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Abstract: The aim of this research is to provide the assessment of water quality with a wider scheme
of interrelations between the water quality parameters and locations using a reliable visual approach
of multicriteria PROMETHEE and GAIA methods. The case study of one of the largest and regionally
most important catchment areas on the territory of the Republic of Serbia—the Tisa River Basin—was
therein used. The analysis of water quality included scenarios for warm (summer), cold (winter),
and average annual period. A partial and complete ranking of locations according to the quality
of water was performed by applying the PROMETHEE method and expanded afterward by GAIA
method analysis to point out critical locations with endangered water quality (M6, M4, and M11).
Identified locations were then investigated in more detail using spider web graphs that revealed
water quality variables of concern (PO4-P and N) and indicated the causes of its occurrence. The
obtained results are in accordance with the results of physical and chemical tests that are regularly
conducted by the official government agencies for environmental protection and the reports that are
presented to the public. The presented approach can easily be applied to any water body to point
out both the locations with reduced water quality and the specific parameters (causes) that affect
the reduction of water quality at these locations, thereby enhancing and strengthening usual water
quality assessments as well as water resources management in general.

Keywords: multicriteria analysis; PROMETHEE; GAIA; spider web graphs

1. Introduction

Managing international river basins around the world puts emphasis on obtaining
and preserving good water quality of water bodies, due to arising economic, agricultural,
industrial, technological, and other impacts on natural water resources in modern soci-
ety [1,2]. Water quality assessment is based on the analysis of physical, chemical, and
microbiological aspects of water. The state of the aquatic environment is mainly described
by oxygen parameters (dissolved oxygen and water saturation with oxygen (OS)), as
well as by temperature (T), pH value (pH), and electrical conductivity (EC). In addition,
the parameters related to waters loaded with pollutants from anthropogenic sources are
equally important. The parameters of the “load” refer to the monitoring of the form of
nitrogen (NH4-N) and phosphorus (PO4-P), biological oxygen demand (BOD-5), chemical
oxygen demand (COD), solutes, the content of suspended matter (SM), etc. Thus, water
quality influenced by various biological, chemical, and physical variables naturally found
in water needs to be constantly monitored and evaluated in order to preserve balanced
water quality over time [3,4]. Within the framework of this paper, the variables that are
most often analyzed in the official index methods for evaluating the overall water quality
of rivers and lakes are considered.
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Anthropogenic factor has a considerable impact on the significant physical, chemical,
and biological characteristics of water resources. Consequently, different approaches for
sustainable use and management of water resources that take into account the establish-
ment of multidisciplinary strategies in the approach to water quality analysis are needed.
Researchers all over the world are using different techniques and methods to evaluate
water quality. Numerous multivariate statistical techniques, such as one-way analysis
of variance (ANOVA), Pearson’s correlation, hierarchical agglomerative cluster analysis
(HCA), and principal component analysis (PCA) are often used to explore the spatial
and temporal changes in water quality [5,6], as well as to indicate the main pollutant
sources [7–9]. However, the use of different multivariate statistical techniques requires
large sets of data and complicates the interpretation of the results due to numerous it-
erations and interchangeable comparisons of data sets [10]. Thus, there is a need for a
somewhat easier approach that could easily be introduced to a wider group of interested
parties. Visualization tools and techniques provide an accessible way to spot and better
understand trends, deviations, and patterns in data [11]. Therefore, in manipulating a
large set of data, visualization backing is substantial for analyzing vast amounts of infor-
mation and making effective data-based decisions [12]. Walker et al. [13] demonstrated
that application of multicriteria decision making methods (MCDM) is an imposing way
to visually approach the analysis of large data sets. A comprehensive visual approach
offered by the MCDM method of PROMETHEE (Preference Ranking Organization METHod
for Enrichment Evaluation) along with its visually interactive module GAIA (Geometric Anal-
ysis for Interactive Assistance) has proven its potential for revealing additional and in-depth
information about the characteristics of multiple criteria datasets, where large number
of criteria have to be built into the visualization plot [14]. According to Mareschal and
Brans [15], this method provides the decision-maker with a considerable enrichment for the
understanding of the problem by evaluating the importance of each criterion, identifying
conflicting criteria almost immediately, exposing incomparability between actions, and
selecting best compromise actions.

In this paper, PROMETHEE method, enhanced with visual geometric option method
of GAIA, is used to swiftly assess the water quality of the Tisa River Basin in Serbia and
provide a wider scheme of interrelations between the multiple characteristics within the
existing dataset. The Tisa River is exposed to constant pollution from various sources,
such as agriculture, chemical factories, municipal wastewater, and the mining industry.
International institutions have recorded as many as 447 potential polluters in the Tisa River
Basin as a whole, some of which are very risky and originate from different countries
in the Tisa River Basin (Romania, Ukraine, Slovakia, and Hungary) [16]. According to
this report, in Romania anionic-active detergents caused decrease in the Tisa River water
quality; in Slovakia total cyanides and zinc were parameters of concern, while in Hungary
the problem occurred with pollution by chromium, copper, and zinc. The current and
potential pollutants in the Tisa River Basin in Serbia, both those of anthropogenic origin
(agriculture, industrial wastewater, municipal wastewater) and those of natural origin
(especially climate change and increasingly caused droughts within) should be added to
it. Surface waters are most endangered near cities that do not have municipal wastewater
treatment plants, as well as near settlements for industrial food processing plants [17].
Therefore, the need for assessing the water quality of Tisa River Basin in Serbian part arose,
and in such a way that would both indicate potential locations of pollution and parameters
that cause the pollution.

The application of PROMETHEE and GAIA methods in the evaluation of the quality
of the environment [18–20] and water resources has yielded significant results [21–23].
More recent investigations include the applicability of these methods as a decision support
framework for assessing water resources carrying capacity among different regions [24]; for
identifying the linkage between runoff pollutants, land use types, and rainfall intensity [25];
as a ranking approach to scheduling repairs of water distribution systems [26] or in making
decisions regarding the implementation of water management plans as irrigation system
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plans [27], while taking into account the sustainability of decision-making alternatives in
resolving a decision problem [28]. Additionally, Khalil et al. [29] demonstrated how the
application of PROMETHEE and GAIA can contribute to the development of a compre-
hensive understanding in the case of soil properties, along with the relations between the
different physical-chemical characteristics, and therein facilitate a multivariate approach
by pointing out to a critical site. Thus, by applying visual methods of PROMETHEE and
GAIA in water quality assessment, locations with poor water quality and their causes can
be revealed.

Then again, there are numerous authors that proposed other MCDA methods for as-
sessing environmental issues such as the AHP (Analytic Hierarchy Process) method [30,31],
ANP (Analytic Network Process), TOPSIS (Technique for Order Preference by Similarity to
Ideal Solution) [32,33], ELECTRE (ÉLimination et Choix Traduisant la REalité, i.e., ELim-
ination Et Choice Translating REality), and others. However, the use of PROMETHEE
and GAIA methods in this research instead of other multicriteria methods was chosen
because it allows assessing the complexity of water quality evaluation by quantifying
quality variables and evaluating the importance of each criterion in the decision process,
also enabling the decision maker to visualize the evaluation problem and better understand
the interconnections between conflicting criteria, while processing large amounts of data in
a more comprehensive manner [34]. Additionally, unicriterion net flow scores in a form of
a spider web graph, that the visual PROMETHEE method offers, were explored afterwards
for the most critical locations, in order to strengthen the results. Nevertheless, the multi-
criteria visual approach in this work uses parameters of the official Serbian water quality
index (SWQI) method, to ensure that the assessment includes all of the official influential
water quality parameters, as defined by the Laws and Regulations on Watercourses in
Serbia [35].

The originality of this work is reflected in presenting an understandable multicriteria
visual approach that is consistent with complex statistical analyses to get a swift, reliable
approach to the consideration of the problem of water quality, while at the same time,
pointing to locations with poor water quality and the reasons as to why it occurs. The case
study of one of the largest and regionally most important catchment areas on the territory
of the Republic of Serbia—the Tisa River Basin—was herein used.

This article is therefore structured in five sections, including an introductory section,
and then followed by a closer description of the catchment area in Section 2. Used method-
ology is presented in Section 3, while the results are discussed within Section 4. Finally,
concluding observations with implications for further research are given in Section 5.

2. Catchment Area—The Tisa River Basin

The total of the Tisa catchment area is 157,186 km2 and its basin is the largest sub-basin
of the Danube River Basin. The Tisa River rises in Ukraine, in the Carpathians, from
where it collects the waters of the Carpathian Basin’s eastern region in total length of
its main branch of 964 km, running through Ukraine, Romania, Slovakia, Hungary and,
finally, Serbia, where this river conjuncts with the Danube River near the locations of Stari
Slankamen and Titel (Figure 1).
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Figure 1. The Tisa River basin in Serbia.

With regard to geomorphological features of the entire catchment area, there are three
main parts of the basin: the Upper Tisa (upstream from the mouth of the river Samos),
the Middle Tisa (between the mouths of the rivers Samos and Mures), and the Lower Tisa
(downstream from the mouth of the river Mures) to which the Tisa River Basin in Serbia
belongs. The Serbian part of the Tisa River Basin covers almost half of Vojvodina, the
northern autonomous province of Serbia, dividing it into two regions: Banat in the east
and Backa in the west. This Serbian province is the most important area of commercial
agriculture since arable land occupies almost four fifths of its territory. It speaks in favor
of the fact that the Tisa River has a great role in irrigating this region since water is
necessary for agricultural production, but also that there are threats of pollution of this
river with artificial fertilizers used in agricultural production. Nevertheless, a number
of investigations concluded that concentrated pollutants originating from settlements
and industries still have a more significant impact on the quality of surface waters in
comparison to agriculture [36–39].

The Lower Tisa receives water from the Begej River and other tributaries indirectly
through the Danube-Tisa-Danube (DTD) hydrological system. The Begej River originates
from Stari Begej and the Begej Canal where both tributaries flow from Romania to Serbia.
The Tisa in Vojvodina has tributaries both on the Banat side (Zlatica, Galacka and Begej)
and on the Backa side (Keres, Cik and Jegricka) and some are channeled and connected to
the DTD system.

Water quality assessment in the Serbian part of the Tisa River Basin was conducted
using a set of data obtained from 11 hydrological measuring stations: Martonos (M1), Novi
Becej (M2), Titel (M3), Vrbica (M4), Hetin (M5), Srpski Itebej (M6), Sombor (M7), Backo
Gradiste (M8), Melenci (M9), Backi Breg 1 (M10), and Backi Breg 2 (M11). Locations M1,
M2, and M3 are located on the Tisa River, while locations M7, M8, and M9 belong to the
DTD system. Other included locations, such as M4, M5, and M6, belong to the tributaries
of the Tisa River (Zlatica, Stari Begej, and Plovni Begej, respectively). The location M10
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belongs to the Bajski Canal, while location M11 belongs to the Plazović River (Kígyós in
Hungarian), but both at the Bezdan location flow into the Veliki Backi Canal, which as
a part of the DTD system, connects the Danube with the Tisa River. All of the observed
locations are significant in terms of possible sources of pollution that may directly or
indirectly affect water quality in this very important basin. Figure 1 shows the locations
within the basin. Changes in nine water quality parameters were monitored at these
locations, namely, oxygen saturation of water (OS), biological oxygen demand (BOD-5),
suspended solids (SM), total oxidized nitrogen (N), orthophosphates (PO4-P), ammonium
ion (NH4-N), temperature (T), pH, and electrical conductivity (EC). The average annual
values of each of the nine parameters were obtained by calculating the mean value of all the
measurements performed each month by the official National Environmental Protection
Agency [40] during the observed one year period. Variations and deviations in terms of
the river water quality according to seasonal (thermal) changes, including warm and cold
periods during the year, were also observed.

3. Methodology
3.1. Visual PROMETHEE

Visual PROMETHEE is a multicriteria decision-making software tool based on
PROMETHEE and GAIA methods, developed in 2012 under the supervision of the authors
of the methodology (Brans J.P. and Mareschal B.) in order to provide visual aspects and the
simplicity of use of the PROMETHEE-GAIA methodology, as well as the quality and con-
sistency of the user interface. PROMETHEE was originally introduced by Brans et al. [41].
This outranking multicriteria method uses nonparametric methods based on a paired
comparison of objects and variables. PROMETHEE makes it easy to rank and deploy a
number of objects in terms of weights and preferences previously selected by the decision
maker (DM) to be applied to the variable (water quality parameters, for example). It is
designed to evaluate and rank possible actions (in our case locations) according to multiple
criteria (water quality parameters, in our case) from the best to the worst one, as well as
to visualize evaluation problems to better understand the interconnections under often
conflicting criteria [42].

The unique quality of the ranking process within the PROMETHEE method is reflected
in comparing paired actions, which actually represents a deviation or the discrepancy
between estimates of the two actions (a, b) under each defined criteria k. As the deviation
value degree is higher, the greater the value of the preferences will be. In the case of a
large number of criteria involved, a new approach to the concept of inclusion criteria
is introduced by defining preferences functions for the alternatives a and b, where all
pairs of the existing actions for each criterion are considered individually, i.e., P(a, b)
which represents the preference of action a over the action b. The value of the function
of preference ranges from 0 to 1, i.e., 0 ≤ P (a, b) ≤ 1, where P (a, b) 6= P (b, a). Greater
preference is expressed by higher value of the function and vice versa, while the potential
combination of relations can be presented as:

P(a,b) = 0 no preference.
P(a,b) ~ 0 poor preference, k(a) > k(b).
P(a,b) ~ 1 strong preference, k(a) >> k(b).
P(a,b) = 1 strict preference, a totally dominates over b, k(a) >>> k(b).

Ranking of actions is performed by obtaining positive (Phi+) and negative flow (Phi−)
for each action related to outranking relations, while respecting the weights of each criterion
attribute. Positive preference flow (Phi+) expresses how much a certain action dominates
over the other ones. Thus, when the value of positive preference flow tends to be higher
(Phi+→1), the action gets to be more significant. Negative preference flow (Phi−) expresses
how much a certain action is preferred by other actions. The action is much more dominant
when the value of negative flow tends to be lower (Phi− →0). Ranking of actions can be
performed by partial preorder (using PROMETHEE I) as well as by total preorder (using
PROMETHEE II). The PROMETHEE I partial ranking is obtained from the positive (Phi+)
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and the negative (Phi−) outranking flow, revealing preference (PI), indifference (II), and
incomparability (RI) between actions, as follows [43]:

aRIb iff


Phi+(a) > Phi+(b) and Phi−(a) < Phi−(b), or
Phi+(a) = Phi+(b) and Phi−(a) < Phi−(b), or

Phi+(a) > Phi+(b) and Phi−(a) = Phi−(b);
aI Ib iff Phi+(a) = Phi+(b) and Phi−(a) = Phi−(b);

aRIb iff
{

Phi+(a) > Phi+(b) and Phi−(a) > Phi−(b), or
Phi+(a) < Phi+(b) and Phi−(a) < Phi−(b);

The relation of aPIb shows that action a outranks action b. On the other hand, action a
is indifferent to action b in case of aIIb, while when aRIb is the case, then actions a and b are
incomparable. The complete ranking of actions is obtained by PROMETHEE II and it is
based on calculation of the total net flow (Phi net) as the difference between the positive
(Phi+) and the negative (Phi−) preference flow, so the action with the highest value of the
net flow (Phi net) is ranked as the best one, and vice versa [44]. However, PROMETHEE
II does not consider incomparability between actions, which leads to a certain loss of
information and more disputable resulting information. Therefore, although the complete
ranking is straightforward to use, the analysis of the incomparability within PROMETHEE
I partial ranking often helps to make a proper decision [43].

3.2. Visual GAIA Method

Visual modeling method GAIA puts forward valuable information about conflicting
characteristics of criteria and their impact on the final score of the ranking of actions, based
on the statistical dimension-reduction technique of PCA analysis [45]. PCA commonly
gives insight into the most relevant parameters that describe the entire data set, followed
by data reduction, thus summary expression of statistical correlation between water quality
parameters with minimal loss of the original information [46]. It aims at finding linear
combinations of the original variables while maintaining the largest possible amount of
variance of the initial set of variables.

According to PCA, visual GAIA plane is formed by vectors derived from the matrix
of covariance where the first two principal components (marked as u and v) are computed
and displayed in the GAIA plane [34]. Therein, similar actions are presented closer to each
other, while their position in the k-dimensional space indicates their strengths and their
weaknesses. The relative position of the actions (visually marked by square points) also
reveals the link between the criteria (visually presented by axis) and their possible conflicts.
Decision stick pi (colored in red) indicates an acceptable decision made in accordance with
the given weights of the criteria, so this stick is a pointer to the best possible solution.

Analysis of GAIA plane can bring forth insight into the most relevant criteria, i.e.,
water quality parameters that affect the ranking of water quality. Nevertheless, the quality
of the information stored within the given GAIA plot is a quantitative measure value
expressed in %, and the valid one is considered to be above 70% [44].

3.3. GAIA Web

Due to a sometimes limited quality level of GAIA plane display, some distortion
may occur. It is thus useful to look at the exact action profiles to add to the quality of the
information obtained within the GAIA plane by using graphs of GAIA web. The GAIA
web is a type of a spider web that visually displays presentation of the unicriterion net flow
scores for the selected action. Common spider webs represent the variables (criteria) that
are evenly positioned at a distance from one another around the center of the web. While
the position of actions in the GAIA plane is directly related to the outline characteristics of
the actions, the shape of the spider web therefore very much depends on an arbitrary order
of criteria. However, the axes of the criteria presented in the GAIA web are oriented in
the same way as in the GAIA plane, where criteria with similar preferences, thus strongly
correlated, are located close to each other. For each individual criterion or criteria group,
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the radial distance corresponds to the Phi net score, expressing −1 in the center and +1 in
the outer circle [42].

4. Results and Discussion
4.1. Multicriteria Decision-Making Analysis

To rank the locations in the Tisa River Basin according to various water quality
parameters, multicriteria decision-making methods of PROMETHEE and GAIA were
applied. The average annual values of nine water quality parameters of the Tisa River
Basin, as well as periodic mean values, at 11 measuring points (locations) along the river
basin, are shown in Table 1, where the average values for the warm period of the year
(WP) included measurements for months of April, May, June, July, August, September,
and October, and for the cold period (CP) the remaining months of November, December,
January, February, and March were covered.

According to Mladenović-Ranisavljević [21], the ranking of locations according to
the quality of the water sample can be done if the value of the oxygen saturation (OS)
criterion is maximized, since the defined criterion contributes to better water quality, while
other parameters need to be defined as minimum criterion values to ensure the minimum
content in water. Oxygen belongs to the group of the most important parameters of surface
water quality, since it maintains the aerobic form of life in aquatic ecosystems, processes
biological oxidations, and contributes to increasing ability of natural waters to self-purify.
Its content in water can also vary depending on the temperature of water during the warm
and cold months of the year, which is why those periods were also observed separately in
this investigation.

Bearing in mind the quantitative nature of data used in creating the scenario, a linear
function was chosen for the preference function, for all defined criteria. The thresholds of
indifference (Q) and preference (P) were determined in absolute values, according to the
usual range of 5–30%, respectively, and shown in Table 1.

Taking into account the weight coefficients of each individual parameter in the overall
water quality index [47], the weights were defined as slightly adjusted to meet the sum
of 1, since the parameter of E.coli is omitted from this analysis due to a lack of its official
monitoring data. Weight coefficients are given in Table 1. PROMETHEE ranking was then
performed for the defined scenarios.

Based on the calculated values and defined scenarios, the values of positive (Phi +),
negative (Phi-), and net (Phi net) preference flows were obtained, as shown in Table 2. The
results show that the least polluted location, with the best water quality, is M8 (with Phi net
value of 0.3008), while the most polluted location, and with the worst water quality is M11
(with Phi net value of −0.4474).

A classified view of the PROMETHEE II ranking, which shows the advantages and
disadvantages of individual locations, on the basis of which the complete ranking of variant
solutions was carried out, is shown in Figure 2. It can be seen that the actions (locations) M8,
M10, M2, M3, M1, and M9 show a significantly lower presence of water quality parameters
that contribute to poor water quality, compared to other locations observed.

Temperature (T) is considered as one of the most important physical properties of
water since it affects the speed of other physical, chemical, and biochemical processes
in aquatic ecosystems, and is also a factor that determines the saturation of water with
oxygen (OS) and other gases dissolved in water. In order to gain more detailed information
on the interdependence between water quality parameters and locations depending on
seasonal, i.e., temperature variations, the periods of warm and cold months were observed
separately, thus two more scenarios for PROMETHEE ranking were created.
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Figure 2. Classified view of the PROMETHEE II ranking.

Based on the calculated values for the WP presented in Table 1, complete ranking was
performed and shown in Figure 3a along with partial ranking shown in Figure 3b. The least
polluted location observed in the warm period of the year, with the best water quality is
M10 (with Phi net value of 0.3215), while the most polluted measuring point, with the worst
water quality is M11 (Phi net value is −0.4001). Figure 3b shows PROMETHEE I partial
ranking for the warm period (WP) where preferences between actions are represented
by arrows. Actions are located in relative positions corresponding to the PROMETHEE
II complete ranking so that the proximities between flow values appear clearly. It is
quite obvious that location M10 is preferred to all the other actions, while the dense
connection of the arrows indicates that there is no particularly important incomparability
between locations.

PROMETHEE II ranking results for the cold period (Figure 3c) show that the least
polluted measuring point in the observed period, with the best water quality is M3 (Phi net
value is 0.3429), while the most polluted location, with the worst water quality is M11 (with
Phi net value of −0.4608). Moreover, PROMETHEE I partial ranking (Figure 3d) indicates
a certain level of incomparability between locations M3 and M8, and the reason for that
should be sought in the fact that one is better than the other on several criteria while the
other is better on other criteria.
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Figure 4 displays pairwise comparison of all three scenarios (CP, WP, and AV) together.
Water temperature is a very variable property; it usually varies in the range from 0 to
30 ◦C. The rate of many reactions in natural waters doubles with increasing temperature by
10 ◦C [48]. Higher water temperatures, compared to the usual ones, favor the reproduction
of a large number of microorganisms that cause diseases, and parasitic organisms that
endanger life forms in the aquatic environment. As a consequence, there is an increase
in water turbidity as well as excessive growth of algae in the circumstances of increased
nutrient intake. During the summer months, increased biological activity causes a consid-
erable decrease in values of oxygen saturation (OS) (see Table 1). Moreover, the ranking
of water quality differs depending on the warm and cold period during the year, so the
locations with better water quality vary accordingly, observing the warm (M10), cold (M3),
and average annual (M8) period (Figure 4). However, in all of the cases, the PROMETHEE
ranking singled out M11 location as the place with the worst water quality.
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Table 1. Evaluation scenario with the average annual and periodic values of the water quality parameters at the observed locations.

Parameter OS BOD-5 SM N PO4-P NH4-N T pH EC

Unit % mg/L mg/L mg/L mg/L mg/L ◦C - µS/cm
Weight 0.18 0.15 0.10 0.10 0.10 0.15 0.06 0.09 0.07

Preference Function Linear Linear Linear Linear Linear Linear Linear Linear Linear
Thresholds Absolute Absolute Absolute Absolute Absolute Absolute Absolute Absolute Absolute

Q 1.055 0.05 0.55 0.048 0.003 0.05 0.030 0.015 2.002
P 6.330 0.28 3.28 0.286 0.017 0.30 1.800 0.090 12.090

Location and period

M1
WP 88 1.5 47.90 0.753 0.055 0.04 19.5 7.9 424
CP 87.2 2.7 195.20 1.346 0.051 0.12 4.6 7.9 353.2
AV 87.7 2 109.20 1 0.053 0.08 13.3 7.9 394.5

M2
WP 92.3 1.6 22.30 0.801 0.054 0.05 20.2 7.9 440
CP 92 2.2 99.20 1.389 0.048 0.13 4.1 8 431.6
AV 92.2 1.9 54.30 1.046 0.052 0.08 13.5 8 436.5

M3
WP 90.4 2.2 27.90 0.767 0.063 0.06 20.1 7.9 426.7
CP 91.6 1.6 40.80 1.397 0.055 0.12 4 8 406.8
AV 90.9 2 33.20 1.029 0.060 0.08 13.4 8 418.4

M4
WP 51.7 3.9 17.30 0.507 0.476 0.07 19 7.9 1028.8
CP 84 2.6 16.60 1.859 0.176 0.04 5.4 8.1 1006.8
AV 66.4 3.3 17 1.121 0.340 0.06 12.8 8 1018.8

M5
WP 113.6 4.4 31.10 0.330 0.050 0.23 20.7 8.1 523.7
CP 88.5 4.8 5.50 1.556 0.122 0.45 5.6 8.2 765
AV 104.5 4.5 21.80 0.776 0.076 0.31 15.2 8.2 611.5

M6
WP 80.6 3 14.30 0.374 0.424 0.10 19.7 8.1 1495.4
CP 99.8 3.3 10.20 2.785 0.173 0.07 5.5 8.3 1451.6
AV 88.6 3.1 12.60 1.379 0.319 0.09 13.8 8.2 1477.2

M7
WP 78.6 2.3 15.60 1.072 0.119 0.11 19.2 7.6 344
CP 93.2 2.1 49.50 1.455 0.127 0.12 6.7 7.7 408.2
AV 83.9 2.2 27.90 1.211 0.122 0.11 14.7 7.6 367.4

M8
WP 92.4 2 9.30 0.608 0.027 0.03 21.6 8 530
CP 99.6 2.7 9.40 1.112 0.025 0.05 5.3 8.2 594.6
AV 95.4 2.3 9.30 0.818 0.026 0.04 14.8 8.1 556.9

M9
WP 82.9 1.4 22.90 0.771 0.074 0.08 20 7.9 446.6
CP 87 1.9 23.40 1.500 0.079 0.17 4.6 8 480
AV 84.6 1.6 23.10 1.075 0.076 0.12 13.6 7.9 460.5

M10
WP 97.3 2.4 8.90 0.412 0.014 0.03 20.9 8 503
CP 79.4 3.2 8.80 0.274 0.010 0.03 5.9 8.1 562
AV 89.8 2.7 8.80 0.355 0.012 0.03 14.6 8 527.6

M11
WP 57.1 2.7 23.40 0.545 1.043 0.06 18.6 8.2 1285.3
CP 85.4 3.4 12.80 2.186 0.562 0.10 5 8.3 1278.2
AV 68.9 3 19.00 1.228 0.842 0.08 13.1 8.2 1282.3

Limit values according to Serbian Regulations [49]

Class I 90–110 2 25 1 0.02 0.1 - 6.5–8.5 <1000
Class II 70–90 5 25 2 0.1 0.3 - 6.5–8.5 1000
Class III 50–70 7 - 8 0.2 0.6 - 6.5–8.5 1500
Class IV 30–50 25 - 15 0.5 1.5 - 6.5–8.5 3000
Class V <30 >25 - >15 >0.5 >1.5 - <6.5 or <8.5 >3000

(Legend: WP—warm period; CP—cold period; AV—average annual value).

Table 2. Preference flows.

CP WP AV

Location Phi+ Phi- Phi Net Phi+ Phi- Phi Net Phi+ Phi- Phi Net

M1 0.3814 0.2972 0.0841 0.4057 0.2587 0.1470 0.4130 0.2383 0.1747
M2 0.4592 0.2466 0.2126 0.4271 0.2178 0.2093 0.4197 0.2296 0.1901
M3 0.5251 0.1822 0.3429 0.3615 0.2948 0.0667 0.4100 0.2253 0.1847
M4 0.2439 0.5037 −0.2598 0.2321 0.5123 −0.2801 0.2126 0.5259 −0.3333
M5 0.2442 0.5942 −0.3500 0.3598 0.4736 −0.1138 0.3591 0.5329 −0.1738
M6 0.2822 0.4714 −0.1893 0.2584 0.4853 −0.2270 0.2171 0.4886 −0.2715
M7 0.4549 0.2875 0.1674 0.3859 0.3858 0.0001 0.3203 0.4171 −0.0968
M8 0.5492 0.2111 0.3382 0.4742 0.2592 0.2151 0.5389 0.2381 0.3008
M9 0.4092 0.3032 0.1060 0.3690 0.3075 0.0615 0.4233 0.2829 0.1404
M10 0.4058 0.3972 0.0086 0.5379 0.2165 0.3215 0.5111 0.2190 0.2921
M11 0.1406 0.6014 −0.4608 0.1877 0.5878 −0.4001 0.1573 0.5847 −0.4474
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4.2. GAIA Analysis

The GAIA plane for the overall AV scenario is shown in Figure 5. The alternatives
(M1-M11) are represented in the figure by separate light blue squares, while the ranking
criteria are connected to the fictitious coordinate start and are represented by dark blue
rhombuses. The quality of the information displayed within the obtained GAIA plane is
76.8% (which is above the average 70%) so it is considered to be valid for further analysis.
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The analysis of GAIA plane identifies the most important criteria that affect the quality
of water. Criteria located very close to the beginning of the GAIA coordinate plane, such as
NH4-N criterion, have a small impact on the ranking results. According to GAIA analysis,
locations that are closer to the orientation of the axis of each individual criterion are better
than others according to that criterion. Decision stick (presented as red pointer in the GAIA
plane) points to a compromising solution. Those locations closer to the decision stick are
good by most criteria so based on the results (Figure 5) those locations are M3, M2, M1,
M9, and M7, which classifies them as better-ranked locations than others according to the
criteria of EC, BOD-5, pH, NH4-N, and T. On the other hand, GAIA analysis identified
the same locations as the ones with increased SM parameter content, which reduces water
quality at these locations and is likely to lead to a number of adverse effects on aquatic
ecosystems, as well as a decline in water self-purification capacity. A higher presence
of SM parameter is usually registered after heavy rainfall, floods, as well as after the
discharge of untreated wastewater directly into the river, so that should be further explored.
Locations M5, M8, and M10 are positioned towards SM criterion line, pointing to lower
concentrations of this parameter and thus better water quality. It can be noticed that these
locations are also better than others in terms of N, OS, and PO4-P criteria, while locations
M4 and M11, conversely, as being located opposite to these three criteria in GAIA plane,
are worse than others in regard to the given parameters.

Locations M6, M4, and M11 are placed opposite to the decision stick, which clearly
indicates that these locations are the worst ranked locations according to most of the
given criteria. Further analysis on identified critical locations using the GAIA web graphs
should reveal more precise information about the linkage between the criteria and their
possible conflicts.

4.3. GAIA Web

In order to reveal more information on critical actions (locations M6, M4, and M11),
they were further explored within GAIA web visual presentation. GAIA web shows the
position of the decision stick (marked as PI), as well as a dotted circle corresponding to
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the multicriteria net flow score of the actions (it is green when Phi net is positive and red
otherwise). Different criteria are also connected with a drawn polygon.

GAIA web for location M6 (see Figure 6) clearly indicates that the parameters of N,
PO4-P, pH, and EC are criteria of concern, meaning that these parameters influence the
overall AV quality of water to decrease at this location and accordingly rank location M6
worse than other locations. When WP period is observed, it can be seen that parameter N
has a very good preference score, meaning that the content of N in water at this location is
significantly lower compared to CP and AV periods. On the other hand, GAIA web for
the CP period at the same location (M6), points to a very good preference score for OS
parameter, indicating a higher content of OS in the water at this location.
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GAIA web for the location M4 (see Figure 6) shows that parameter T is with the
strongest preference score in the overall AV period, ranking it better than other locations
according to this parameter solely. However, afterwards, observing WP and CP separately
at this location, it appears clear that parameter OS is the reason why previous GAIA
analysis singled out this location among others as the weak one. Namely, the content of OS
in water at this location is very low, so it contributes to poor water quality at this location.

Parameters of PO4-P and pH are criteria of concern at location M11, meaning that
these parameters influence the overall AV quality of water to decrease at this location.
Observing WP and CP in addition (see Figure 6), parameter of OS stands out as a weak
one in CP and criteria of concern. Nevertheless, all three scenarios for the location M11
expose the weak preference scores at this location, which consequently puts M11 location
into an undesirable position to all other locations, thus ranking it as the worst one.

4.4. Results of Physical-Chemical Analyses and Comparison with Limit Values of Water
Quality Parameters

The results of performed physical-chemical analyses of water samples in Tisa Basin
in Serbia, i.e., the calculated values of parameters for the WP, CP, and AV periods, are
compared with the limit values of quality classes prescribed by the Regulation on limit
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values of pollutants in surface and groundwater and sediment [49] (see Table 1). Deviations
are discussed below, for each parameter used in turn.

During the warm period of the year (WP), increased biological activity causes a
significant decrease in concentrations of oxygen dissolved in water (OS), which puts water
quality into lower classes (II and III) on most locations observed.

Total inorganic nitrogen represents the sum of nitrites and nitrates expressed in mg/L.
Increased values of nitrate concentrations in water indicate wastewater as a source of
pollution. Increased nitrite concentrations, on the other hand, are a clear indicator of intense
mineralization and hypoxia. Elevated nitrate contents, as well as higher concentrations of
ammonia (NH4-N), are usually taken as an indicator of fecal contamination. Exceeding
in content of N parameter is noticed at almost every location in both WP and especially
CP period of the year (except location M10), classifying water quality into classes II and III
along the Tisa Basin. Ammonia (NH4-N) concentrations have a better trend, placing water
quality in classes I and II, while only into class III at location M5.

Suspended solids (SM) reach the water from the soil rinse or by the erosive action
of water in watercourses. Their content in the water primarily depends on the average
sunny days of the year. The harmful effect of SM depends on their chemical composition,
that is why it is only indicative to what extent they represent harmful sources of pollution.
Generally, calculated values of this indicator put water quality into classes II to V, along
the observed basin.

Concentrations of biological oxygen consumption (BOD-5) in rivers provide a measure
of surface water status in terms of biodegradable organic load. It is the basic indicator
of surface water pollution by organic matter. Exceedance of class I regarding this in-
dicator is evident at all observed locations (except M9) which clearly indicate organic
pollution source.

Electrolytic conductivity of water (EC) indicates the degree of mineralization of water.
Any deviation from the usual values raises the suspicion of pollution. Locations M4, M6,
and M11 are thus shown critical with evident exceeding, putting water quality into lower
class of water quality (class III) at these locations.

Concentration of orthophosphates (PO4-P) in rivers enables the assessment of the
state of surface waters in terms of nutrient concentration. It is used to show the spatial and
temporal variation of nutrients. The most significant source of orthophosphates pollution
comes from municipal and industrial wastewater. According to the official report of the
Environmental Protection Agency of the Republic of Serbia for the given year [50], the
overall quality of river waters in the Republic of Serbia, in terms of orthophosphates, does
not meet the prescribed limit values at 14 measuring points in Serbia (which represents 25%
of total water bodies), where the worst situation is observed in the basin of the Tisa River,
especially emphasizing the location M11 with an unfavorable (growing) trend. This is in
complete agreement with the results obtained using GAIA analysis in this paper, especially
GAIA web graphs, which verifies the application of the proposed approach. Nevertheless,
calculated values for PO4-P in WP, CP, and AV period (Table 1) at location M11 are 1.043,
0.562, and 0.842 mg/L, respectively, which clearly puts water quality into class V as very
poor water quality class according to Serbian Regulations [49], indicating that immediate
measures for remediation should take place.

The results of the analysis indicate seasonal deviations from the prescribed limit
values for the majority of the observed parameters, thus putting water quality into lower
classes (II–V) at almost every location in the basin. Evident exceeding of class I of EC,
OS, total N, and PO4-P parameters, especially at locations M4, M6, and M11, suggest that
diffuse sources of pollution of anthropogenic origin (agriculture, artificial fertilizers, and
wastewater discharges) significantly affect changes in water quality of the Tisa River Basin
in Serbia.



Water 2021, 13, 3537 15 of 18

4.5. Discussion

Based on the presented results, it can be stated that the water quality in the Tisa River
Basin is endangered mainly by:

- relatively low concentrations of dissolved oxygen (especially during the warm period);
- high BOD-5 values;
- high content of suspended solids;
- large amounts of nutrients (primarily orthophosphates).

The results presented in this study show that variations in water quality occur mainly
under the influence of dissolved salts (from natural sources) and organic substances
and nutrients from various anthropogenic sources, primarily agricultural production,
wastewater discharges, and similar. Therefore, it is necessary to reduce the scope of
intensified agricultural activity or introduce so-called “precision agriculture” which could
in some way control the deterioration of water quality in the basin.

Apparently, the entire basin is also very sensitive to pollution due to urbanization,
industrialization, and the largest DTD canal network in the basin, which is a significant
source of indirect pollution of the Tisa River. Both PROMETHEE and GAIA analyses
singled out location M11 as the most polluted location in the Basin, where this location is a
part of the DTD system, and thus an indirect source of the Tisa River’s pollution. This leads
to a clear conclusion that more attention needs to be paid to small watercourses (tributaries)
that flow into the waters of the Tisa River in the basin.

Nevertheless, in order to maintain the water quality of the entire Tisa River Basin on
the territory of Serbia at the required level, according to the requirements arising from the
current regulations, it is necessary to constantly improve the monitoring system, identify
both the main pollutants and sources of pollution, and respond in a timely manner.

5. Conclusions

Visual approach presented in this paper, using multicriteria PROMETHEE and GAIA
methods, provided a detailed analysis of locations in the Tisa River Basin based on im-
portant parameters that are otherwise used to inform the public about the state of water
resources quality. The analysis of water quality included scenarios for warm (summer),
cold (winter), and average annual period. The obtained results are in accordance with the
results of physical-chemical analyses regularly conducted by the official institutions [40,50]
and complement them in a way that the Tisa River Basin in Serbia is comprehensively
viewed with all significant tributaries and locations in one analysis, including both warm
and cold period analyses, during the year. Such an approach provides official reports on
the state of the watercourses and environment with additional important information.

The obtained results are significant from a practical standpoint for various purposes:

- using the PROMETHEE method, partial and complete ranking of locations can be performed;
- GAIA plane analysis expands the ranking by pointing to critical locations where water

quality is out of balance for some reason;
- The possible reasons for the impaired water quality on such locations can be investi-

gated in a more detail way using GAIA web graphs that reveal water quality variables
of concern.

Results of the presented approach can be used for remediation of identified pollutants
of the Tisa River Basin in Serbia. Various stakeholders, institutions, and policy makers
interested in appropriate management of the Tisa River basin, not only in Serbia but also
in all other countries of the basin, can benefit from it. Nevertheless, the applied approach
can serve as a reliable basis for establishing future multidisciplinary strategies in water
quality management.

Within the proposed approach, the critical locations with reduced/endangered water
quality, as well as the specific parameters (causes) that affect the reduction of water quality
at such locations can easily be identified, enabling the appropriate institutions to quickly
take corrective action. This is a good way to contribute to the overall improvement of the
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quality of water resources, which is of great importance for the sustainable development of
water resources as one of the most important natural resources on earth.
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