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Abstract: Droughts are complex and gradually evolving conditions of extreme water deficits which
can compromise livelihoods and ecological integrity, especially in fragile arid and semi-arid regions
that depend on rainfed farming, such as Kitui West in south-eastern Kenya. Against the background
of low ground-station density, 10 gridded rainfall products and four gridded temperature products
were used to generate an ensemble of 40 calculations of the Standardized Precipitation Evapotranspi-
ration Index (SPEI) to assess uncertainties in the onset, duration, and magnitude of past droughts.
These uncertainties were driven more by variations between the rainfall products than variations
between the temperature products. Remaining ambiguities in drought occurrence could be resolved
by complementing the quantitative analysis with ground-based information from key informants
engaged in disaster relief, effectively formulating an ensemble approach to SPEI-based drought
identification to aid decision making. The reported trend towards drier conditions in Eastern Africa
was confirmed for Kitui West by the majority of data products, whereby the rainfall effect on those
increasingly dry conditions was subtler than just annual and seasonal declines and greater annual
variation of rainfall, which requires further investigation. Nevertheless, the effects of increasing
droughts are already felt on the ground and warrant decisive action.

Keywords: droughts; gridded data; SPEI; semi-arid; Eastern Africa

1. Introduction

Drought is a slow-onset phenomenon characterized by spatiotemporal water deficits
restricting water accessibility and availability for social–ecological systems at varying
temporal scales [1–5]. Characteristic persistent negative anomalies in precipitation and
high temperatures leading to high evapotranspiration from soils and crops eventually have
cross-sectoral effects on agriculture, food, and livelihoods, particularly in East Africa where
rainfed agriculture is the economic mainstay [1,6–11]. Droughts and other environmen-
tal changes prevalent in East Africa, such as agricultural expansion and corresponding
land degradation, contribute to water crises as they aggravate the competition of water
demands [1]. Droughts may be categorized as: (i) meteorological (resulting from rainfall
deficit) or, depending on duration and additional drivers and impacts, (ii) agricultural
(exceptionally low soil moisture), (iii) hydrological (exceptionally low surface and/or sub-
surface water levels), and (iv) socio-economic (resulting from water supply and demand
failure in relation to the previous categories) [1,4].

Droughts have severe, widespread effects on livelihoods, especially in arid and semi-
arid regions, contributing inter alia to declining crop quality and quantity and forest
productivity [12,13], and deterioration of aquatic life [10]. East Africa, and especially Kenya,
is emblematic of the recurring drought regions worldwide [10,14–17]. The agroecosystems
of semi-arid eastern Kenya are particularly vulnerable, with an inconsistent rainfall regime
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and the frequency and intensity of droughts increasing [3,10,12,18]. Kitui County in south-
eastern Kenya is such a vulnerable semi-arid region with inconsistent rainfall and high
temperatures, featuring dry spells in the growing season that impede the dominantly
rainfed agriculture [10,16,19]. Water demand will likely follow the projected population
increase in the area KNBS [20]; hence, monitoring and understanding of drought dynamics
and the development of management interventions are ever more necessary.

Precipitation and temperature are the primary meteorological variables modulating
drought duration and severity. However, the impact of prevailing data uncertainties as
McMillan et al. [21] found in the identification of past droughts, particularly in data scarce
regions like East Africa, has received little attention in the literature. Identification of past
drought occurrence is essential to assess responses and mitigate against current and future
events. The inherent interrelation of hydrological and social factors in drought occurrences,
impacts, and responses has attracted a range of research fields across the natural and social
sciences [2,22,23]. It seems apt, therefore, to complement the meteorological data with
qualitative, ground-based information from disaster response and other sources in order
to verify the drought identification based on the quantitative products. This promising
approach has to date remained largely unexplored.

The Standardized Precipitation Index (SPI) and the Standardized Precipitation-
Evapotranspiration Index (SPEI) are two widely used drought intensity monitoring indices.
The SPI is recommended by the World Meteorological Organization (WMO) [1,15,24] and
requires rainfall as the only parameter. The SPEI, an extension of the SPI, is a more recent
statistical index where the water balance is represented by precipitation and potential
evapotranspiration (PET) Svoboda and Fuchs [25], making it arguably more reliable for the
detection and monitoring of drought [25–27]. The SPEI identifies meteorological drought
at a sub-annual scale but can be a proxy for hydrological, agricultural, and socioeconomic
drought [28].

SPI and SPEI have been applied to various ecosystems in East Africa. Studies have
typically responded to the uneven distribution and general scarcity of station-based data
over East Africa with the use of gridded data products [7,9,29–32]. For instance, Polong
et al. [27] demonstrated near similarity of SPEI and SPI using the Modern-Era Retrospective
Analysis for Research and Applications (MERRA-2) temperature product, merged with the
Climate Hazards group InfraRed Precipitation with Station data (CHIRPS) rainfall product.
Nguvava et al. [33], by contrast emphasized the value of PET for drought identification, and
hence the superiority of SPEI over SPI. Bayissa et al. [34] showed the value of gridded data
for drought assessment in the Ethiopian Upper Blue Nile Basin; in their case, the CHIRPS
product outperformed the Tropical Applications of Meteorology using SATellite data and
ground-based observations (TAMSAT) product, the TAMSAT African Rainfall Climatology
And Time series (TARCAT) product, the Precipitation Estimation from Remotely Sensed
Information using Artificial Neural Network (PERSIANN) product, and the Tropical
Rainfall Measuring Mission (TRMM) product. Gebrechorkos et al. [35] also emphasized
the usefulness of CHIRPS considering the uneven topography of East Africa. The authors
revealed the value of precipitation and minimum and maximum temperature at monthly
resolution for long-term climate variability assessment.

Naumann et al. [9] used an array of five gridded data products to compute SPI, SPEI,
and soil moisture anomalies, demonstrating the uncertainty in existing products, with
discrepancies particularly in mountainous areas and areas with low ground-station density.
Gebrechorkos et al. [35] emphasized the need to consider temperature variation alongside
rainfall and the need for higher quality data to manage data-related uncertainties in the
central Kenyan highlands. Gebremeskel, Gebremedhin, Qiuhong Tang, Siao Sun, Zhongwei
Huang, Xuejun Zhang, and Xingcai Liu [36] provided an account of drought impacts over
East African agroecosystems and the importance of temporal assessment using gridded
data, further emphasizing uncertainty and spatial variability.

Against this background, the objectives of the present study were to: (i) quantify
similarities and differences between precipitation and temperature products available for
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the study region; (ii) propagate these similarities and differences to trend analyses and
SPEI to judge the ambiguity of trends and drought identification; and (iii) explore whether
ambiguities in drought identification can be resolved by triangulation with key informant
information. The paper is structured as follows. Section 2 introduces data and methods.
Sections 3 and 4 present and discuss the results in light of other studies in Kenya and East
Africa. Section 5 concludes with a summary and recommendations for policy and practice.

2. Materials and Methods
2.1. Study Area

Kitui County is a largely semi-arid to arid locality in south-eastern Kenya (Figure 1)
with an intermittent river regime. The county has a population of over 1.1 million persons
with a density of 37 persons per km2, an average household size of 4.3 and a total area
of about 30,430 km2 [20]. The county is characterized by relatively high poverty levels,
with indicators of food and water insecurity highlighted in the sub-national development
blueprint, the Kitui County Integrated Development Plan (2018–2022) [37]. Food poverty
is estimated at about 39.4% compared to Kenya’s average of 32% [37]. Approximately 50%
of inhabitants do not have access to water sources within a walking distance of 5 km [37].
The erratic rainfall regime is considered a principal driver of the risk to the viability of the
mixed crop agroecosystem in the face of recurrent drought conditions [11]. As in most
of East Africa, small-scale mixed crop farming is the primary livelihood in Kitui County,
supporting food production among other benefits [11].

Kenya receives rainfall in two seasons, a longer one in March–May (MAM) and a
shorter but more reliable season in October–December (OND) [38]. Temperatures range
from 14 to 34 ◦C, with January–February being the warmest months followed by MAM [39].
The ecological profile of the county includes seven agroecological zones that reflect the agri-
cultural development potential as well as varying vegetative cover. Dominant soil groups
include Dystric Regosols, Lithosols and Humic Cambisols, the Ferralo category consisting
of Acrisols (ferric), Luvisols and Ferralsols, and Chromic Luvisols and Ferralsols [8].

2.2. SPEI Calculation

The SPEI was calculated using the R package SPEI version 1.7 Vicente-Serrano
et al. [40] for a 30-year period (1987–2016) using all combinations of 10 monthly rain-
fall (P) and four monthly min/max temperature (Tmin/Tmax) products (Table 1), which
yielded a total of 40 data blends. These products were chosen because they had proven
reliable in the variable terrain of East Africa [27,34,35,41]. A 30-year window of analysis
was chosen as all products overlapped during this period. The units of all data sources
were harmonized to mm month−1 and ◦C (monthly average), respectively. Monthly PET
was calculated from Tmin and Tmax using the reduced data Hargreaves method in the SPEI
package. Following previous studies, a 12-month accumulation was used as it yielded a
smoother annual drought visualization compared to 3- and 6-month accumulations, while
depicting generally similar drought patterns [27,42]. The 12-month SPEI also represented
an annual hydrometeorological regime matching the semi-arid agro-ecology of the study
area which often receives minimal rainfall. It also aligned with the observed inter-annual
distribution of drought instances as learned from interviews in the field. The accumulated
differences between rainfall and PET were normalized using the log-logistic distribution,
fitted using the unbiased estimator of probability-weighted moments, as implemented in
the SPEI package. In addition to the SPEI, the P and Tmin/Tmax anomaly were derived
by computing the Standardized Anomaly Index (SAI) after Ali and Lebel [43] where the
annual deviation of the 30-year mean is calculated and then normalized by the 30-year
standard deviation.
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Figure 1. Map of the study area, Kitui West Sub County, in Kitui County, south-eastern Kenya, with
a Digital Elevation Model (DEM) overlay obtained from, https://dwtkns.com/srtm30m/, accessed
on 25 February 2020.

2.3. Meteorological Data Products
2.3.1. Rainfall (P) Only Products

The data from the Global Precipitation Climatology Centre (GPCC), operated by the
German Weather Service, consists of the world’s largest database of station-based precipi-
tation data [44]. The primarily monthly data is used to develop gridded products such as
version 6 monthly rainfall data, which integrates the largest station number. The GPCC
data showed reliable performance when compared at various locations at the global level
compared to the Climatic Research Unit gridded data (CRU CL 2.0) and ERA40 product
from the European Center for Medium-Range Weather Forecasts (ECMWF). The data from
the Global Precipitation Climatology Project (GPCP) from the World Data Center for Meteo-

https://dwtkns.com/srtm30m/
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rology, in turn, is a monthly gridded product built by merging satellite estimates and gauge
analysis from the GPCC. Version 2.3 includes adjustments for improved rainfall estimates
compared to version 2.2 [45]. A study over the complex terrain of the Ethiopian highlands
by Dinku et al. [7] showed the applicability of the product under those circumstances
compared to the TRMM 3B43 and the Climate Prediction Center (CPC) Merged Analysis of
Precipitation (CMAP) data.

The CHIRPS data is a merged product including five satellite-based and ground-
station products [41]. It has previously proven reliable in the uneven topography of East
Africa [30]. Over Kenya, the product has demonstrated remarkable performance as Ayugi
et al. [46] found out and over drier regions as Gebrechorkos et al. [35] report, where it out-
performed the Africa Rainfall Climatology (ARC2) and CHIRPS datasets. The latest version
of TAMSAT data (TAMSAT 3.1), in turn, merges Meteosat thermal infrared imagery and
rain gauge observations covering the entire African continent since 1983 [47]. Alongside
the TRMM 3B42 and Climate Prediction Center Morphing Method (CMORPH) product,
TAMSAT demonstrated high performance over the complex Ethiopian highlands in a study
by [7]. Another largely satellite based product, the PERSIANN-CDR (Climate Data Record),
is developed from GPCP and satellite-based data [48]. The PERSIANN-CDR has proven
useful in detecting disasters as Ashouri et al. [48] showed in the 2005 Katrina hurricane
product verification study, comparing also GPCP, TRMM, and the CPC gridded data.

2.3.2. Rainfall (P) and Temperature (Tmin/Tmax) Products

The Kenya Meteorological Department (KMD) indicated Machakos and Makindu,
located approximately 100–200 km away from the study area KMD [32], as the two nearest
ground stations. The nearest station, Kitui Agrometeorological Station, had only a 5-
year record and too many data gaps to be useful for our analysis. The same applied to
adjacent volunteer stations [32]. Hence the gridded data products could only be compared
to the Machakos and Makindu stations that had reliable records [32,49]. The gridded
products are summarized in Table 1. The KMD also provided gridded data for Kitui
West [32,50]. This product is developed through the Enhancing National Climate Services
(ENACTS) program [50–52], which works with national meteorological services across
Africa to improve the quality of climate data and enhance access in essential sectors such
as agriculture to counter the problem of scarce ground-based stations [29,52]. The KMD
product combines spatially downscaled reanalysis data and bias corrected satellite-based
rainfall estimates with sparse station-based observations. For Tmax and Tmin, 37 weather
stations across Kenya were used and merged with data from the JRA-55 (Japanese 55-year
Reanalysis) product (see Table 1 for JRA-55 background) [53]. Rainfall was generated using
data from about 700 stations which were merged with satellite data from the CHIRPS
product (see Table 1) [41,50].

The CRU TS data is a gridded product based on angular distance weighting of ground-
station data from national meteorological services around the world [54]. The product’s
performance has been compared to the GPCC data. The JRA-55 data, produced by the
Japanese Meteorological Agency, is an improvement of the predecessor, JRA-25, where
shortcomings, such as cold bias in the lower atmosphere, dry bias in the Amazon, and
a longer time scale, since 1958, have been addressed [55]. Following Hua et al. [56], the
product has demonstrated reliability in central equatorial Africa where a comparison was
made with other reanalysis products including MERRA-2, ERA-Interim, The Twentieth
Century Reanalysis (20CR), the Climate Forecast System (CFSR), the National Center for
Atmospheric Prediction NCEP-1 and NCEP-2. The ERA5 data is a fifth-generation reanaly-
sis product of the ECMWF [57]. It has a longer temporal coverage and higher resolution
than the predecessor, ERA-Interim, and provides more parameters at hourly resolution
accompanied by uncertainty information. A study by Tetzner et al. [58] compared the
performance of the product to in-situ stations, with Kawohl [59] revealing the usefulness
of ERA5 especially at high elevations. The MERRA-2 data is a reanalysis product of the
Global Modeling and Assimilation Office of the Goddard Space Flight Center developed



Water 2021, 13, 3611 6 of 20

towards the aim of an integrated earth system analysis [60]. The satisfactory performance
of the product as compared to the Global Precipitation Climatology Project (GPCP) and
JRA-55 products is depicted by Bosilovich et al. [61] and by Hua et al. [56] over central
equatorial Africa through comparison with the new gauge-based NIC31 product alongside
other reanalysis data such as JRA-55 and ERA-Interim.

Table 1. Rainfall (P) and temperature (Tmin/Tmax) products used in the computation of SPEI. Original daily data were
aggregated to a common monthly resolution. Only validated and widely used products with a length of more than 30 years
were used.

Data Product URL Spatial Resolution Temporal
Resolution

Temporal
Coverage

Spatial
Coverage

Design
Application

Data
Sources

KMD gridded P
and Tmin/Tmax;

P from
ground-stations
Machakos and

Makindu
[32,50,52]

https:
//meteo.go.ke/,
accessed on 25
February 2020.

0.0375◦ (P)/1.25◦

(Tmin/Tmax) Monthly
before

1987-after
2016

Kenya Drought
monitoring

Gauge,
satellite,

reanalysis

JRA-55 P and
Tmin/Tmax

[53,62]

https:
//rda.ucar.edu/

datasets/ds628.0/,
accessed on

21 February 2021.

1.25◦ Hourly Since 1958 Global

Climate
variabil-

ity/change
monitoring

Reanalysis

ERA5 P [57]

https://cds.
climate.copernicus.

eu/cdsapp#!/
dataset/reanalysis-

era5-land-
monthsly-means?

tab=overview,
accessed on
6 May 2020.

1◦ × 0.1◦; native
resolution 9 km Hourly Since 1981 Global Drought

forecasting Reanalysis

MERRA-2 P and
Tmin/Tmax [60]

https:
//disc.gsfc.nasa.

gov/information/
howto?title=

How%20to%20
Download%20
MERRA-2%20

Daily%20Mean%
20Data, accessed
on 20 June 2020.

0.5◦ × 0.625◦ Hourly 1980–2017 Global Climate
monitoring Reanalysis

GPCC 2018 P
[44]

https://opendata.
dwd.de/climate_

environment/
GPCC/html/,

accessed on
17 March 2020.

0.5◦ Daily 1891–2016 Global Drought
monitoring

Gauge,
satellite

GPCP 2.03 P [45]

https:
//www.ncei.noaa.
gov/data/global-

precipitation-
climatology-
project-gpcp-

monthly/access/,
accessed on

12 June 2020.

0.5◦ Daily 1901–2018 Global
Climate
variabil-

ity/extremes

Gauge,
reanalysis

CRU TS 4.03 P
and Tmin/Tmax

[54]

https:
//www.chc.ucsb.
edu/data/chirps,

accessed on
23 March 2020.

0.05◦ 5 days Since 1981 50◦ S–50◦ N

Early
warning,
drought

monitoring

Gauge,
satellite

https://meteo.go.ke/
https://meteo.go.ke/
https://rda.ucar.edu/datasets/ds628.0/
https://rda.ucar.edu/datasets/ds628.0/
https://rda.ucar.edu/datasets/ds628.0/
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthsly-means?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthsly-means?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthsly-means?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthsly-means?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthsly-means?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthsly-means?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthsly-means?tab=overview
https://disc.gsfc.nasa.gov/information/howto?title=How%20to%20Download%20MERRA-2%20Daily%20Mean%20Data
https://disc.gsfc.nasa.gov/information/howto?title=How%20to%20Download%20MERRA-2%20Daily%20Mean%20Data
https://disc.gsfc.nasa.gov/information/howto?title=How%20to%20Download%20MERRA-2%20Daily%20Mean%20Data
https://disc.gsfc.nasa.gov/information/howto?title=How%20to%20Download%20MERRA-2%20Daily%20Mean%20Data
https://disc.gsfc.nasa.gov/information/howto?title=How%20to%20Download%20MERRA-2%20Daily%20Mean%20Data
https://disc.gsfc.nasa.gov/information/howto?title=How%20to%20Download%20MERRA-2%20Daily%20Mean%20Data
https://disc.gsfc.nasa.gov/information/howto?title=How%20to%20Download%20MERRA-2%20Daily%20Mean%20Data
https://disc.gsfc.nasa.gov/information/howto?title=How%20to%20Download%20MERRA-2%20Daily%20Mean%20Data
https://disc.gsfc.nasa.gov/information/howto?title=How%20to%20Download%20MERRA-2%20Daily%20Mean%20Data
https://opendata.dwd.de/climate_environment/GPCC/html/
https://opendata.dwd.de/climate_environment/GPCC/html/
https://opendata.dwd.de/climate_environment/GPCC/html/
https://opendata.dwd.de/climate_environment/GPCC/html/
https://www.ncei.noaa.gov/data/global-precipitation-climatology-project-gpcp-monthly/access/
https://www.ncei.noaa.gov/data/global-precipitation-climatology-project-gpcp-monthly/access/
https://www.ncei.noaa.gov/data/global-precipitation-climatology-project-gpcp-monthly/access/
https://www.ncei.noaa.gov/data/global-precipitation-climatology-project-gpcp-monthly/access/
https://www.ncei.noaa.gov/data/global-precipitation-climatology-project-gpcp-monthly/access/
https://www.ncei.noaa.gov/data/global-precipitation-climatology-project-gpcp-monthly/access/
https://www.ncei.noaa.gov/data/global-precipitation-climatology-project-gpcp-monthly/access/
https://www.chc.ucsb.edu/data/chirps
https://www.chc.ucsb.edu/data/chirps
https://www.chc.ucsb.edu/data/chirps
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Table 1. Cont.

Data Product URL Spatial
Resolution

Temporal
Resolution

Temporal
Coverage

Spatial
Coverage Design Application Data

Sources

CHIRPS 2.0 P
[41]

https://www.
chc.ucsb.edu/
data/chirps,
accessed on

18 September 2020.

0.0375◦ 5 days, daily Since 1983 50◦ S–50◦ N
Risk assessment,

drought insurance,
early warning

Satellite

TAMSAT 3.1 P
[47]

https:
//www.tamsat.

org.uk/data/
rfe/index.cgi#
main-content,
accessed on

16 June 2020.

0.25◦ Hourly Since 1983 60◦ S–60◦ N
Climate

change/variability
studies

Satellite

2.4. Areal Averages

The meteorological data were averaged over the study area by weighted average,
proportional to the contribution of each grid cell to the study area shape (see Figure S1
and Equation (S1) of the Supplementary Information). For each data product, the grids
differed in their intersection with the study area (see Figure S2). Correlations of the areal
averages with the nearest ground-stations at Machakos and Makindu and the gridded
rainfall data provided by the KMD were greater than 0.6 (see Figure S3). Following Sun
et al. [63], we used the native resolution of the products (Table 1) in the computation of areal
averages. Nevertheless, topographic information could be included in interpolation in
future studies, certainly when covering greater areas in East Africa where the topography
is highly variable.

2.5. Key Informant Interviews

Balint et al. [3] recommend the triangulation of SPEI output in order to reinforce
the results while also contributing to a broader understanding of the temporal evolu-
tion of droughts and ongoing responses. Following Denscombe [64], we additionally
view methodological triangulation (referred to as triangulation in the text) as an optimal
approach for integrating qualitative and quantitative data to generate a confirmatory pic-
ture. Therefore, in addition to the SPEI calculations using the 40 blends of rainfall and
temperature products, information on drought occurrence and severity was obtained by
interviews with 14 key informants with a track record of working on droughts and related
activities, e.g., food security, humanitarian, and farm-based interventions, in the study
region (Table 2). The key informants include representatives from Non-Governmental
Organizations (NGOs) and government agencies at the national and county-level). The
interviews were conducted between August 2020 and February 2021 as video meetings
and were preceded by official communication. They included discussions under the broad
subjects of drought frequency, trends, and history as observed in the interviewee’s line
of activity, nature of responses implemented with regard to water storage and on-farm
interventions, collaboration with the affected communities, and experiences and prospects
under the relatively new county governance system. The interview guide is included in
the Supplementary Information under Breakdown S1. A snowball sampling approach was
used, where each key informant was asked to suggest equally active organizations in the
study area for further interviews [64]. The organization’s profile and activities were also
reviewed via desktop-based research. Some interviews were recorded upon consent of the
interviewee; for others, notes were taken.

https://www.chc.ucsb.edu/data/chirps
https://www.chc.ucsb.edu/data/chirps
https://www.chc.ucsb.edu/data/chirps
https://www.tamsat.org.uk/data/rfe/index.cgi#main-content
https://www.tamsat.org.uk/data/rfe/index.cgi#main-content
https://www.tamsat.org.uk/data/rfe/index.cgi#main-content
https://www.tamsat.org.uk/data/rfe/index.cgi#main-content
https://www.tamsat.org.uk/data/rfe/index.cgi#main-content
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Table 2. Key informants with operations in Kitui West and their corresponding designation, categorization, organization, or
department and interview date.

Organization/ Department Category Interview Date Website

CARITAS-Kitui NGO 10 January 2020 https://caritaskitui.org/

Africa sand dam foundation-ASDF NGO 15 May 2020 https://asdfafrica.org/

Anglican Development Services
ADS-Eastern NGO 5 August 2020 https://www.adseastern.org/

Kenya Red Cross NGO 12 August 2020 https://www.redcross.or.ke/

Sahelian Solutions (SASOL) NGO 12 October 2020 https://www.sasolfoundation.co.ke/

National Drought Management
Authority (NDMA)-Kenya National Government 12 November 2020 https://www.ndma.go.ke/

Adventist Development and Relief
Agency (ADRA)-Kenya NGO 01 December 2020 https://www.adrakenya.org/

German Agro Action NGO 17 December 2020 https://www.welthungerhilfe.org/our-work/
countries/kenya/

Kitui County Government County Government 12 January 2021 https://kitui.go.ke/countygovt/ministries/
ministry-of-agriculture-water-and-livestock/

World Vision NGO 14 January 2021 https://www.wvi.org/kenya

National Water Harvesting & Storage
Authority (NWHA)-Kenya National Government 26 January 2021 https://www.waterauthority.go.ke/index.php?

option=com_content&view=featured&Itemid=369

Samaritans Purse NGO 29 January 2021 https://www.samaritanspurse.org/operation-
christmas-child-countries/kenya/

Kitui County Government County Government 5 February 2021 https://kitui.go.ke/countygovt/about-kitui/

Water Resources Management Authority
(WARMA)-Kenya National Government 26 February 2021 https://wra.go.ke/

3. Results
3.1. Precipitation and Temperature Variability

The inter-annual variability in precipitation across the study area is high and fre-
quently exceeded ±1 standard deviation (in 30% of the cases), less often ±2 standard
deviations (5% of the cases), (Figure 2; for zoomed-in versions see Supplementary Infor-
mation, Figure S5). Mean absolute deviation; for zoomed-in versions see Supplementary
Information, Figure S5). Mean absolute deviation was 154 mm for annual precipitation,
and negative precipitation anomalies were more frequent but had lower magnitudes as
compared to the positive precipitation anomalies. The annual mean of all products was
656 mm, with a standard deviation (SD) of 197 mm and a coefficient of variation (CV) of
32%. The data products often, but not always, agreed on the direction of the anomaly (70%
of the cases), but generally disagreed on the magnitude of the anomaly across all years
(Figure 2). The precipitation products in greatest disagreement with the others were JRA-55
and MERRA-2 reanalysis. These products showed positive anomalies when most of the
other products agreed on negative anomalies in 1993, 1995–1996 (both), 1999 (MERRA-2),
2000–2001, 2003, 2009–2010 (JRA-55), and 2013–2014, 2016 (MERRA-2), or negative anoma-
lies in case of otherwise widespread agreement on positive anomalies in 1988 (both), 1989,
1994 (JRA-55), 2002 (MERRA-2), and 2015 (JRA-55). These two products also turned out the
least correlated with other products and the measurement stations (Figure S3; correlations
between 0.5 and 0.8). The greatest inter-product agreement was found in the years 1987,
1991 (negative anomalies), 1997 (positive anomaly), 2004–2005 (negative anomalies), 2006
(positive anomaly) and 2007–2008 (negative anomalies). The greatest disagreement was
found in the years 1989, 1992–1993, 1995, 1998, and 2001, and the more recent years of 2010,
2012–2013, and 2015–2016.

https://caritaskitui.org/
https://asdfafrica.org/
https://www.adseastern.org/
https://www.redcross.or.ke/
https://www.sasolfoundation.co.ke/
https://www.ndma.go.ke/
https://www.adrakenya.org/
https://www.welthungerhilfe.org/our-work/countries/kenya/
https://www.welthungerhilfe.org/our-work/countries/kenya/
https://kitui.go.ke/countygovt/ministries/ministry-of-agriculture-water-and-livestock/
https://kitui.go.ke/countygovt/ministries/ministry-of-agriculture-water-and-livestock/
https://www.wvi.org/kenya
https://www.waterauthority.go.ke/index.php?option=com_content&view=featured&Itemid=369
https://www.waterauthority.go.ke/index.php?option=com_content&view=featured&Itemid=369
https://www.samaritanspurse.org/operation-christmas-child-countries/kenya/
https://www.samaritanspurse.org/operation-christmas-child-countries/kenya/
https://kitui.go.ke/countygovt/about-kitui/
https://wra.go.ke/
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Figure 2. Annual precipitation anomalies as conveyed by the different data products. Figure 2. Annual precipitation anomalies as conveyed by the different data products.

There was less variation in Tmin/Tmax compared to precipitation (mean = 29.97 ◦C,
SD = 0.86 ◦C, CV = 1.74%; mean = 17.59 ◦C, SD = 0.30 ◦C, CV = 1.67% for Tmax and Tmin,
respectively). The Tmin/Tmax products were more similar in inter-annual pattern than
magnitude (Figure 3). KMD and MERRA-2 largely agreed both in terms of Tmax pattern
and magnitude, whereas CRU and JRA-55 showed a similar pattern but lower values (see
Table S1 for means and CV). For Tmin, the products were largely in agreement in terms
of pattern, but not in magnitude, with mean Tmin decreasing in the order KMD, JRA-55,
MERRA-2, and CRU (see Figure 3 and Table S1). The agreement in pattern could also be
seen in the correlation analysis (Figure S4; all coefficients greater than 0.8).
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3.2. Precipitation, Temperature Trends, and SPEI-Based Drought Identification

All products agreed (at the 0.01 significance level, referring to the t-test of significance
of linear regression slope) on an upward trend of Tmin of about 0.02–0.03 ◦C per year and
of Tmax of about 0.02–0.06 ◦C per year (Figure 4). The annual rainfall sums showed no
trend or a declining trend, but none of these were significant at the 0.01 level (Figure 5).
The standard deviations of rainfall likewise showed no significant trends (Figure 6). The
same applied for seasonal trends (Figure 7). Despite the differences in the precipitation
and temperature products, once propagated to the SPEI the differences smoothed out, yet
differences in onset, duration, and magnitude of drought remained (Figures S7–S10).
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black dots represent annual precipitation values with the blue line indicating the linear regression.

Out of the 40 blends, 18 agreed on a statistically significant (at 0.01 level) trend in
SPEI of 0.0001 to −0.0098 units month−1, suggesting increasing instances of drought occur-
rence (Figure S7–S10). Those trends were consistent across the temperature products with
CHIRPS, GPCP, KMD_grid, and PERSIANN rainfall, sometimes with ERA-5 and JRA-55,
and in one instance with CRU rainfall (Figure S7–S10). Plotting the SPEI mean and standard
deviation across the product blends further consolidated the picture (Figure 8). Unam-
biguous drought years, according to the data products, were 1994, 1996–1997, 1999–2000,
2005–2006, 2009, and 2011. More ambiguous were 1988, 1991–1993, 2001–2004, 2008, 2010,
and 2012–2016. Drier conditions in recent years, as suggested by the trend analysis, could
be seen in 2005–2006 and 2008–2012, compared to more positive anomalies in the 1990s
and early 2000s.

The information from the key informant interviews agrees with all unambiguous
droughts in the timespan (2005–2006, 2009, and 2011) and the one year which was unam-
biguously wet (2007). The interviews also pointed to droughts in 2008, 2010, 2012, and
2014–2015 where the SPEI information based on the different data products was ambiguous.
In the other ambiguous years, 2013 and 2016, the key informant interviews pointed to no
drought. Hence it would seem that key informants engaged in drought relief on the ground
can help resolve the ambiguity resulting from the disagreement between meteorological
data products. Their input is thus fundamental for drought identification in regions with
scarce ground stations.
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4. Discussion
4.1. Uncertainty in Rainfall and Temperature Estimates and Propagation to SPEI

Reliable assessments of the onset, magnitude, and duration of drought are vital in
agro-pastoral ecosystems, not only to understand impacts on livelihoods but also to signal
and assess the reliability of responses [2,65]. In the absence of reliable meteorological
data as a result of sparse in-situ station density over Kenya [16,32,35] and other African
countries, rainfall and temperature data from gridded products can overcome data scarcity
for large-scale drought assessment [7,46,66]. These products, however, are subject to
uncertainty, including gauge-level measurement errors in the underlying station data,
the number and representativeness of the stations used, interpolation steps, structural,
parameter, and general input data uncertainties of the meteorological models used [21].

The abundance of gridded data products available thus creates both a challenge
and an opportunity for users. Choosing a single product can lead to biased drought
estimations as AghaKouchak et al. [67] found out; hence; the use of multiple products in an
ensemble approach is preferable [68]. Such an approach will add uncertainty information
to the gridded products that can improve decision making in response and management
operations [67]. That said, uncertainty in drought magnitude should in no way instill a
sense of complacency as increasing extreme events such as droughts over East Africa have
already resulted in deterioration of livelihoods and ecosystem integrity [69–71].

In the current study, uncertainty manifests itself in differences between the data values
of gridded meteorological products, with annual minimum and maximum temperature
varying less than rainfall. The temporal pattern of the Tmax and Tmin input was also
more similar across products than that of rainfall. The variation of SPEI across data
blends therefore predominantly reflects the variation of the rainfall data. Plotting the SPEI
ensemble mean ±2 standard deviations identified periods of unambiguous dry and wet
years, while ambiguous periods could be resolved by information from key informants
engaged in drought relief on the ground. It should be noted that the uniform weighting of
SPEI ensemble members neglects the similarity between some of the data blends, as they
use similar data and assumptions, which are, however, hard to disentangle and quantify in
an alternative weighting scheme. As such, we could not authoritatively pick out a superior
data product but observed the similarity in detecting drier years. Drought occurrence was
thereby much less ambiguous than drought severity.

4.2. Annual and Seasonal Trends

By comparing 10 precipitation products, we found no evidence of a statistically signif-
icant trend (although there could be a trend), neither in annual rainfall nor seasonal rainfall
totals, nor annual standard deviations. This finding is in contrast with the declining rainfall
trend over East Africa reported by [36,38,71,72] and [11]. It is also in contrast with the key
informant information that the March-April-May (MAM) rain season, being the longer of
the two seasons and essential in the farming calendar, has demonstrated unreliability in
recent years. Agricultural water demand is likely rising considering the growing popu-
lation [20,37], nevertheless declining length of the March-April-May season could be the
principal factor of increasing water scarcity, rather than burgeoning anthropogenic water
needs. Since rain-fed agriculture is the primary source of livelihoods in the study area and
the primary contributor to the economy [36,37], a decrease of rainfall in the long season
and a general shortening of the season is a major concern [73]. However, the reported
unreliability of the March-April-May season in recent years could also be reflective of
generally drier soil conditions in response to the positive temperature trend which we did
find across all data products, or changes in sub-seasonal rainfall timing that are not visible
as a trend in annual standard deviations. Both would propagate to lower SPEI values,
which in our case and for most products agree with an increase in drought instances in
recent years.

The absence of evidence of a significant trend in the shorter October-November-
December (OND) rain season in our case (Figure 7) differs from recent studies over
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Kenya [38]. The key informants and the Kenyan Government GoK [74], however, support
our finding by mentioning that the shorter OND season has shown more reliability in
supporting farming compared to the longer MAM season. This is manifested by greater
seasonal rainfall averages in the OND season in most products (Table S2). The OND season,
however, shows greater variation than the MAM season (Table S2) as also reported by [75].
The MAM, especially due to its lower variability, thus remains important for agroecosys-
tem productivity in the region, with a likely atmospheric teleconnection with the OND as
shown by [71]. The MAM season plays a primary role in the farming calendar of the study
area, accounting for about 30% of crop productivity, and supporting cultivation of staple
pulses such as pigeon peas and green grams [74].

With regard to temperature, all data products compared in this study agreed on posi-
tive trends in min/max temperatures. While the products were in greater agreement about
the magnitude of the Tmin trend, the Tmax trend magnitude varied more between prod-
ucts. This agrees with findings over Kenya by Ayugi and Tan [46] who found increasing
trends of min/max temperatures, and Camberlin [76] who similarly reports a marked
warming in the Horn of Africa. Ayugi and Tan [46] found warm days to be increasing
and cold nights to be decreasing, as well as summer days to be increasing, over Kenya,
confirming the picture of rising temperatures.

4.3. Anomalies, Drought Identification, and the Value of Triangulation

The 10 different precipitation products compared in this study generally agreed on
years with negative rainfall anomalies. However, the products disagreed considerably
on the magnitudes of those anomalies. The anomalies, seen in Figure 2, demonstrate the
prevailing inter-annual variability in the study area [75]. The anomalies propagated to
droughts of varying magnitude, confirmed by unanimously negative SPEI values or key
informants in 27% of the 30 years. However, in 1988, 1991–1993, and 2001–2004 there was
disagreement between the products and the key informant information did not reach that
far back.

The 2010–2011 period is widely reported as the worst drought in a 60-year span in
the Horn of Africa [11,71,77] which is confirmed by the key informants for the study area
but unanimously confirmed by the SPEI products only for 2011. While in most years
the multi-product approach allows us to robustly identify drought and get a handle on
the uncertainty in drought magnitude, from 2008 onwards, the greater disagreement
between the data products, both in terms of SPEI direction and magnitude, highlights
the potential of information from actors engaged in drought relief in the region. Our key
informants worked in disaster risk management, food security, water storage/harvesting
and climate change resilience building, i.e., sectors that are sensitive to drought conditions.
These experts’ inputs are therefore viewed as important in the continued assessment and
response to droughts with their observations contributing to resolving ambiguity.

These inputs are particularly valuable in drought assessments for relatively con-
strained spatial extents, as informant data on droughts can be assumed to cover the entire
study area. For large-area drought estimations covering larger regions or featuring more
localized droughts, spatially explicit information on the location and extent of informant
activities must be collected during interviews and integrated into the verification of the
drought occurrence estimation. The involvement of key informant observations and mete-
orological data covers the blind spots of the respective category.

According to the EM-DAT global disasters database EM-DAT [78], the year 2010
experienced large-scale drought conditions in the coastal, northern-most, and north-eastern
locations. Our analysis suggests that the 2010–2011 drought conditions had existed already
since 2008 and continued until 2012, even though the year 2010 showed wetter conditions
in some of the products, as also confirmed by [70]. The effects of the severe 2011 drought
might have carried over to 2012, with SPEI showing no sign of relief, although the actual
magnitude of SPEI is ambiguous in that year. The effects of this prolonged drought period
were devastating among the households largely dependent on rainfed agriculture. Essential
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sectors such as energy, which is largely hydro-based, were negatively impacted across East
Africa [2,6]. In Kenya, a total of 3.75 million persons, primarily in the north and parts of the
south-east, were affected by the resulting food shortage according to the global record of
mass disaster occurrence [78]. The drought period 2005–2006, confirmed by most products,
was followed by wetter conditions in 2007, which exacerbated impacts. As [18,36,77]
discuss, livelihoods and natural ecosystems across East Africa were severely impacted
by the drought and, as Nicholson [70] reiterates, subsequent flash floods. The drought
conditions seem to have commenced in 2004 and peaked in 2006, a classic demonstration
of the evolving nature of the hazard [4,22].

A case of disagreement between the SPEI blends are the years 2014–2015, which
were confirmed as drought years by actors engaged in drought relief in the area and the
EM-DAT database. EM-DAT mentions the year 2014 with only a few areas in northern
and north-eastern Kenya affected. In this light, south-eastern Kenya, including Kitui West,
might have seen milder drought conditions. The National Drought Management Authority
of the Kenyan government (NDMA) reports that in 2013–2014, during the OND, the greater
Kitui region experienced moderate drought conditions and instances of decline in crop
production and crop failure [79,80]. Triangulation of the SPEI calculations with qualitative
information on the ground showed its greatest value here. The qualitative input effectively
resolved the ambiguity between the data products. However, the qualitative data, too,
have the potential for errors, including false recollections, difficulties in estimating the
length of a drought and distinguishing trends and extremes, influences of recent events
and media attention on past occurrences, and willfully biased responses with the aim to
attract funding by exaggerating the severity of the drought situation [81]. On their own, the
qualitative data lack information on drought magnitude and timing, which is something
that the SPEI analysis can provide, albeit with uncertainty.

5. Conclusions

We revealed uncertainties related to the choice of rainfall and temperature products for
the calculation of SPEI in the context of identifying past drought conditions in the semi-arid
Kitui West area of Kitui County, south-east Kenya. We thereby complement existing studies
with a demonstration of the variation of data products and the resulting SPEI calculations at
the sub-national scale, which is relevant for assessing drought impacts on agriculture-based
livelihoods. In an attempt to resolve the ambiguity in drought identification resulting from
the differences in products, we assessed the value of complementing the SPEI analysis with
key informant interviews, effectively demonstrating the added value of triangulation.

We observed that blends of 10 gridded rainfall and four gridded temperature products
unanimously identified years experiencing drought conditions amidst a few variations.
Moreover, 18 of the 40 SPEI combinations, revealed trends towards drier conditions,
statistically significant at the 0.01 level. Using the ensemble of gridded meteorological
data blends in the calculation of drought indices, the SPEI in this study, facilitated greater
understanding of the uncertainties in onset, duration, and magnitude of past droughts.
These uncertainties were driven more by the variation between rainfall products than
temperature products in our case. Understanding past droughts is important to study
their social-ecological impacts and assess the adequacy of responses in the future. Our
study thus holds an important lesson for studies of past droughts: using any one of the
available data products would risk severely misrepresenting drought characteristics and
perhaps instituting erroneous responses. It is similarly important to bear in mind that,
in the absence of a dense ground-station network, there is no benchmark dataset against
which the individual data products can be assessed. Searching for a “best” product is thus
not viable, and the value of these products can only be realized in an ensemble as we have
revealed.

An ensemble approach to SPEI could not, however, identify all droughts unanimously
in our case, using an ensemble of 10 rainfall products times four temperature products
over the Kitui West area in south-east Kenya. This ambiguity could only be resolved with
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the information from 14 key informants engaged in disaster relief on the ground. Our
study thus demonstrates the value of triangulating quantitative drought analysis with
qualitative data. The qualitative data alone, in turn, would miss information on drought
onset, duration, and magnitude; this is what the ensemble approach to SPEI provides,
albeit with uncertainty. It is thus the juxtaposition of both types of data that is most fruitful.

Engaging organizations involved in disaster relief locally in drought identification will
also strengthen their role in the region. Since drought is a gradually evolving phenomenon
with long-lasting socio-economic impacts, there is need to develop and/or intensify in-
tegrated interventions and capacity building where affected communities are actively
engaged at sub-national levels. The evolving and complex dry conditions accompanied by
uncertainty are a challenge for the relatively recently devolved Kitui County administra-
tion, which has the mandate to coordinate multistakeholder risk management strategies at
county-level. Such management strategies and collaborative networks should be flexible
to detect, track, and respond effectively to various unique drought episodes. Effective
responses include enhancement of government, private sector, and community-based dis-
aster relief systems, targeting, for example, crop diversification with cultivation of drought
resistant varieties as championed by the Kenya Red Cross [82]. An ensemble approach to
SPEI will provide the necessary quantitative basis for these policies, while the experience
of community, regional and national organizations will help resolve data ambiguities as
well as strengthen the implementation of national policies.

Appreciating uncertainties in drought characteristics should in no way distract from
decisive action to mitigate the impacts of droughts, improve disaster relief, and strengthen
adaptive capacity, because extreme events such as droughts have been increasing over East
Africa and have already resulted in deterioration of livelihoods and ecosystem integrity.
While there is likely spatial variation over the region, we confirmed a statistically significant
trend towards increasingly drier conditions also for Kitui West with just over half of the SPEI
ensemble members. This trend was partly driven by a significant increase of minimum and
maximum temperature over time in all data products, while negative annual and seasonal
rainfall trends in some of the products could not be proven statistically significant. Beyond
the temperature, and therefore evapotranspiration, effect, it will be worth investigating
next how the timing and sub-annual variation of rainfall propagates into negative SPEI
values, i.e., drier conditions. Such an analysis should go beyond trends in annual standard
deviations of rainfall, which in our case did not turn out significantly either.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/w13243611/s1, Figure S1: Illustration of the areal weighting approach, Figure S2: Various
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anomalies zoomed in the respective decades over the study period ; zoom1, 1987–1996, zoom2,
1997–2006, and zoom3, 2007–2016, Figure S6: Cumulative negative SPEI among the 40 combinations,
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the 10 rainfall products, with linear trend superimposed., Table S1: KMD-Grid, CRU, MERRA-2,
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statistics,. Equation (S1): Steps used in weighting of respective Gridded products., Breakdown S1:
Guiding questions used in key informant interviews.
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