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Abstract: In the last decade, machine learning (ML) technology has been transforming daily lives,
industries, and various scientific/engineering disciplines. In particular, ML technology has resulted
in significant progress in neural network models; these enable the automatic computation of problem-
relevant features and rapid capture of highly complex data distributions. We believe that ML ap-
proaches can address several significant new and/or old challenges in urban drainage systems (UDSs).
This review paper provides a state-of-the-art review of ML-based UDS modeling/application based
on three categories: (1) operation (real-time operation control), (2) management (flood-inundation
prediction) and (3) maintenance (pipe defect detection). The review reveals that ML is utilized
extensively in UDSs to advance model performance and efficiency, extract complex data distribu-
tion patterns, and obtain scientific/engineering insights. Additionally, some potential issues and
future directions are recommended for three research topics defined in this study to extend UDS
modeling/applications based on ML technology. Furthermore, it is suggested that ML technology
can promote developments in UDSs. The new paradigm of ML-based UDS modeling/applications
summarized here is in its early stages and should be considered in future studies.

Keywords: machine learning; urban drainage systems; flood-inundation prediction; flood pattern
recognition; pipe defect detection; real-time operation control

1. Introduction

Urban drainage systems (UDSs) are used in urban infrastructure to drain rainwater
and/or used water from a system without causing floods. In this regard, high-dimensional
simulations for UDS modeling (i.e., flood-inundation mapping) is typically performed,
and two-dimensional (2D) hydrodynamic/hydraulic simulation models should be consid-
ered [1,2]. Two-dimensional models have been widely used to compute complex flood-
inundation dynamics and hydrological processes [3,4]. However, the function evaluations
in various UDS problems (e.g., real-time flood-inundation forecasting and real-time opera-
tion control), generally conducted using 2D, demand high computational power because
of the simulation times involved for rainfall-runoff and pipe network hydraulics [5–8].
Therefore, it is challenging to utilize a physically based hydrodynamic/hydraulic model
(i.e., 2D model) for real-time UDS modeling.

This significant limitation can be overcome by considering machine learning (ML)
technology. ML technology is transforming daily lives, industries, and science/engineering
disciplines [9]. ML technology enables computers to learn and function without explicit
instructions and programming, but with patterns and inferences extracted from data [10].
Currently, ML technology (e.g., regression, classification, and clustering) is being replaced
with new ML technologies, such as deep learning (DL) approaches [11]. These approaches
primarily include big data, which are high-dimensional datasets in sensor-based measure-
ments [12–14].
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Recently, DL approaches have been widely used across various science/engineering
disciplines. In fact, they have been improved more actively than ML approaches [15].
DL approaches are defined as a type of ML technology based on neural networks, in
which multiple layers of processing are used to extract progressively higher-level features
from a significant amount of data [16]. DL approaches represent a higher level from the
underlying datasets [17]. Furthermore, DL approaches are typically more immune to raw
and noisy data because they allow practical features to be extracted without being explicitly
indicated [18].

DL approaches demonstrate the potential to be applied and utilized in UDSs owing
to their ability to address problems in various science/engineering disciplines [19]. Prior
to the introduction of ML technology, a physically based model was widely utilized to
demonstrate the system characteristics of hydrodynamics/hydraulics in UDSs. Previous
UDS studies pertaining to ML technology, including DL approaches, should be revisited
and summarized to provide recommendations for the development of UDSs. Herein, a
comprehensive review of UDS studies is provided, and potential research topics pertaining
to ML applications are recommended. It is noteworthy that this review paper focuses
on the aspects of operation, management, and maintenance in UDS studies based on
ML technology.

Herein, comprehensive reviews and recommendations are presented in four sections:
first, the review methodology of the UDS studies revisited (with respect to operation,
management, and maintenance) is described in Section 2. Subsequently, the concept and
overview of ML technology are described (Section 3). The objective of this paper is to
summarize previous UDS studies pertaining to ML-based modeling/application based
on three research categories: (1) operation (real-time operation control), (2) management
(flood-inundation prediction), and (3) maintenance (pipe defect detection) (Section 4).
Subsequently, some potential issues and future directions are recommended for each of
the three research topics to advance UDS modeling/application based on ML approaches
(Section 5). ML-based UDS modeling enables ML approaches to promote developments
in UDSs.

2. Review Methodology

Herein, UDS studies are reviewed comprehensively with respect to operation, man-
agement, and maintenance. In this regard, the Web of Science and Google Scholar was used
to obtain relevant literature from a wide and extensive web space. The literature identified
from the web space (e.g., Web of Science, Scopus, and Google Scholar) was filtered by
inspecting the title, summary, and methodology using keywords of “machine learning”
and “urban drainage systems”. In the selected literature, studies that clearly proposed
and/or highlighted ML-based UDSs based on operation, management, and maintenance
were selected. Finally, 16 studies were selected and summarized, including five UDS
operation studies, six management studies, and five maintenance studies. All selected
studies were published after 2018 (note: all studies included the recent trend), even though
the publication time for all studies was not customized.

3. Machine Learning (ML) Technology

In this section, specific approaches focusing on UDS studies (e.g., operation, manage-
ment, and maintenance) based on ML technology are summarized. In particular, traditional
ML technology (e.g., random forest, support vector machine, and K-nearest neighbor algo-
rithm) has not been widely used with respect to operation, management, and maintenance
in UDS studies. Rather than predicting and/or classifying values or factors, most of
the studies focused on clustering and/or reducing dimensions on a predefined dataset.
Such techniques are not suitable for UDS studies with respect to operation, management,
and maintenance.

Therefore, we considered only specific approaches (e.g., artificial neural networks
(ANNs), convolutional neural network (CNNs), recurrent neural networks (RNNs), and
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deep q-networks (DQNs)) that are widely used in the operation, management, and main-
tenance of UDSs. All studies based on ML technology considered various evaluation
criteria to verify the model performance. The representative evaluation criteria used in
UDS studies are as follows: (1) root-mean-square error, (2) coefficient of determination,
and (3) Nash–Sutcliffe efficiency.

3.1. ML Overview

Artificial intelligence (AI) is realized using a specific machine or system based on
ML technology. ML technology involves identifying a set of rules and characteristics
hidden in the machine via direct training based on data. In other words, computers
perform evaluation and prediction from the learning process based on a specific type of
data possessed by humans. Problems that can be solved using ML technology can be
generally classified into (1) problems requiring classes of specified data to be distinguished
(pattern recognition), (2) problems requiring the estimation of certain consecutive values
(regression), and (3) functional approximation.

In addition, ML technology based on learning methods can be classified into three
types of learning: (1) supervised learning, (2) unsupervised learning, and (3) reinforcement
learning. First, supervised learning is a technique that provides data and labels (answers)
for a problem. Humans wish to obtain solutions using learning data, and then estimate and
provide appropriate labels when inputting new unlabeled data. This technique is primarily
used for object recognition, label estimation probability, and regression analysis. Unsuper-
vised learning is a technique where unlabeled data are received and new characteristics,
patterns, and classes are identified from the data via learning. It is primarily used to solve
problems such as clustering, feature extraction, and dimensionality reduction. Finally,
reinforcement learning is a method in which an agent defined within an environment
recognizes the current state and selects an action or sequence of actions that maximizes
compensation among selectable behaviors. ML technology allows different problems to be
solved based on the learning type, as summarized and presented in Figure 1.
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The following section describes the characteristics, architecture design, and learning
method of the widely used neural networks in ML technology. It is noteworthy that the
neural networks described herein include only ANNs, CNNs, RNNs, and DQNs.
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3.2. Artificial Neural Networks (ANNs)

An ANN, which is a conventional neural network, is a computing approach inspired
by biological neural networks that comprise animal brains [20]. The ANN is designed in
the form of a network by combining synapses. It comprises an input layer, a hidden layer,
and an output layer, and each circle in the ANN is a neuron (Figure 2a). The hidden layer is
composed of either a single layer (only one layer) or multiple layers (more than two layers).
An activation function is performed in the hidden layer, which transforms an input into an
output. The activation function activates the sum of signals.
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3.3. Recurrent Neural Networks (RNNs)

The RNN is a type of neural network whose connection between nodes exhibits a
recurrent structure (Figure 2c). This structure allows the state to be stored inside the
circulating neural network model such that the characteristics can be dynamically analyzed
over time [21–23]. In particular, unlike the ANN of the existing ML technology, this
circulation structure may process a sequence-type input based on internal memory. In
general, it is primarily used for voice signal processing and language string processing.
RNNs can be categorized into different networks (the representative network is long
short-term memory, LSTM).

LSTM is suitable for classification, processing, and prediction based on time-series data
because unknown delays may occur between important events in a time series [24]. LSTM
is developed to alleviate gradient loss problems that can occur when training conventional
RNNs. LSTM units consist of a cell, an input gate, an output gate, and a forget gate, and
their LSTM units determine unnecessary information or remember information.

3.4. Convolutional Neural Networks (CNNs)

A CNN is a type of DL approach for processing data that exhibit a grid pattern, such as
images. It is inspired by the organization of the animal visual cortex [25,26] and constructed
based on adaptively and automatically learned spatial hierarchies of features, from low- to
high-level patterns [27]. CNNs are mathematical constituents that are generally composed
of three types of layers: convolution, pooling, and fully connected layers (Figure 2b).

The first two layers (i.e., convolution and pooling layers) perform feature extraction,
whereas the third layer (a fully connected layer) maps the identified features into the final
output, such as classification [28,29]. The convolution layer, which is critical to the CNN, is
composed of a series of mathematical computations, such as convolution. In digital image
processing, a pixel value is used in a 2D grid, and a small grid of parameters (i.e., kernel),
which is an optimizable feature extractor, is applied to each image position. Therefore,
because a feature may occur in any space of the image, the CNN is highly efficient and
effective for image processing.

3.5. Deep Q-Networks (DQNs)

The DQN algorithm was developed by DeepMind in 2015. By combining reinforce-
ment learning and deep neural networks on a large scale, we successfully solved a wide
range of Atari games. The DQN is a combination of neural networks and reinforcement
learning approaches; the connections between the nodes of a DQN exhibit a structure differ-
ent from those of other network structures (Figure 2d). This was developed by improving
the conventional reinforcement learning algorithm known as Q-learning using deep neural
networks and a technique named experience replay DQNs can be categorized into two
types of learning algorithm (e.g., Q-learning and deep Q-learning).

4. ML-Based Urban Drainage System (UDS) Studies

The following section presents a comprehensive review of recent ML-based UDS stud-
ies based on (1) operation (real-time operation control), (2) management (flood-inundation
prediction), and (3) maintenance (pipe defect detection). To ensure a comprehensive re-
view, Google Scholar, Scopus, and Web of Science were used to perform a search based
on the aforementioned three topics. It is noteworthy that this review primarily focuses on
methodologies, including the data types used, ML technology, and results obtained.

4.1. Operation: Real-Time Operation Control

This sub-section introduces real-time operation control based on reinforcement learn-
ing, which has emerged as a novel methodology for AI. Reinforcement learning is an ML
field that pertains to the manner by which intelligent agents should perform actions in
an environment to maximize the cumulative reward [30]. Reinforcement learning (see
Figure 3) is one of three basic ML and/or DL paradigms, alongside supervised learning and
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unsupervised learning. It differs from supervised learning in that labeled input/output
pairs are not presented, and sub-optimal actions need not be explicitly corrected. The
environment is generally stated based on the Markov decision process approach, since
other reinforcement learning algorithms in this context use dynamic programming tech-
niques [31].
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Reinforcement learning can be derived as a Markov decision process approach of an
agent combined with the environment to maximize the final reward. In Figure 1, t is the
time step and St is the current state (and current reward rt). The agent must learn a value
function that yields the optimal decision or action at. The action will affect the environment
that induces the next reward signal rt+1 and yields the next state St+1.

The UDS dynamically adapts its response to catastrophic rainfall by controlling its
components, such as gates and pumps. Reinforcement learning has been widely applied
recently by the AI community (e.g., robots and autonomous vehicles), whereas real-time
operation control in UDSs is rarely implemented.

Several researchers [32,33] have proposed methodologies for real-time operation
control in the UDS domain. Mullapudi et al. (2020) [32] formulated and analyzed a real-
time operation control model (i.e., pumps) using reinforcement learning. Consequently,
the automated operation system for UDSs demonstrated that reinforcement learning can
effectively and efficiently pump operation and control for individual subcatchments. Wang
et al. (2020) [34] performed pump operation control for a smart stormwater system using
reinforcement learning to minimize flooding due to catastrophic rainfall events.

4.2. Management: Flood-Inundation Prediction

The purpose of flood-inundation prediction is to prevent damage to human life and
properties. In UDSs, flood-inundation prediction can be defined as the process of esti-
mating and predicting the magnitude and flood duration based on known characteristics.
Flood-inundation prediction is the most important task in UDS modeling; hence end, ML
technology has been used extensively to predict flood inundation.

To predict flood-inundation in UDSs, the ML technology such as ANN [35–48] and
ANFIS [49] were primarily considered until the year 2010s. In the last decade, the time
series analysis (e.g., wavelet decomposition, and fuzzy [50,51]) was mostly included with a
flood inundation model based on the ML technology. Recently, wavelet decomposition is a
time-series analysis approach that was used to predict flood inundation in the UDSs [52–54].
It was demonstrated that the technique can improve model performance from a solution of
missing data problems [54].

The main contributions of these studies were to provide robustness, accuracy, effec-
tiveness, and computation speed based on qualitative analysis and/or a flood-inundation
prediction model. These studies faced significant limitations for improving the model
performance (e.g., robustness, accuracy, effectiveness, and computation speed) more. To
overcome the limitations, recently, the flood-inundation prediction studies have been
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performed primarily using ML technology, such as RNNs and CNNs. It is noteworthy
that LSTM is a type of RNN. Table 1 summarizes relevant studies that focused on flood-
inundation prediction.

Table 1. Summary of studies pertaining to flood-inundation prediction by UDSs.

References Main Novelty Input ML Technology

Xie et al. (2020) [55]
Proposed ANN-based hybrid
modeling to improve model

performance
Inflow ANN [20]

Hossein Hosseiny et al.
(2020) [56]

Proposed novel hydraulics–ANN
hybrid model to identify flood area

and depth

Water surface elevation, and
rough coefficient ANN [20]

Kabir et al. (2020) [57]
Proposed GPU-based CNN model
to improve model efficiency and

performance

Discharge, and water depth
hydrograph CNN [25]

Guo et al. (2020) [58]
Proposed image-to-image

translation to predict maximum
flood depth

Rainfall hyetograph CNN [25]

Ding et al. (2020) [59]
Proposed flood forecasting and

interpretable spatiotemporal
attention LSTM

Rainfall, and inflow LSTM (RNN) [23]

Kao et al. (2020) [60]

Proposed novel LSTM-based
encoder–decoder model for

multi-step-ahead flood-inundation
prediction

Rainfall, and inflow LSTM (RNN) [23]

Flood-inundation prediction in the studies listed (Table 1) was performed using
various ML techniques such as the ANN, CNN, and LSTM. In particular, the ANN and
LSTM used are based on time-series data, which can estimate the flood-inundation results
(e.g., flood depth and duration) for the next time step, although the spatial distribution
of floods (e.g., flood area) is not provided. Meanwhile, the CNN is based on image data
and can consider a spatiotemporal distribution for the type of flood-inundation (e.g., flood
depth and area, and flood duration) prediction.

Kabir et al. (2020) [57] proposed a novel CNN model comprising a CNN based on
a graphic processing unit to improve model efficiency (e.g., real-time flood forecasting)
and performance simultaneously. Real-time-based flood-inundation forecasting models
based on advanced measurements (e.g., drones and closed-circuit televisions (CCTVs))
have been proposed recently [60–63]. In summary, flood-inundation prediction models
based on the CNN can be used for innovative real-time flood forecasting. However, the
model’s ability was not considered in some studies for solving complex problems involving
large-scale datasets.

In addition, several flood-inundation prediction studies based on a physical model
(e.g., one-dimensional (1D)/2D and 2D models) and ML techniques [64,65] have been
performed. Yang et al. (2019) [64] introduced an LSTM-based flood simulator coupled with
a physical model to improve model performance. In their approach, the input data used
were hydrological data, which included averaged daily precipitation, wind, temperature,
and model-simulated discharge from the Global Hydrological Model + Catchment-based
Macro-scale Floodplain between 1971 and 2020. Worland et al. (2019) [65] proposed a
deep neural network comprising a rainfall-runoff model to estimate flood duration using
hydrological data (e.g., discharge data) from the United States Geological Survey. It is
noteworthy that the proposed model is a surrogate model based on a combination of a
physically based model and ML technology.
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4.3. Maintenance: Pipe Defect Detection

A drainage pipe is a key component in UDSs. However, the quality of a drainage
pipe deteriorates gradually owing to environmental and external conditions (e.g., ground
subsidence). Therefore, defect detection in drainage pipes must be investigated.

In recent years, CCTV technologies have been widely used to effectively detect defects
in drainage pipes used in UDSs. The required amount of image data can be obtained using
CCTVs because UDSs are large. Error must be verified from the image data obtained from
CCTVs; this process is time consuming and necessitates a practitioner. Therefore, pipe
defect detection based on images obtained from CCTV has been primarily performed using
ML technology in previous studies.

In ML techniques, the type of object detection has progressed rapidly. CNNs are
widely used in image classification. In the last few decades, two trends have emerged
from ML-based pipe defect detection models: (1) automatic feature classification from
hybrid-based neural network [66–68]; (2) hierarchical feature classification using deep
CNNs (e.g., fast R-CNN, faster R-CNN, You Only Look Once) [69–73]. The former is
based on hybridizing the ANN and other ML technologies, whereas the latter is based on
DL approaches.

For example, the R-CNN considers a selective search method to extract approximately
4000 regions from only one image as the input data for the CNN algorithm, whereas the
fast R-CNN considers the convolutional feature map, which is focused on identifying
detection. In addition, the faster R-CNN considers a region proposal network to perform
region proposals and performs better than the fast R-CNN. Based on the aforementioned
ML technologies, recent pipe defect detection studies pertaining to UDSs are summarized
in Table 2.

Table 2. Summary of pipe defect detection studies pertaining to UDSs.

References Main Novelty Defect Types ML Techniques

Safari and Shoorehdeli
(2018) [74]

Proposed detection of interior
defects based on image processing

and ANN

Short, medium, and long
cracks; small, medium, and

large perforations
ANN [20]

Kumar et al. (2018) [75]
Proposed defect classification in

sewer CCTV inspections using deep
CNN

Root intrusions, deposits,
cracks, infiltration, debris,
connections, and material

change

CNN [25]

Cheng and Wang (2018) [76]
Proposed detection of sewer pipe

defects based on CCTV images
using deep CNN

Tree root intrusion, deposit,
infiltration, and cracks CNN [25]

Li and Guo (2019) [77]

Proposed sewer damage detection
from imbalanced CCTV inspection

data using deep CNN with
hierarchical classification

Deposit settlement, joint
offset, broken, obstacles, and

deformation
CNN [25]

Yin et al. (2020) [78]
Proposed deep CNN-based defect
detection system for sewer pipes

using CCTV

Breakage, cracks, deposits,
fractures, taps, holes, and

roots
CNN [25]

As shown in Table 2, Safari and Shoorehdeli (2018) [74] proposed defect classification
based on hybridization using an image-processing approach and an ANN. Other defect
detection studies (based on Table 2) proposed performing defect classification and detection
simultaneously to improve model performance and efficiency based on DL approaches
(e.g., deep CNN). In terms of model performance, DL approaches are better than other ML
technologies (e.g., ANN, SVM, and hybrid ML models).
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5. Recommendations

In this section, some research issues are presented, and recommendations for future
ML-based UDS studies are provided. ML technology and/or DL approaches (e.g., CNN
and RNN) require large sample sizes (i.e., big data). Although the studies presented in
Section 2 used small-scale data (e.g., single size) only, only DL approaches were applied,
whereas the model efficiency for a complex model architecture based on large-scale datasets
was not considered. Hence, the advantages increased with the data size.

In addition, ML-based applications in UDSs have increased rapidly owing to their
high-performance computing power, as well as their ability to process big data and perform
AI. Publications pertaining to the application of ML in UDSs abound. However, ML-based
UDSs are associated with two main challenges, and overcoming these challenges will
further improve their performance and efficiency.

5.1. Challenges

First, theoretical problems in ML-based UDS modeling are primarily considered in
terms of two aspects (i.e., mathematics and computation capability). In any non-linear
function, the types of ML-based neural networks (e.g., shallow networks) and neural
networks based on DL approaches (e.g., deep networks) can be represented. It is discovered
that DL approaches yield better model performances than the former (i.e., non-linear
function-based neural networks). However, the representation and computation capability
of DL approaches does not imply that they are better than non-linear function networks. For
ML-based UDSs, the complexity of data samples must be understood, and the number of
learning data samples required for learning the DL approach types as well as the computing
performance required for the training data samples must be determined. In addition, DL
approaches generally involve non-convex functions, and it is theoretically complex to train
the neural network and optimize numerous parameters based on DL.

Next, most studies pertaining to ML-based UDSs that consider large-scale input
data have shown that complex DL approaches are more suitable for obtaining significant
features. The features and other information extracted from large-scale data samples are
meaningful. The essence of DL approaches is to train more significant features directly
and ultimately improve the model performance and efficiency. When comparing shallow
and deep networks, DL approaches emphasize the important characteristics because the
DL model contains hidden layers of various types (e.g., five to 10 layers). DL approaches
provide an efficient model through layer-by-layer feature learning from the image or time-
series data related to UDS modeling. However, constructing a hierarchical model with
effective learning to identify important features is a key issue. In addition, selecting the
most suitable ML-based UDS modeling is important.

Finally, the performance of an ML-based model varies significantly depending on
whether an observation dataset is available. In a previous study, for example, a flood-
inundation prediction model based on image data was limited in terms of comparing results
obtained from a physically based hydrodynamic/hydraulic model (e.g., 1D/2D and 2D
models) to verify the model performance. In other words, the model’s performance does not
agree well with the results obtained from the physically based hydrodynamic/hydraulic
models because the observation data do not include the flood area and depth (actually
measured data). Hence, the model’s performance must be improved significantly based on
observation data, e.g., flood area and depth, obtained accurately using advanced equipment
such as satellites and drones.

5.2. Future Directions

Based on this comprehensive review, the authors recommend the following future
directions for studies pertaining to ML-based UDSs:

(1). Feature extraction method: the efficient identification of features from advanced
measurements (e.g., CCTVs and drones) that comprise only a single DL algorithm
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(e.g., CNN) can be considered. The integration of a hybrid DL algorithm (e.g., RNN–
CNN) should be considered to effectively extract important features.

(2). Computation resources and combination with physically based model: the processing
of physically based hydrodynamic/hydraulic models (e.g., 1D/2D and 2D model)
is time consuming. Such limitations are caused by the fact that real-time prediction,
operation, and simulation cannot be considered. Therefore, ML-based UDS studies
that actively consider high-performance computing resources (e.g., graphic processing
units and supercomputers) should be conducted.

(3). Necessity to increase utilization of reinforcement learning: the development of UDSs
based on reinforcement learning is rare. However, reinforcement learning can be
applied and considered in terms of the UDS operation, e.g., the gate and/or pump
operation in the UDS. In addition, a practitioner should refer to a predefined manual
to control the gate or pump operation. Therefore, considering reinforcement learning-
based UDSs for pump and/or gate operations can reduce mistakes from practitioners.

(4). Necessity to utilize advanced technologies (satellites and drones): advanced technolo-
gies such as analyses and predictions based on raw data using satellites and drones,
which are advanced equipment based on remote-sensing fields, should be devel-
oped. In addition, a new and/or advanced methodology for improving the predictive
power of water information presented as an image, as well as the time-series form,
should be developed to analyze the characteristics and patterns of each element. ML
technology must be systematically used to develop such a methodology. In the case
of ML technology, because it is a data-based approach, a significant amount of data
and high quality must be ensured for its advancement. In particular, multiple remote
sensors based on the cloud and Internet of Things should be implemented in UDSs
such that a significant amount of water information (e.g., precipitation, temperature,
wind, humidity, flow rate, and water level) can be acquired.

By realizing the recommended implementations above, analysis and prediction tech-
nologies can be further developed to realize better system operation, management, mainte-
nance, and risk standards for UDSs.

6. Conclusions

In the recent decade, ML techniques have been transforming daily lives, industries,
and various scientific/engineering disciplines. In particular, ML approaches have afforded
significant progress in neural network models, thereby enabling the automatic computation
of problem-relevant features and rapid capture of highly complex data distributions. ML
approaches can address several significant new and/or old challenges pertaining to UDSs.
This review paper provides a comprehensive review of recent UDS modeling based on ML
technology, including DL. We believe that ML technology can address several significant
new and/or old challenges facing research in the UDS domain. This comprehensive review
classifies studies pertaining to ML-based UDSs into three research categories: operation
(real-time operation control), management (flood-inundation prediction), and maintenance
(pipe defect detection).

Finally, several recommendations for future studies were presented herein. Under-
standing the main characteristics of ML technology enables efficient and effective UDS
modeling, thereby enabling the development of a system that can prepare and respond to
catastrophic rainfall events. Some potential issues and future directions are recommended
for each of the three research topics to extend UDS modeling/applications based on ML
approaches. In addition, ML approaches can promote advances in UDSs significantly.

The new paradigm of ML-based UDS modeling summarized herein is still in its early
stage and should be considered in future studies. In summary, UDS studies based on
ML technology that involve operation, management, and maintenance must be further
conducted such that features can be developed more efficiently, i.e., computation resources
(i.e., graphic processing units and supercomputers) and advanced equipment (i.e., satellites
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and drones) should be considered effectively such that multidisciplinary and broader
analyses can be realized.
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Abbreviation

ML Machine learning
DL Deep learning
UDS Urban drainage system
AI Artificial intelligence
ANN Artificial neural network
CNN Convolutional neural network
RNN Recurrent neural network
DQN Deep Q-network
LSTM Long short-term memory
CCTV Closed-circuit television
IoT Internet of Things
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