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Abstract: Information on the transport of fluvial suspended sediment loads (SSL) is crucial due to
its effects on water quality, pollutant transport and transformation, dam operations, and reservoir
capacity. As such, adopting a reliable method to accurately estimate SSL is a key topic for watershed
managers, hydrologists, river engineers, and hydraulic engineers. One of the most common methods
for estimating SSL or suspended sediment concentrations (SSC) is sediment rating curve (SRC), which
has several weaknesses. Here, we optimize the SRC equation using two main approaches. Firstly,
three well recognized metaheuristic algorithms (genetic algorithm (GA), particle swarm optimization
(PSO), and imperialist competitive algorithm (ICA)) were used together with two classical approaches
(food and agriculture organization (FAO) and non-parametric smearing estimator (CF2)) to optimize
the coefficients of the SRC regression model. The second approach uses separation of data based
on season and flow discharge (Qw) characteristics. A support vector regression (SVR) model using
only Qw as an input was employed for SSC estimation and the results were compared with the SRC
and its optimized versions. Metaheuristic algorithms improved the performance of the SRC model
and the PSO model outperformed the other algorithms. These results also indicate that the model
performance was directly related to the temporal separation of data. Based on these findings, if data
are more homogenous and related to the limited climatic conditions used in the estimation of SSC,
the estimations are improved. Moreover, it was observed that optimizing SRC through metaheuristic
models was much more effective than separating data in the SCR model. The results also indicated
that with the same input data, SVR was superior to the SRC model and its optimized version.

Keywords: suspended sediment modeling; metaheuristic algorithm; sediment rating curve; support
vector regression; data separation

1. Introduction

Having adequate up-to-date information about sediment loads in rivers is important
for hydraulic, river engineering, and water resources projects [1,2]. Sediment transport
changes channel dynamics and ecologic and hydraulic conditions of the river [3]. Following
the definitions of Einstein [4], a river can carry sediment in two distinct modes: bed
load and suspended load that depend on particle size, weight and shape, and on the
ambient hydraulic conditions. The fluvial sediment load is commonly measured directly or
calculated indirectly [3]. Typically, due to lack of facilities, technical constraints, difficulty
in accessing remote areas, and high costs, direct and continuous collection of sediment
data is not possible, especially in developing countries like Iran [5]. A review of previous
studies shows that, many researchers used indirect methods or alternative approaches for
estimating of bed load [6–9] and suspended load [6,10]. Most of these sediment transport
functions require comprehensive information on the channel, flow conditions, and sediment
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characteristics [11]. Therefore, use of simple methods with accessible parameters to estimate
sediment load is a more practical alternative; such relationships can be derived using
regression analysis [3]. Sediment rating curve (SRC) is the most common regression-based
model which has been applied throughout the world in different environmental conditions
to estimate suspended sediment in rivers [12–20]. This method expresses the empirical
relationship between suspended sediment loads (SSL) or suspended sediment concentrations
(SSC) and flow discharge (Qw) by power, linear, or polynomial functions [13,19–23].

However, there are several weaknesses with the SRC that generate inaccuracies in
modeling and estimation of SSL. The first limitation arises from the bias caused by the
logarithmic transformation of data during the computation of model coefficients, which
leads to underestimation [13,24]. The second limitation is associated with the extrapolation
of sediment values at high discharge [25]. Because most of the values used in construction
of the SRC are at low flows, the majority of the suspended load in rivers and streams occurs
during flood periods. This generally leads to higher error in suspended load estimation
at high discharge [12,26]. The third limitation is the typical wide scatter of values around
the regression line with long-term suspended sediment against discharge data [13]. This
can arise because, in the SRC model, suspended sediment is estimated based on discharge,
while the amount of suspended sediment at equal discharge values may be variable in
different events (e.g., rainfall, snowmelt, base flow [27]. This can also be seen in the event
of flood hydrograph, where the amount of suspended sediment at a constant discharge,
in the beginning of the rising limb of the hydrograph, can be quite different from that
in the falling limb (i.e., hysteresis effects [28]). This is because, while a large amount of
sediment is usually available for transport on the rising limb and peak flow, on the falling
limb, less sediment is available for transport; however, in some cases, this hysteresis can be
reversed [26]. In addition, the occurrence of successive floods reduces the sediment load in
a river, which may result in different amounts of sediment load at equal discharges [29,30].

To overcome these limitations with SRC’s, various methods have been suggested.
Among these are classical correction coefficient models such as the food and agriculture
organization (FAO), quasi-maximum likelihood estimator (QMLE), and non-parametric
smearing estimator (CF2) [24,31,32]. Despite their differences, the common aim of these
models is to increase the accuracy of calculated values by SRC. Another way of tackling this
problem is to prepare different SRC models based on time separation of data (e.g., seasons,
months) and based on flow characteristics (e.g., high water and low water periods, similar
hydrological periods, discharge classes). Various studies have confirmed that classification
of data into hydrological groups and increasing time resolution can lead to better model
performance [16,17,19,26,33–40]. In fact, the goal of data separation is to reduce data scatter
around the regression line and increase the estimation power of the model.

Alternatively, to increase the accuracy of SSL estimation, the use of intelligent algo-
rithms as a type of nonlinear network has recently revolutionized forecasts and estimates of
suspended sediment in rivers worldwide [41–48]. Metaheuristic algorithms are considered
as one of the most important types of intelligent algorithms for optimization problems in
a within wide spectrum of applications. These algorithms randomly search for optimal
solutions in the problem-solving space, but purposefully [49], and perform well in solving
various optimization problems, such as nonlinear, non-convex, or noisy functions [50]. The
application of different types of metaheuristic optimization algorithms to water resources
projects has been increasing in recent years [51–56]. To optimize SRC coefficients using
metaheuristic algorithms, Tabatabaei et al. [57] compared genetic algorithm (GA) and non-
dominated sorting genetic algorithm II (NSGA-II) with traditional methods, namely FAO,
QMLE, and Smearing. Their results indicated the superiority of NSGA-II over the other
methods. Tabatabaei and Salehpour Jam [58] used GA and particle swarm optimization
(PSO) algorithms; Pour et al. [59] used GA and ant colony optimization (ACO) algorithms;
Ebrahimi et al. [60] used GA and honey-bees mating optimization (HBMO) algorithm;
Altunkaynak [61] used GA to optimize SRC; all of these studies observed high efficiency
using these algorithms. Furthermore, the algorithms of teaching–learning based optimiza-
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tion (TLBO) and artificial bee colony (ABC) were employed to optimize the coefficients in
regression equations for estimating SSL. Results indicated that ABC and TLBO algorithms
were more efficient than traditional methods [62].

Considering the global use of the SRC method among experts and researchers, as well
as its limitations, our study focuses on finding the most effective methods for improving
such applications. As such, our study aims to improve the flow discharge–suspended
sediment relation by: (1) optimizing the coefficients of SRC using metaheuristic algorithms
such as imperialist competitive algorithm (ICA), PSO, and GA and classic corrective meth-
ods (FAO and CF2); (2) improving the SRC-based on time separation of data (seasonal) and
flow characteristics; and (3) developing a support vector regression (SVR) model using
only Qw as an input to provide similar conditions to those in the SRC method. Besides,
when developing intelligent models, the main emphasis is often on the optimum design of
intelligent networks and determination of the type of input data, whereas the separation
of input data has rarely been considered. Therefore, in our study, a comprehensive com-
parison of different SSC estimation models is conducted to accurately determine the most
effective methods.

2. Study Area and Database
2.1. Study Area

Boostan dam watershed with an area of 1533.3 km2 located between 37◦ 24′ 05′′ and
37◦ 47′ 33′′ North latitude and 54◦ 29′ 30′′ and 56◦ 05′ 35′′ East longitude is a sub-basin
of GorganRoud basin. Golestan province, Iran (Figure 1). This watershed was selected
as a case study due to the availability of data and the absence of major abstractions or
dams in the upstream reaches. Boostan dam watershed has an elevation range from 108
to 2174 m a.s.l. (mean = 753 m) and an average slope gradient of 23%. According to the
Amberje climate classification, the regional climate types include moderate semi-humid,
cold humid, cold arid, and moderate semi-arid in different parts of the watershed. Average
annual precipitation, average annual temperature, and relative humidity of the region are
483 mm, 17.8 ◦C, and 68.5%, respectively.

2.2. Data and Data Preprocessing

To conduct this research, Qw and SSC data for a period of 44 years (from 1969 to 2013)
from Tamar hydrometric station (located at the outlet) were collected and employed in
modeling. The data were not completely continuous, containing numerous missing values;
a total of only 687 records were used after deleting the outliers using box plots. In Iran,
due to high costs and labor for conducting direct measurements, only one or two samples
are collected each month. The statistical parameters of the field data used in this study
are presented in Table 1. Figure 2 shows the time series graph for Qw and SSC during
the statistical period. The dataset was classified in two groups at a 70:30 ratio for model
building (as the training dataset) and model evaluation (as the testing dataset) in such a
way that both datasets were relatively consistent in terms of statistical parameters. We tried
to include the maximum and minimum data values in the training dataset. The statistical
parameters for the training and testing phases are presented in Tables 2 and 3, respectively.
Because of very small and very large values and the high skewness, it can be inferred that
the SSC modeling is a complex process.

Table 1. Statistical parameters of data for the studied watershed 1.

Variable xmin xmax x σx G1 Cv

Qw (m3/s) 0.00 25.71 1.92 2.04 4.62 1.06

SSC (mg/L) 0.01 15,152.21 454.41 1556.05 6.41 3.42
1 Note: xmin is the minimum value of the data, xmax is the maximum value, x is the mean, σx is the standard
deviation, G1 is the skewness, Cv is the coefficient of variation, Qw is flow discharge, and SSC is suspended
sediment concentration.
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Figure 2. Time series graph for flow discharge and suspended sediment concentrations.

Table 2. Statistical values of Qw in the training and testing datasets 2.

Study Period
Statistical Parameter

Dataset xmin xmax x σx G1 n

Entire period Training 0 25.71 2.18 1.79 1.67 480
Testing 0.02 20.13 1.17 1.06 2.22 207

Spring Training 0.13 25.71 2.55 1.92 1.09 177
Testing 0.32 20.13 1.09 1.08 78.2 76

Summer Training 0 2.98 0.46 0.56 2.39 70
Testing 0.02 0.96 0.39 0.26 0.45 31

Autumn Training 0.19 3.18 0.87 0.42 2.24 84
Testing 0.45 2.36 1.06 0.42 0.87 36

Winter Training 0.42 16.6 1.67 0.9 2.42 149
Testing 0.68 10.48 2.07 1.43 2.2 64

Qw < Qw Training 0 2.42 0.63 0.47 1.15 236
Testing 0.02 2.3 0.96 0.44 0.31 102

Qw ≤ Qw < 2Qw Training 0.62 5.95 2.13 0.87 1.59 126
Testing 0.84 4.44 2.04 0.93 0.83 55

Qw ≥ 2Qw Training 1.84 25.71 4.56 1.42 2 117
Testing 1.36 20.13 4.43 2.34 0.93 51

High water period Training 0.07 25.71 3.1 1.95 1.3 215
Testing 0.06 20.13 2.06 1.55 1.9 93

Low water period Training 0 5.41 1.31 1 2.01 265
Testing 0.02 4.31 0.68 0.58 2.59 114

Rising limb Training 0.65 25.71 2.85 1.58 1.46 142
Testing 0.72 16.6 3.26 2.28 1.43 62

Falling limb Training 0.13 9.6 2.32 1.86 1.22 118
Testing 0.24 7.41 1.85 1.49 1.42 51

Base flow Training 0 7.65 1.17 0.88 3.75 220
Testing 0.02 4.31 0.63 0.57 3.06 94

2 Note: xmin is the minimum value of the data, xmax is the maximum value of the data, x is the mean of the data, σx is the standard deviation,
G1 is the skewness, n is the amount of data.
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Table 3. Statistical values of SSC for the training and testing datasets 3.

Study Period
Statistical Parameter

Dataset xmin xmax x σx G1 n

Entire period Training 0.13 15,152.21 497.17 1602.92 6.84 480
Testing 0.01 13,152.13 354.83 1439.82 6.16 207

Spring Training 0.39 15,152.21 944.54 2342.31 5.02 191
Testing 4.22 7585.72 278.85 1080.45 6.17 82

Summer Training 0.01 6583.52 162.99 1080.19 5.43 56
Testing 0.17 444.88 69.09 111.95 1.45 25

Autumn Training 0.14 5894.95 273.23 1096.45 4.61 84
Testing 0.92 2140.45 103.51 326.98 4.90 36

Winter Training 1.93 12,256.62 293.73 1334.35 7.51 149
Testing 5.52 6065.7 597.12 1286.53 2.80 64

Qw < Qw Training 0.01 7585.72 92.2 709.85 10.59 264
Testing 0.13 2140.45 67.24 167.42 8.38 114

Qw ≤ Qw < 2Qw Training 0.14 13,152.13 1257.3 3357.62 3.51 126
Testing 4.22 12,583.52 379.23 1257.41 8.00 55

Qw ≥ 2Qw Training 34.77 15,152.21 1159.2 2140.72 4.92 90
Testing 59.82 11,964.84 1697.5 2797.51 2.54 38

High water period Training 0.14 15,152.21 611.06 2028.42 6.35 215
Testing 0.39 13,152.13 884.83 2270.51 4.57 93

Low water period Training 0.01 8231.67 264.22 1257.81 5.91 265
Testing 0.13 3996.55 147.39 413.62 6.40 114

Rising limb Training 5.5 14,426.4 1387.2 2910.18 3.07 142
Testing 6.73 4673.56 462.44 733.04 3.4 62

Falling limb Training 0.39 15,152.21 646.2 2566.84 5.73 118
Testing 0.79 13,152.13 473.59 1537.42 8.02 51

Base flow Training 0.01 12,583.52 288.15 1386.16 7.2 220
Testing 0.13 8231.67 135.81 955.45 9.47 94

3 Note: xmin is the minimum value of the data, xmax is the maximum value, x is the mean, σx is the standard deviation, G1 is the skewness,
n is the amount of data.

Considering the high variation of data (from very small to very large values), a
normalization of data could improve the modeling process [62]. Hence, all the data were
normalized within the range of 0 to 1 for intelligent algorithms as follows [63,64]:

Xnorm =
Xori − Xmin
Xmax − Xmin

(1)

where, Xmin and Xmax represent the minimum and maximum values among the original
data and Xnorm and Xori represent the normalized and original data, respectively.

3. Methodology
3.1. Sediment Rating Curve (SRC)

The most frequently used form for SRC is a power function using log-transformation
and a least squares regression technique, which is defined in general terms as [13]:

QS = aQb
w (2)

where, Qw is the flow discharge (m3/s), Qs is suspended sediment concentration (mg/L)
or suspended sediment discharge (metric tons/day), and the regression coefficients (a and
b) can be related to characteristics of soil erodibility and fluvial erosion, respectively [65].
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3.2. Optimization Tecnhiques
3.2.1. Conventional Correction Factors
Food and Agriculture Organization (FAO)

The FAO correction factor is expressed in Equation (3) and used instead of coefficient
“a” in Equation (2) [31]:

α =
Qs

Qb
w

(3)

where, Qs is the mean of Qs, Qw is the mean of Qw, and b is the coefficient used in Equation (2).

Non-Parametric Smearing Estimator (CF2)

CF2 is a non-parametric correction factor used to improve estimated values in the SRC
model by determining optimal coefficient values. CF2 is calculated using Equations (4) and
(5) as follows [32]:

CF2 =
1
n

n

∑
i=1

10ei (4)

ei = log Qso − log Qse (5)

where, n is the sample size, ei is the error term or residual for each sample, Qso is observed
suspended sediment concentration or discharge, and Qse is estimated suspended sediment
concentration or discharge. CF2 is used in SRC model as follows:

Qs = CF2aQb
w (6)

3.2.2. Metaheuristic Algorithms
Genetic Algorithm (GA)

GA as an intelligent model is a nonlinear search and optimization technique based
on the concepts of natural genetics and Darwin’s evolutionary theory, which was first
offered by Holland [66] in the early 1970s. The steps for conducting GA are summarized as
follows [66,67]:

1. Developing a set of initial random answers; these answers, which are the primary
solutions to the problem, are called chromosomes and each one is made up of sets of
genes. In the present study, the coefficients a and b in the SRC model are considered
as genes and form a chromosome.

2. Comparing, ranking, and selecting the best chromosomes; after developing the initial
population of chromosomes, to determine its suitability, the efficiency of each chromo-
some in estimating the suspended sediment must be determined. At this point, using
Equation (2) and the values of genes in each chromosome (a and b coefficients), the
amount of suspended sediment for the training data is estimated. Then, the suitability
of that chromosome using the objective function (root mean squared error (RMSE)) is
determined as [57]:

RMSE =

√
1
n

n

∑
i=1

(Oi − Si)
2 (7)

where n is the number of training data and Oi and Si are the ith observed and
estimated SSC in mg/L, respectively. After determining the suitability of the initial
population of chromosomes in the natural selection stage, 50% of the most inefficient
chromosomes are removed from the initial population.

3. Selecting pairs (parents) for reproduction; at this stage, using selection operators, a
pair of chromosomes from the set of primary chromosomes in the previous stage
are determined as the parents of the next generation. To accomplish this, the widely
used roulette wheel selection method was applied [61]. In fact, in this method,
chromosomes with more favorable answers are more likely to be selected.
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4. Crossover; the production of new and better chromosomes is accomplished to further
investigate the solution space (space containing possible coefficients for the SRC
model). In this study, the blending method was employed to combine genes in the
parent chromosomes and perform the reproduction. In each generation, the number
of reproductions was determined by a parameter called the crossover rate.

5. Mutation; mutation is a mechanism that leads to a completely random change in the
genes of chromosomes (answers to the problem). This prevents the early convergence
and getting stuck in local minima, enabling a better search within the answers space.

6. Convergence; convergence implies that the GA, by repeating successive generations,
is no longer able to find better answers to the problem. There are various ways to
stop the genetic algorithm, e.g., the number of repetitions of generations reaching a
certain level of error and lack of significant progress in error reduction.

Particle Swarm Optimization (PSO)

The PSO algorithm, proposed by Kennedy and Eberhart [68], is a social search algo-
rithm inspired by the swarm behavior of bird flocks or fish searching for food. The steps
for performing the PSO are summarized as follows:

1. Generation of the initial random population with random positions and velocities,
each called a particle (a and b coefficients in the SRC model are assumed to be
equivalent to one particle).

2. Evaluation of the cost or fitness of each particle; at this stage, the amount of suspended
sediment for the training dataset is estimated using Equation (2) and the values for
each particle (a and b coefficients). Then, their suitability is evaluated using the
objective function (Equation (7)).

3. Recording the best position for each particle (pbest) and the best position among all
particles (gbest); at this step, each particle moves at a speed that can be adjusted to the
search space and retains the best previous position in its memory. In addition, in the
total search space, the best gained position by the group is shared with all particles.
Each particle in an assumed space is shown as a position and velocity vector. The
position of each particle is obtained by comparison between the current position and
the best value it has achieved (pbest). Moreover, the best response that each particle
has attained so far from the pbest is identified as gbest;

4. Updating the position and velocity vector of all particles; in this step, the transition of
the particles to new positions is evaluated. In addition, the velocity and position of
each particle are corrected by Equations (8) and (9), respectively.

Vi(t + 1) = ωVi(t) + R1(pbesti(t)− xi(t)) + R2(gbesti(t)− xi(t)) (8)

xi(t + 1) = xi(t) + Vi(t + 1) (9)

where pbest and gbest represent the best personal position and the best position among
the entire particles, respectively, t represents the number of iterations, R1 and R2 are
learning parameters which determine the movement slope of the local search, and ω
is the inertia coefficient.

5. Convergence test; this algorithm is repeated for a predetermined number of genera-
tions or it is executed until the problem converges to an optimal solution.

Imperialist Competitive Algorithm (ICA)

The ICA proposed by Atashpaz-Gargari and Lucas [69] solves complex optimization
problems by imitating the process of social, economic, and political evolution of countries.
The steps for performing the ICA are summarized as follows:

1. Generating the random initial countries (a and b coefficients in the SRC model are
assumed equivalent to one country).
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2. Dividing the countries into two categories based on the objective function of the
problem (Equation (7)). Countries with the lowest amounts of objective function are
assumed as imperialist and the rest are colonies.

3. Determining the number of colonies of each imperialist; to this aim, the power of
each imperialist must be evaluated. It is obvious that the stronger the imperialist, the
greater the number of its colonies.

4. Applying the assimilation policy after the formation of the initial empires; in this algorithm,
the assimilation policy is modeled as the movement of colonies towards imperialists.

5. Revolution in countries can be considered as a sudden and accidental change in the
situation of the colonized countries.

6. Comparing the colonies and imperialists (intra-group competition); sometimes a
colony, by moving towards an imperialist, reaches a new situation in which it has a
lower cost function than the imperialist. In this case, the colony and the imperialist
change positions.

7. Evaluation of empires (intergroup competition); at this stage, a colony is removed
from a weaker empire and transferred to another empire. If the empire has no colony,
its imperialist is transferred as a colony to another empire. As a result, during colonial
competition, the power of larger empires gradually increases, and weaker empires
will be eliminated.

8. Finally, continuing the algorithm until the termination condition is observed. The
end limit of colonial competition is when we have a single empire in the world with
colonies that are very close to the imperialist country in terms of situation.

In optimization algorithms, there are parameters whose changes will affect the per-
formance of the algorithm, the convergence speed, and the quality of solutions [70]. In
our study, parameters in the GA, PSO, and ICA were adjusted through trial and error
as follows:

For GA: the number of initial chromosomes or size of population = 100, crossover
rate = 0.75, mutation rate = 0.1, and maximum number of iterations = 500. For PSO:
the number of initial particles = 100, learning parameters (R1 and R2) = 2, the inertia
coefficient (ω) = 0.7, and maximum number of iterations = 500. For ICA: the number of
initial countries = 100, the number of initial imperialist countries = 20, colony assimilation
coefficient = 2, revolution probability = 0.1, and the maximum number of iterations = 500.

3.3. Data Separation Techniques

Considering the role of seasonal changes and river flow dynamics on sediment yield
and transport at a watershed scale, data were subdivided and separated into four groups
to increase the efficiency of SRC and SVR models as follows:

1. Seasonal: The measured data for SSC were classified into spring, summer, autumn,
and winter [71];

2. Discharge classes: Data were divided based on annual average discharge such that in
the first category discharge was less than average discharge; in the second category,
discharge was ≥the average, but less than twice the average; in the third category,
discharge was ≥twice the average [72];

3. High water and low water periods: Mean monthly discharge was compared to the
mean annual discharge. The months in which mean discharge was ≥mean annual
discharge were considered as the high water period and the months in which the
mean discharge was less than the mean annual were considered as the low water
period [73];

4. Hydrograph state: The daily hydrograph of each water year was plotted and data
were classified into three series based on rising and falling limbs or base flow of
the hydrograph [23]. Moreover, to assess the effect of these groups on the efficiency
of models in estimating suspended sediment, results were compared with a group
without data separation (group 5).
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3.4. Machine Learning (ML) Model

The SVR model has been successfully applied as an ML model in geoscience.
Vapnik et al. [74] proposed a version of the support vector machine (SVM) that performed
regression instead of classification, known as the SVR model. In fact, the same separator
hyperplane in SVM becomes the fitting function of data, which has the same properties. In
general, the use of the structural risk minimization (SRM) principle in the SVR modeling
process equips this model with a powerful tool for generalization [75]. In this model,
when a line is fitted to data, the model error can be partially ignored and the error in the
calculated data must be within a range of ε that is marginal on both sides. That is, if the
calculated data are within this range, the model is acceptable. However, if data are outside
this range and their error is greater than ε, it must be adjusted. The SVR function can be
calculated using kernel functions as follows:

y =
n

∑
i=1

(
α+i − α−i

)
k(xxi) + b (10)

where y is output, b is the bias term, α is Lagrange multiplier, and k(x,xi) is the kernel
function. In our study, the SVR model was tested using the radial basis function (RBF)
kernel, which has proven better in performance than other kernel functions and is currently
the most widely used function [44,76], as follows [77]:

K(x, x i) = exp(
−‖x− x‖i

2

2σ2 ) (11)

Optimal values of the kernel parameters, namely width of the Gaussian kernel function
(σ), cost of constraint violation (C), and error insensitive zone (ε), were determined by trial
and error.

3.5. Model Evaluation and Comparison

Finally, to compare the results and evaluate efficiency of the models, the graphical
method of scatter-plot was used and four different types of quantitative statistics, including
RMSE, mean absolute error (MAE), Nash–Sutcliffe (NS) model performance coefficient,
and coefficient of determination (R2) were calculated as follows [57]:

MAE =
∑i=n

i=1 |Oi − Si|
n

(12)

NS = 1− ∑i=n
i=1 (Oi − Si)

2

∑i=n
i=1
(
Oi −O

)2 (13)

R2 =
∑n

i=1(Oi −O)
(
Si − S

)√
∑n

i=1
(
Oi −O

)2
√

∑n
i=1
(
Si − S

)2

2

(14)

where, O and S are the average of observed and estimated SSC, respectively. Higher and
lower R2 values represent more and less correlation between estimated and observed
values. The RMSE ranges from 0 to +∞, with 0 indicating a perfect match of estimated and
observed values. The range of NS values is from −∞ to 1 with NS > 0.6 being considered
as acceptable model performance [45].

4. Results and Discussion
4.1. Results of the SRC Model Based on Data Separation and Non-Separation

To estimate suspended sediment using SRC, Qw and SSC were log-transformed prior
to the analysis. Then, a regression relationship for each of the groups in Section 3.3 between
log Qw and log SSC was established based on the training dataset. Finally, the anti-log
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was calculated and the ‘’a” and ‘’b” coefficients in the SRC model (i.e., Equation (2)) were
determined (Table 4).

Table 4. Coefficients of the SRC equations in each of the data separation methods for the training dataset.

Group Study Period Equation a b

Without any separation (a) Entire period SSC = 35.04Q1.86
w 35.04 1.86

Spring SSC = 34.43Q1.97
w 34.43 1.97

Seasonal (b) Summer SSC = 32.88Q1.36
w 32.88 1.36

Autumn SSC = 29.51Q1.81
w 29.51 1.81

Winter SSC = 17.45Q2.66
w 17.45 2.66

Qw < Qw SSC = 31.69Q1.48
w 31.69 1.48

Discharge Classes (c) Qw ≤ Qw < 2Qw SSC = 15.92Q2.8
w 15.92 2.8

Qw ≥ 2Qw SSC = 11.29Q2.69
w 11.29 2.69

High water-low water periods (d) High water period SSC = 25.46Q2.18
w 25.46 2.18

Low water period SSC = 35.21Q1.69
w 35.21 1.69

Rising limb SSC = 22.64Q2.31
w 22.64 2.31

Hydrograph State (e) Falling limb SSC = 60.58Q1.54
w 60.58 1.54

Base flow SSC = 27.94Q1.69
w 27.94 1.69

After extracting the SRC equations, the efficiency and accuracy of each equation
was evaluated based on testing data in each group (Table 5). Based on these results,
SRC without data separation had the lowest estimation power (NS = 0.19), while data
separation significantly improved model performance. Based on these findings, SRC with
NS = 0.44 had the highest estimation power in winter and the lowest estimation power in
summer. This may be related to the dry conditions and short-term heavy rains in summer
complicating the SSC patterns. Furthermore, results revealed that SRC was much more
effective when Qw was lower than the mean Qw (NS = 0.29) and in low water period
(NS = 0.33). Overall, estimated values were in closer agreement with observed values for
lower flow discharge than for higher discharge.

Table 5. Evaluation of various SRC models during the testing phase.

Model Study Period RMSE
(mg/L) NS MAE

(mg/L) R2

without any separation Entire period 1366.96 0.19 292.23 0.35

Spring 1093.17 0.31 279.18 0.36

Seasonal Summer 683.8 0.20 201.08 0.31

Autumn 1083.25 0.34 219.17 0.41

Winter 950.22 0.44 258.69 0.59

Qw < Qw 1118.38 0.29 267.99 0.40

Discharge Classes Qw ≤ Qw < 2Qw 1148.47 0.26 275.73 0.36

Qw ≥ 2Qw 1255.92 0.24 330.71 0.32

High water/low water periods High water period 1189.56 0.27 287.07 0.36

Low water period 1151.44 0.33 265.54 0.41

Rising limb 926.33 0.30 232.77 0.45

Hydrograph State Falling limb 1310.15 0.13 399.12 0.24

Base flow 1109.78 0.25 244.75 0.38
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According to the hydrograph, the SCR had the lowest performance in the falling limb
(NS = 0.13). Notably, for the same Qw, SSC varies between rising and falling limbs, lower
in the falling limb, which complicates the SSC process, hence weakening the modeling
performance.

4.2. Results of Optimization of the SRC Using Classical Methods and Metaheuristic Algorithms

SSC was estimated using SRC models modified by two classic methods (namely, FAO
and CF2) and three metaheuristic algorithms (namely, GA, PSO, and ICA) without data
separation with the aim of only modifying the SRC coefficient to improve its efficiency. To
this goal, after establishing a regression relationship between log Qw and log SSC during the
training phase and determining ‘’a” and ‘’b” coefficients; these coefficients were modified
using the previously discussed classical techniques. Optimization of the coefficients using
algorithms of GA, PSO, and ICA was conducted without log-transforming data using
RMSE as the objective function in the Matlab environment. After modifying the SRC
equations at this stage, the efficiency and accuracy of each equation was evaluated based
on the test data (Table 6). SRC-PSO had the highest estimation capability (NS = 0.44),
followed by SRC-GA (NS = 0.41), SRC-ICA (NS = 0.40), SRC-CF2 (NS = 0.29), SRC-FAO
(NS = 0.25), and the original SRC (NS = 0.19). Overall, the modified SRC models using
the metaheuristic algorithms achieved better results than the modified SRC models using
FAO and CF2 correction factors. However, although NS was low for both methods, they
improved the estimation power of the original SRC. The low NS values could be due to
high sensitivity to peak values of the hydrologic models, as it used squared errors [78].
The same condition was observed with RMSE, which minimized the square of residuals,
while MAE was less sensitive to large values [79]. Moreover, low NS values could originate
from sparse data at high discharge as well as the large amount of missing SSC-Qw data.
As previously noted, field data are available only once or twice monthly in Iran; hence,
finding a robust and reliable model to estimate SSC accurately is a challenging task.

Table 6. Evaluation results for various SRC models during the testing phase.

Model Name Equation RMSE
(mg/L) NS MAE

(mg/L) R2

SRC SSC = 35.04Q1.86
w 1366.96 0.19 292.23 0.34

SRC-FAO SSC = 43.21Q1.86
w 1345.72 0.25 289.1 0.35

SRC-CF2 SSC = 46.93Q1.86
w 1335.75 0.29 288.2 0.36

SRC-PSO SSC = 17.50Q2.81
w 1099.91 0.44 236.95 0.45

SRC-GA SSC = 17.45Q2.71
w 1113.31 0.41 245.84 0.43

SRC-ICA SSC = 17.49Q2.68
w 1127.92 0.40 250.07 0.42

Our findings agree with those of Tabatabaei et al. [57], Pour et al. [59], Tabatabaei and
Salehpour Jam [58], Ebrahimi et al. [60], and Altunkaynak [61], who also state that the
metaheuristic algorithms are more efficient than classic optimization methods.

The fitness of different SRC models to observed SSC data during the training phase
show that SRC-PSO, SRC-GA, and SRC-ICA all more accurately estimate SSC than other
optimization models (Figure 3). Overall, the SRC-PSO model had the best fit to field
observations during training and testing phases. In fact, the PSO algorithm has a better
chance to move toward areas containing better solutions because of features such as
constructive cooperation and shared memory between particles [80].
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Figure 3. Fitness of various SRC models to the training phase.

4.3. Results of SVR Models with Data Separation and Non-Separation

In the SVR model we developed, the input and output layers contained a neuron in
which Qw was considered as an input and SSC as an output. The proper architectural
structure of the SVR model, like other ML models, improves the suspended sediment
estimate [63]. Therefore, we used trial and error to achieve the optimal network design and
improve model performance. Considering the lowest RMSE values, the optimal values for
model parameters (namely, σ, C and ε) were assessed for all groups (Table 7).

Table 7. Optimal values for the parameters of the SVR model 4.

Model Study Period
SVR

σ C ε

without any
separation Entire period 2.5 1 0.1

Spring 0.3 5 0.001
Seasonal Summer 2 2.5 0.0001

Autumn 0.4 5 0.001
Winter 0.1 1 0.01

Qw < Qw 0.15 1 0.1
Discharge Classes Qw ≤ Qw < 2Qw 0.1 3.5 0.001

Qw ≥ 2Qw 0.17 5 0.01

High water-low
water periods High water period 2 2.5 0.1

Low water period 0.1 1 0.01

Rising limb 0.21 1 0.01
Hydrograph State Falling limb 0.1 1.5 0.1

Base flow 0.1 5 0.0001
4 Note: C is cost of constraint violation, ε is error insensitive zone, and σ is width of the Gaussian kernel function.
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The SVR model was developed using the entire training dataset without any data sepa-
ration; then, it was evaluated using the testing dataset. Next, it was developed based on the
training dataset with separated data for various groups. Finally, estimated SSC values were
evaluated using the testing dataset (Table 8). The SVR model had reasonable estimation
power with the entire dataset (RMSE = 1069.89 mg/L, MAE = 201.09 mg/L, NS = 0.50
and R2 = 0.52). However, in most cases, the SVR model with separated data had better
performance; additionally, it had the best performance in winter (RMSE = 796.17 mg/L,
MAE = 167.85 mg/L, NS = 0.68 and R2 = 0.71) and the weakest performance (lower
than the entire period) during the falling limbs of hydrographs (RMSE = 1119.2 mg/L,
MAE = 237.3 mg/L, NS = 0.38 and R2 = 0.43).

Table 8. Evaluation of SVR models during the testing phase.

Model Study Period RMSE
(mg/L) NS MAE

(mg/L) R2

without any
separation Entire period 1069.89 0.50 201.09 0.52

Spring 1063.77 0.52 199.19 0.55

Seasonal Summer 461.86 0.41 101.77 0.45

Autumn 957.84 0.56 185.5 0.63

Winter 796.17 0.68 167.85 0.71

Qw < Qw 970.86 0.55 182.83 0.56

Discharge Classes Qw ≤ Qw < 2Qw 1023.99 0.52 200.08 0.54

Qw ≥ 2Qw 1088.75 0.46 217.38 0.48

High water—low
water periods High water period 1106.5 0.51 201.63 0.53

Low water period 929.72 0.53 189.78 0.55

Rising limb 911.29 0.57 171.63 0.59

Hydrograph State Falling limb 1119.2 0.38 237.3 0.43

Base flow 1059.23 0.56 193.46 0.58

4.4. Determination of the Best Method of Data Separation

To conduct a general comparison of different groups, average values of statistical
indices for seasons, discharge classes, high water and low water periods, and hydrograph
state were calculated. The results revealed that in both SRC (Figure 4) and SVR (Figure 5)
models, data separated by season led to the best estimation of SSC. This was followed in
order by high water and low water periods, discharge classes, hydrograph state, and the
original SRC. Thus, all data separation models exhibited effective performance. Research
by Sichingabula [33], Horowitz [19], Collins et al. [34], Hassan [81], Zeng et al. [16], and
Jung et al. [17] also confirms the greater efficiency of timely separation of data in increasing
the accuracy of estimations compared with other methods of data separation.
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4.5. The Most Effective Model for Estimating SSC

Based on our findings and comparing performance indices (Figures 4 and 5 and Tables 5,
6 and 8), the seasonal SVR model has the highest estimation power (RMSE = 819.91 mg/L,
MAE = 163.58 mg/L, NS = 0.54 and R2 = 0.59) followed in order by high water/low water
period SVR (NS = 0.52), discharge classes SVR (NS = 0.51), hydrograph state SVR (NS = 0.50),
SVR (NS = 0.50), SRC-PSO (NS = 0.44), SRC-GA (NS = 0.41), SRC-ICA (NS = 0.40), seasonal
SRC (NS = 0.32), high water/low water period SCR (NS = 0.30), SRC-CF2 (NS = 0.29), dis-
charge classes SRC (NS = 0.26), SRC-FAO (NS = 0.25), hydrograph state SCR (NS = 0.23) and
SRC (NS = 0.19).

Overall, our findings show that the SVR model presented better results in all cases
with lower error values and higher NS and R2 than the SRC, including its optimized
versions. In general, according to our results, the SVR model can be used to estimate SSC
in similar seasons instead of applying a model for the entire dataset. Moreover, findings
show that optimizing SRC through metaheuristic algorithms leads to higher performance
than data separation for SRC.

In fact, the results indicate that the original SRC model could not adequately represent
the complex process of suspended load in the watershed [40] because, in addition to dis-
charge, other factors control supply and transport of suspended sediment in the watershed,
such as rainfall (intensity and volume), sediment sources from previous flooding, land
use/land cover changes, and anthropogenic changes in the watershed, which are not
considered as model inputs. Similarly, Rodriguez et al. [29] noted that discharge only
explained 19% of the variance in suspended sediment even though it is the only input to
the SRC method. Another reason that the original SRC model underperforms is due to its
simple structure.

The comparison observed versus estimated SSC using the best performing models
(i.e., SVR) indicates a relatively good agreement using the SVR model (Figure 6). However,
as is often the case in modelling [33], peak values were not accurately estimated. This poor
performance for peak value prediction is partly due to uncertainties of suspended sediment
data and the low number of data samples at high discharge. Additionally, missing values
can significantly affect the results. Lastly, many studies have shown that SSC cannot be
estimated using only Qw [82,83].

In fact, in addition to the modeling tools [63], selection of acceptable input data can
influence model results [64]. Our results showed that for accurate estimation of SSC,
relevant variables other than Qw are necessary for building an effective input scenario.
Several studies have shown that the utilization of antecedent values of Qw and Qs [63],
meteorological parameters such as rainfall, temperature, and potential evapotranspira-
tion [84,85], hydro-geomorphic variables such as the index of sediment connectivity [48],
and biophysical data such as the normalized difference vegetation index (NDVI) [84,86],
along with the hydrological parameters utilized in this study, can most likely improve
estimates of suspended sediment production.

The superior performance of the SVR as a modeling tool compared to the SRC model for
similar conditions (with Qw as an input and without data separation) indicates that ML models
can better capture nonlinear relationships between system inputs and outputs due to their:
(1) non-linear structure of the ML models, (2) robustness to missing data and
(3) high flexibility [87]. Previous studies by Chiang et al. [43], Zounemat-Kermani et al. [45],
Rajaee et al. [88], Muhammadi et al. [89], Kisi et al. [90], Alp and Cigizoglu [91], and
Cobaner et al. [92] have also noted the superiority of ML models over traditional regression
models (e.g., SRC model) for estimating suspended sediment.
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Figure 6. Observed SSC versus estimated SSC using the best models (i.e., SVR) for the testing dataset.

5. Conclusions

Because direct measurements of fluvial suspended sediment loads are costly and time
consuming, using reliable and accurate models to estimate this parameter is a challenging
task for hydrologists and river engineers, especially in regions with few hydrometric
stations. Our research examined and provided a reliable method that can accurately
estimate SSC by: (1) optimizing SRC using metaheuristic algorithms (GA, PSO, and ICA)
and classical approaches (FAO and CF2), (2) improving estimation power of SRC using
separation of data based on season and flow discharge characteristics and (3) using the
SVR model with only flow discharge values as inputs, similar to the SRC approach. Our
findings indicate that the metaheuristic optimization algorithms are more efficient than
the classic correction factors. Overall, among the metaheuristic algorithms, PSO had a
higher optimization efficiency for coefficients of the SRC model. These results showed that
metaheuristic algorithms could be employed instead of the classic correction coefficients
and log-transformation of data in the SRC model. Moreover, to increase the accuracy
of the SRC, using seasonal separation of data led to better improvements than the other
methods of data separation. Overall, optimization of the SRC model using metaheuristic
algorithms was more effective than data separation. The results also indicate that the SVR
model had higher efficiency for estimating SSC compared to the SRC model optimized
with metaheuristic algorithms.

In general, our results emphasize the benefits of using soft computing methods in
enhancing the accuracy of estimating SSC. However, the SVR model predictions of SSC
were not accurate when only flow discharge was used. This revealed the main weakness
of the SRC method. Our improvement in suspended sediment estimation is valuable for
water resources planning and management. While our results are specific to the study
watershed, the possibility of extending these findings to other watersheds needs to be
explored. Given that the algorithms we used were single-objective, optimization was
accomplished only by minimizing the error function. Thus, we suggest surveying the
multi-objective optimization algorithms (e.g., multi-objective particle swarm optimization
(MOPSO)) by employing different objective functions.
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