
background light helps increase the accuracy of underwater image dehazing.

3.2.2. Global Background Light

The coefficient of sunlight or the global background light Θc is a function of light wave-
length c. Prior studies such as that of He et al. [40] proposed using 0.1% of the brightest
pixels of the dark channel as the Θc. Li et al. [39] used graph-based segmentation to esti-
mate Θc and transmission map via minimum information loss principle. Ancuti et al. [15]
applied local maxima in the dark channel to estimate Θc. Galdran et al. [19] used the
brightest pixels in the red channel to estimate Θc. Peng et al. [41] used average of 0.1% of
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the brightest pixels as Θc. Carlevaris-Bianco et al. [28] used the minimum values of the
maximum difference between the blue-green and red channels as the Θc. The estimation of
ambient light in the proposed and existing methods points to the dif-ference between the
underwater and general image dehazing. The underwater haze is characterized by light
absorption of water particles, while atmospheric haze, the light is scattered by particles
in the atmosphere. Thus, underwater image dehazing is based on wavelength correction
arising from color absorption due to refraction and reflection of water molecules and other
particles suspended in water. The traditional dehazing is based on correcting the reflection
of light due to suspended particles in the atmosphere.

Suppose we assume that the radiance of the scattered light toward the camera is
proportional to the volume scattering function γc(θ). If

∫
ϑ γc(ψ)dψ represents all scattering

events toward the camera’s line of sight from all directions; then, we can say that

ζc =
∫

ϑ
γc(ψ)dψ. (7)

Thus, we can deduce that
ζc ∝

∫
ϑ

γc(θ)dψ (8)

Equation (8) is used to show that Θc ∝ ζc
Πc

, which in general means that the global
background light is proportional to the scattering coefficient and inversely proportional to
the total attenuation coefficient. We know the values of Πc = 0.025, but the value of ζc is not
clearly stated. Existing models have attempted to model ζc based on specific water medi-
ums. Smith and Baker [42] noted that the absorption coefficient varies irregularly with the
wavelength in the visible light wavelength band. Barnard et al. [43] and Gould et al. [44]
observed that the scattering coefficient has an approximately linear relationship with the
wavelength of light in all test cases conducted during their experiment.

In this paper, we present a novel background light based on moving average of the
impact of suspended light and brightest pixels within the image. Suppose the brightest
pixel located at the brightest point in the image is estimated by

Θc = Γc

(
argmax

(
min
y∈Ω

(
min

c
Γc(y)

)))
(9)

We eliminate the effect of the red channel by obtaining the brightest pixel from the
green and blue channels by replacing Γc(y) in the Equation (9) with Γc′(y). Θc is selected as
the brightest pixel or the average value of the top 0.1% brightest pixels in hazed image. We
also consider the maximum difference between R&G− B ∈ c in the hazed image. Suppose
we consider that the red channel attenuates much faster than green and blue channels in
underwater hazed images; then, Θc can be interpreted as

Θc = Γc

(
argmax

∣∣∣∣max
y∈Ω

Γr(y)−max
y∈Ω

Γc′(y)
∣∣∣∣). (10)

The input image was first segmented into local and global patches to estimate Θc in
all the patches. The estimation entailed selecting the top 0.01% least blurry and brightest
pixels in all the patches. The region with the lowest variance was then selected with the
help of image blurriness map Φinit Equation (11). The average pixel of Θc(s) for local and
global was compared, and standard deviation was obtained for all the patches.

Φinit (x) =
1
n

n

∑
i=1

∣∣Ig(x)− Gauri·r(x)
∣∣, (11)
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where Ig is the grayscale of the underwater hazed image Ic, Gauri,n(x) is the underwater
hazed image filtered by a ςi × ςi spatial Gaussian filter with variance ς2

i , ςi = 2in + 1, and
n is set to 16. We then use the max filter to calculate the rough blurriness map Φς as:

Φς = max
y∈Ψ

Φinit (y) (12)

where Ψ is set as 16× 16 pixels for the test image of 256× 256 pixels, the Φς helps fill the
holes through pixel stretching, which may lead to the addition of artifacts. The additional
artifacts may noise the images; hence, they must be managed. Thus, the re-fined blurriness
maps Φrefinedς, is given as

Φre f inedς(x) = Λc{γς[Φς(x)]} (13)

Images under sufficient light have higher Θc, and we use the weighted combination
of max and min to estimate the final Θc as

ρΘmaxc + (1− ρ)Θminc

Θc = +ρΘGMINc + ρΘGMAXc

∀c ∈ (R, G, B)|R'620,G'540&B'450

(14)

where ρ is selective coefficient, Θ(max)c and Θ(min)c are the maximum and minimum
candidate Θc, respectively. We simultaneously normalize Equation (14) by using the ratios
of attenuation coefficient between different color channels as follows

cG
cR

=
ζGΘR,∞
ζΘBG,∞

cB
cR

=
ζBΘR,∞
ζRΘB,∞

, (15)

and
ΠR
ΠB

= (−0.00113R+1.62517)ΘB
(−0.00113B+1.62517)ΘR

ΠG
ΠB

= (−0.00113G+1.62517)ΘB
(−0.00113B+1.62517)ΘG

, (16)

where ΠR
ΠB

and ΠG
ΠB

are red-blue and green-blue attenuation coefficient ratios, respectively.
ΘR, ΘB, ΘG are the brightest pixel in the red, blue and green channels, respectively. R, G, B
are the wavelengths values defined in Equation (14). Equations (9), (10) and (14) are
an optimization problems whose solution is attained by block greedy algorithm with
Equations (15) and (16) serving as a constraint. The solution estimate the background
light used in the algorithm. The details of block greedy algorithm is discussed in [45,46].
Summary of the greedy algorithm for the proposed solution Θc is presented in Algorithm 1.
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Algorithm 1 Algorithm for (14).

Input: Underwater image in
Output: Ambient light Θc out

Initialisation :
1: Let

Θc =


ρΘmaxc + (1− ρ)Θminc + ρΘGMINc + ρΘGMAXc

Γc

(
argmax

(
miny∈Ω(minc Γc(y))

))
Θc = Γc

(
argmax

∣∣∣maxy∈Ω Γr(y)−maxy∈Ω Γc′(y)
∣∣∣)

2: c ∈ (R, G, B)|R'620,G'540&B'450
3: Subject to

cG
cR

=
ζGΘR,∞
ζΘBG,∞

cB
cR

=
ζBΘR,∞
ζRΘB,∞

ΠR
ΠB

= (−0.00113R+1.62517)ΘB
(−0.00113B+1.62517)ΘR

ΠG
ΠB

= (−0.00113G+1.62517)ΘB
(−0.00113B+1.62517)ΘG

4: Compute Θc

3.3. Discontinuity of Pixels

Branou et al. [47] and Queiroz et al. [48] noted that underwater images exhibit
low quality features due to discontinuities between pixels. They proposed use of the
lie-group helps correct the discontinuity between pixels in the underwater images. The
discontinuities in the pixels arise due to the reflectivity of light because of water particles.
One of the major hurdles in underwater image dehazing is the constant discontinuity in
the pixels. Thus, we show that the discontinuity in the image features via image pixels.
If we assume two pixels denoted by f (i) and g(i) are continuous, then their product f g,
sum f + g and composition f ◦ g are continuous. Suppose x(i) is a positive function of
underwater hazed pixels. Then the following statements are true: If x(i) is continuous at i0
then

√
x is continuous at i0. This is because

lim
i→i0

√
x(i) =

√
lim
i→i0

x(i) =
√

x(i0) (17)

If x(i) is differentiable at i0 then
√

x(i) is differentiable at i0. The derivative of
√

x(i)
is x′(i)

2
√

x(i)
. We show that pixel of hazed image is continuous at i0, such that

lim
i→i0

x′(i)
2
√

x(i)
=

limi→i0 x′(i)

limi→i0 2
√

x(i)
=

x′(i0)
2
√

x(i0)
(18)

Thus,
√

x(i) is differentiable at i0. Suppose ϕ : R2 → R2 is a smooth function on R2.
If the distance between the neighborhood pixel is given by

Epixel(t) =
√

∑(I ◦ ϕ−1(t)− J)2, (19)

and is discontinuous at t0, then there exists (i0, j0) ∈ R2 such that I ∈ (i, j) where i and j is
the local and global neighborhood pixel, respectively, is discontinuous at (i0, j0) ∈ R2.

There is a need to transform both local and global pixel values to continuously man-
age haze in the image. We have defined discontinuity points in Equation (19). Burge [49]
noted that interpolating (the process of estimating intermediate values of the signal at
continuous positions in an attempt to reconstruct the original set of discrete signals) maps
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the discrete pixel positions. This is achieved via geometric transformation. Suppose we
define the linear interpolation as

lerp( f , g, t) = exp((1− t) log f + t log g). (20)

Equation (20) suggests that it satisfies a subdivision identity analogous to

f n ⊗ gn = ( f ⊗ g)n (21)

where n is image patch sizes in local f and global g pixel neighborhood. Equation (21)
is called splitting invariance which corrects criterion for computations on pixel values.
The logic governing Equation (21) suggests that the result of the computation depends on
the image being dehazed. We increase n to increase the pixel sampling rate, increase the
accuracy, and preserve, and improve the color hue. To make interpolation links between
local and global pixels, we define

f i ⊗ f j = f i+j, (22)

such that
f ⊗ g = exp(log f + log g). (23)

Equations (20)–(23) indicate that f (i, j)⊗ g(i, j); we expect qualitative pixel orienta-
tions which extract image feature while minimizing defects arising due to reflectance of
light in water.

We limit the details of information on the images in order to improve the image quality.
Thus, we set [1, 0] ◦ [0, (i, j)] = [1, (1, 1)]. These render the scene’s transmission medium
along the lines of human visual perception, which reduces saturation of color and opacity
on the image surface. This is achieved by moderating the scene depth values such that
λ(i,j), 0 ≤ (i, j) ≤ 1 if the interpolated scene transmission medium is defined by Si,j is Ti,j.
Suppose Ti+1,j+1 is divided into two parts: Si (i.e., Fi,j ) and split variance between Si,j and
Si+1,j+1 ≡ .i+1,j+1ג We compute the dehazed pixel based on the local and global pixel
patches rendering where Ti,j is passed over .i,jג Similarly, Ti+1,j+1 = Ti,j over .i+1,j+1ג The
passing of local patches over global and vice versa helps captures image features, thus
improving the quality of the dehazed underwater images. The effect of the continuity of
pixels in the proposed techniques is elaborated by Figure 3.
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Figure 3. The effect of Lie-grouping during training in the proposed technique is visible in the
saturated color in the surf plot of the underwater dehazed image compared to that of the underwater
hazed image. The most notable difference is in the red and blue colors in the hazed and dehazed
image surf plot.

3.4. Underwater Image Restoration

We have presented a method that examine scene depth and background light, and
offers a solution to correct pixel discontinuities within local and global image neighbor-
hoods in Section 3.2. The proposed technique is implemented via a novel Convolution
Neural Network (CNN). The details and literature on CNN and its tremendous applica-
tions in image processing are presented in numerous studies [50–53]. The architecture of
our proposed CNN for the underwater image dehazing is presented in Figure 4.

Figure 4. The proposed CNN architecture of our technique consists of three modules. These modules
are a Global light and Local light network, a depth estimation network, and a Λ-Estimator. The
Global light and Local light network is used to estimate the global and local ambient light based on
the underwater pixels. The depth estimation network estimates the depth of the transmission of the
underwater image. The Λ-Estimator restores the dehazed image.
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3.4.1. Global Light and Local Light Network

The existing underwater image dehazing techniques focus on global ambient light
without focusing on the local ambient light [23–25,30]. The proposed technique uses image
pixels via Equations (9), (10) and (14) to optimally estimate both the global and local
ambient light. Unlike existing studies, the estimation of local ambient light helps in the
extraction of finer details in the final dehazed images (see Figures 7–11). The inclusion
of Equations (9), (10) and (14) improves the accuracy of the detail extraction based on
the architecture of the GL and LL network in CNN, presented in Figure 5. The network
achieves its objective by learning to map pixels between input underwater images and
their corresponding surrounding light.

Figure 5. The proposed architecture of our Global light and Local light network consisting of two
operations. The operations are convolution and max-pooling. The input of the Global light and Local
light network is the underwater image after downsampling and the output in the approximated
scene light based on global and local ambient light. The scene light depends on global and local pixel
relationships and intensities.

Figure 5 indicate that the proposed architecture for the Global light and Local light
network consists of three convolution layers and two max-pooling layers. The convolution
layers extract features. The max-pooling layers help to overcome local sensitivity arising
due to pixel correlations. The max-pooling layers function to reduce the resolution of
feature maps. The global pixel correlation may be linear; thus, the last convolution layer
constrains nonlinear regression. This ensures that linear relationships do not deny the
mapping of the pixels due to similarity. CNN mapping of scene radiance is known to have
slow convergence [54]. To remedy this, we add the widely used ReLU layer after every
convolution layer. The addition of ReLU also helps the architecture avoid settling at the
local minima during the training phase.

Unlike the existing algorithm [55,56], the proposed algorithm estimates the ambient
light based on local and global pixel intensities. Besides, the proposed algorithm eliminates
the effect of red, green, and blue channels separately. The ambient light is the optimal
value based on solution of Equations (9), (10) and (14) via block greedy algorithm. The
block greedy algorithm helps in the smart pixel selection between local and global patches.
The training procedure also entails downsampling of the input images to increase the
accuracy of the results. The patches used during the experiment also involve local and
global patches, thus, further improving the accuracy of the results (see samples of the
results in Figures 3–11) .

3.4.2. Depth Estimation Network

The depth estimation network used the hazed underwater image as input. The net-
work requires the input image to be RGB. The depth information contains the information
about the distance of the objects in the image from the viewpoint d(x). The existing depth
estimation networks, such as Luo et al. [1] have relied on an initial estimate of the global
light based on reflectivity and geometry. In the proposed technique, the architecture is
instead based on the Equation (6) approximate pixel differences. Here, the pixel differences
depend on the augmented optimal difference between the three-color channels, unlike that
of Luo et al. [1].
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The cross-layer connection in Figure 6 helps preserve detail features. This is ensured by
the first connection, that is, the connection between the convolution layer and ReLU, which
compensates for information that may be lost during depth estimation. The information
that is most visibly preserved and improved with this connection is image edges. The
multi-level pyramid pooling connection helps preserve features during the transformation
from the depth estimation to the final dehazed image. The upsampling at the convolution
and pooling end helps ensure that local and global features are accurately incorporated in
the final image, even in the presence of resolutions, with the help of pixel discontinuity
correction.

Figure 6. The architecture of the depth estimation network consists of three layers. The layers
contain two operations, convolution and pooling. The loss function is managed at the end of the two
operations before upsampling.

3.4.3. Minimum Energy

Scene depth changes gradual and entails variations in local and global neighborhood
pixels. Thus, accurate depth variation estimation depends on features from both the local
and global neighborhood pixels. These are attainable via a novel energy function in the
depth estimation network. The energy function is based on a novel global-local Markov
chain already discussed in detail in [12]. The resultant energy function is optimized by the
graph-cut as discussed in Alenezi and Ganesan [12]. However, in this model, we use the
color channel features as representative of both global and local color moments proposed
by [57]. This sets in opposition the super-pixels in the global and local neighborhoods as
presented in [12]. Thus, the ambient light used represents the relationship between global
and local pixels and super-pixels. This approach extends global and local consistency,
which serves to protect the proposed convolution neural network from the problem of
smoother far apart pixels. It also serves to avoid over saturation of color and to enhance
sharper boundaries.

3.4.4. Λ-Estimator

The depth estimation d(x) leads to transmission estimation τ(x). The optimal ambient
light Θc has also been estimated. We use Equation (1) to estimate that the scene radiance
Λc can be restored by Equation (24)

Λc =
Γc −Θc(1− τc(x))
(1 + ηc(x))τ(x)

(24)
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4. Experiments
4.1. Data and Implementation

We demonstrate the effectiveness of the proposed method by comparing the sim-
ulation results (see Figures 7–11) with the existing leading state-of-the-art underwater
dehazing approaches. These approaches are presented in Table 1.

Table 1. List of the existing state of the art techniques used to compare the proposed technique.

Technique Name Abbreviation Reference

Automatic Red-Channel method (ARC) [58]
Underwater image enhancement using a Multi-scale dense Generative Adversarial Network (UWGAN) [59]
Weakly Supervised Color Transfer (WSCT) [60]
Underwater image enhancement model with Extensive Beer-Lambert Law (UEBLL) [22]
Underwater image enhancement based on Removal of Light Source Color and Dehazing (RLSCD) [25]
Hybridframework for Underwater Image Enhancement (HUIE) [61]

The training process for the proposed dehazing technique was performed on BIZON
X5000 G2 with 16 GB RAM. The image databased used are obtained from the existing-
state-of-the-art papers. These images were partitioned into 65,536 local and 16,384 global
patches. As many patches as possible were used to increase the pixel classification accuracy,
which increases the information content of the final image. The estimated parameter values
and essential items used during the experiment are summarized in Table 2.

Table 2. Values obtained and used during the experiment for the proposed underwater dehazing
algorithm.

Item Experimental Value Range

Average Training Time (41 min 55 s)–(20 min 53 s)
Learning Rate 0.095–0.015
Validation Frequency 1000–4000
Iterations 33,000–132,000
Estimated λg 98 [62]

4.2. Evaluation Metrics

We base our performance evaluation on objective measures; thus, we used entropy [63],
Underwater Color Image Quality Evaluation (UCIQE) [64], Underwater Image Quality
Measure (UIQM) [65], Underwater Image Colorfulness Measure (UICM) [65] and Under-
water Image Sharpness Measure (UISM) [65].

Table 3 presents a summary of the average and standard deviation values of these met-
rics for 32 underwater images used during evaluation. However, for the visual presentation,
a sample of the results of the images is presented in Figures 7–11.

Figure 7. A subjective comparison of different methods with proposed results. From left to right is
input image (hazed image), and results of RLSCD (a) [25], and HUIE (b) [61] and the proposed.
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Figure 8. A subjective comparison of different methods with proposed results. From left to right
is (a) input image (hazed image), and results of (b) ARC [58], (c) UWGAN [59], (d) WSCT [60],
(e) RLSCD [25] and (f) the proposed.

Figure 9. A subjective comparison of different methods with proposed results. From top to bottom is
(a) input image (hazed image), and results of (b) UEBLL [22], and (c) the proposed.

4.3. Results Analysis and Comparison

The results in Figures 7–11 indicate that the proposed results offer images with better
visibility than those produced by existing state-of-the-art methods. This observation is
backed by the quantitative data presented in Table 3 and Figures 12 and 13.

Figure 7 compares the proposed results with recent underwater dehazing methods,
RLSCD [25], and HUIE [61]. A visual analysis of our method compared to those presented
by [25,61] show that our results are clearer with sharper details. Our results are percep-
tively better than existing state-of-the-art methods, which resonates with the performance
evaluation metrics presented in Table 3.

Figure 8, as in Figure 7, compares the proposed results with Galdran et al. [58],
Guo et al. [59], Li et al. [60], and Deng et al.’s [25] results. The visual analysis suggests
that the proposed results supersede the existing results in all the performance evaluation
metrics presented in Table 3.

Figure 9 indicates the strength of the proposed method compared to the benchmark
algorithm. The novel architecture proposed for implementation accompanied by a greedy
algorithm helps estimate optimal ambient light. When this is added to a color channel-
based depth estimate, it increases the extraction accuracy. This accuracy is visible in
clearly extracted features of the proposed underwater dehazed images compared to the
benchmark algorithm.
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Table 3. Comparison of mean and standard deviation of performance evaluation metrics of the
proposed and existing-state-of-the-art algorithm for example presented in Figures 7–11. Higher
values of µ indicate better methods while lower values of σ show consistency of the results.

Algorithm µ and σ Entropy UCIQE UIQM UICM UISM

ARC [58] µ 7.60 0.52 2.85 −32.85 5.22
σ ±1.57 ±0.29 ±0.81 ±2.73 ±0.71

UWGAN [59] µ 7.63 0.59 4.27 5.64 5.58
σ ±1.36 ±1.17 ±1.64 ±1.45 ±0.85

WSCT [60] µ 7.56 0.54 2.31 −57.29 5.31
σ ±0.95 ±1.43 ±0.69 ±2.01 ±1.05

UEBLL [22] µ 7.75 0.51 3.72 10.05 5.08
σ ±0.19 ±1.95 ±0.71 ±1.12 ±0.97

RLSCD [25] µ 7.89 0.62 5.49 2.85 11.74
σ ±1.06 ±0.91 ±2.91 ±2.05 ±3.27

HUIE [61] µ 7.68 0.58 4.19 3.72 8.59
σ ±0.50 ±1.06 ±1.39 ±1.03 ±0.75

Proposed µ 7.92 0.65 6.02 10.56 12.58
σ ±0.03 ±0.21 ±0.25 ±0.92 ±0.68

Figure 10. A subjective comparison of different methods with proposed results. From left to right is
input image (hazed image), and results of (a) [61], and the proposed.
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Figure 11. A subjective comparison of different methods with proposed results. From left to right is
input image (hazed image), and results of (a) HUIE [61], and the proposed.

Figure 10 also shows the strength of the proposed method in terms of finer detail
ex-traction and color balance. A visual analysis indicates that the edges of fish and rocks
are more easily distinguishable than with the benchmark algorithms. More features are also
visible in the proposed results than in the benchmark in all the examples presented. The
color balance explains why the UICM measure is significantly higher in the proposed than
in existing methods. The sharpness of colorful and clarity of the features are also visible in
Figure 8e compared to its counterpart Figure 8f, the proposed results. The proposed results
are more transparent in both cases and have better visual perceptibility than any other
results. The colors and edges are more permanent than the existing results. This explains
why the UCIQE, UISM, and UICM of the proposed method supersede the existing results.

Figure 11 shows the versatility of the proposed method in the presence of highly
varied colors. While the exiting benchmark algorithm shows precise details even amid
minor variations, the proposed results are also excellent. This excellence can be attributed
to the pixel con-sistency in the overlapping regions due to the novel cost function used in
the algorithm. The estimation of the optimal ambient light is also assumed to contribute
significantly to this success as local and global pixels are considered in the proposed
algorithm, unlike in the existing techniques. The improvement of pixel discontinuities by
limitating details and information also has helped improve the image’s quality. The passing
of local patch details over global and vice versa also has helped capture image features.
Thus, there is improvement of image quality as depicted in higher average µ, values and
consistency (standard deviation values), σ, of entropy, UCIQE, UIQM, UICM, and UISM in
Table 3. The last figure in Figure 9 shows one of the weaknesses of the proposed method,
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which is the over-saturation of the blue region. The proposed techniques rely on the mean
intensity function of the absolute difference between the color channels; red and blue and
blue and greed and green and red. Blue is a dominant color, and a lack of clear distinction
in the boundary of blue and green makes the blue and green mean absolute difference
exaggerated, hence oversaturating the excessive bluish regions.

Figure 12 shows the effectiveness of the proposed transmission map compared to the
existing technique [23]. The effectiveness arises due to the proposed absolute difference
between the color channels. A visual analysis of the results also suggests that the proposed
technique yields clear edges than the comparison technique.

Figure 13 shows the effectiveness of the proposed ambient light estimation. A visual
analysis of the results without ambient light suggests a poor color image compared to
the proposed results with the novel ambient light estimation. This observation further
strengthens the proposed technique contribution.

Figure 12. A subjective comparison of transmission map of existing method [23] with pro-
posed results.

Figure 13. A subjective comparison of the effectiveness of the proposed ambient light in the pro-
posed technique.

5. Conclusions

We present a technique based on pixel difference between the global and local patches
in-scene depth estimation. Specifically, the pixel difference is based on comparison, con-
strast and relation to the green and red channels’ absolute mean intensity function, the
green and blue channels, and the red and blue channels. This arrangement helps in the
extraction of image details and strengthening artifacts. The global background light used
is based on an assumed moving average of the impact of suspended light and the brightest
pixels within the image. We normalized attenuation ratios of different color channels
with the help of a block-greedy algorithm to select the region with the lowest variance.
The discontinuity associated with underwater images is corrected by a transformation of
both local and global pixel values. The increase in continuity of the pixel increases the
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accuracy, and preserves and improves the color hue, which is visible in the simulated
results presented in Figures 7–11. We implement the proposed algorithm using a novel
CNN and a block-greedy algorithm. This combination smartly selects pixels from local
and global patches to estimate optimal ambient light. The unique connection of the CNN
tends to yield images with preserved features such as edges, which are visible in the results
presented in Figures 7–13. The novel Markov random field-based minimum cost function
smoothing leads to smooth edges and improved features, giving the resulting dehazed
images higher perceptual quality than existing benchmark algorithms. The smooth con-
nection between local and global pixels within the training patches enhances the resultant
underwater dehazed images. The performance of the proposed technique against existing
state-of-the-art algorithms using entropy, UCIQE, UIQM, UICM, and UISM, as presented
in Table 3, indicates that the proposed technique performs well in terms of average and
consistency. One significant weakness of the proposed technique is that it is only applicable
to underwater images. Future research could also establish the edge strengthening amidst
color saturation during depth estimation. The effect of the proposed technique on natural
dehaze images could also be investigated with minor amendments on the algorithm to
remove the elements of optical properties of water.
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