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Abstract: Fast urbanization produces a large and growing population in coastal areas. However, the
increasing rise in sea levels, one of the most impacts of global warming, makes coastal communities
much more vulnerable to flooding than before. While most existing work focuses on understanding
the large-scale impacts of sea-level rise, this paper investigates parcel-level property impacts, using
a specific coastal city, Tampa, Florida, USA, as an empirical study. This research adopts a spatial-
temporal analysis method to identify locations of flooded properties and their costs over a future
period. A corrected sea-level rise model based on satellite altimeter data is first used to predict future
global mean sea levels. Based on high-resolution LiDAR digital elevation data and property maps,
properties to be flooded are identified to evaluate property damage cost. This empirical analysis
provides deep understanding of potential flooding risks for individual properties with detailed spatial
information, including residential, commercial, industrial, agriculture, and governmental buildings,
at a fine spatial scale under three different levels of global warming. The flooded property maps
not only help residents to choose location of their properties, but also enable local governments to
prevent potential sea-level rising risks for better urban planning. Both spatial and temporal analyses
can be easily applied by researchers or governments to other coastal cities for sea-level rise- and
climate change-related urban planning and management.

Keywords: sea-level rise; granular analysis; economic impact analysis; urban planning; climate change

1. Introduction

The terms “global warming” and “climate change” refer to shifting weather patterns
due to increasing average global temperatures leading to long-term impacts on the Earth
surfaces from land to ocean and ice sheets as well as the atmosphere itself. Glaciers around
the world are dwindling and even disappearing due to increasing drastic changes in Earth’s
climate [1]. Sea-level rise is only one of the consequences of these changes because glaciers
store a lot of water on land, but melting glaciers increase water runoff into the ocean,
making global sea levels rise. Sea-level rise also results in a range of socioeconomic impacts
as well as impacts to various populations [2]. Even a small increase in sea levels can have
catastrophic effects on coastal habitats. Higher water levels can cause harmful erosion and
lost habitat for fish, birds, and plants, which further leads to aquifer and agricultural soil
contamination with salt [3]. Flooding of low-lying areas in coastal cities could cost the
world 4.5 percent of the global economy each year by 2200 [4]. Flooding could be one of
the dominant devastating natural hazards worldwide due to its ruin of human lives and
properties, and recent studies have showed urban communities in the southeast USA are
less resilient to flooding caused by climate change [5–7]. Without taking any actions soon,
the adaptation to these impacts caused by sea-level rises in the future will become more
difficult and more expensive.

Humans have been always attracted to coastal areas due to their supply of rich and
subsistent resources, convenient access points to marine trade and transport, and natural
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interface between land and water for recreational or cultural activities. The urbanization of
coastal areas around the world has greatly increased during the recent decades, and this
trend is expected to continue in future, leading to a significantly higher population density
in coastal areas than non-coastal areas [8]. It is known that around 10% of the world’s
populations (more than 600 million people) live in coastal regions with just 10 m elevation
of current seal level [9], and the population residing in large low-lying cities likely continue
to grow [10]. In addition to inundating low elevation coastal areas, the rise of sea levels at
the same time increases the risk of flooding that is typically caused by tides, tsunamis, and
storms. This is because, as sea level rises, storms will reach higher elevations, producing
larger inundated areas along the coastal line. An analysis from the Climate Central reports
a double odd of “century” or worse floods occurring by 2030, i.e., high floods that would
historically be expected just once per century, due to the sea-level rise [11].

Across the U.S., more than 5 million people live in nearly 3 million homes at less
than 4 feet above high tide, and in 285 cities and towns analyzed, more than 3.7 million
people live on land less than 1 m above the tide [11]. Understanding the impact of sea-level
rise is becoming an emergent and critical topic for urban planning of those vulnerable
coastal cities. However, most current research focuses on a global scale estimation of the
impact of sea-level rise [12–14] in a large scale (e.g., continent level, and country level)
without providing any practicable guidance to local governments (e.g., the distribution of
impacted properties). For example, Kulp and Strauss [14] estimated the global vulnerability
to sea-level rise and coastal flooding, indicating that 630 million people live on land below
projected annual flood levels for 2100. Though these studies can provide a global view of
the impact of sea-level rise, they do not provide any precise estimation of economic costs for
local coastal zones, which are necessary and critical information for local urban planning,
such as the adaptation or mitigation actions to be taken to reduce sea-level rise impact.

In this paper, we perform a granular analysis of property level cost that gives us a
better understanding of the economic impact of sea-level rise on a specific coastal city, the
City of Tampa in Florida, USA. We aim to estimate and predict the impacts of sea-level rise
on population and economic costs due to climate change in a typical coastal city that could
then be considered and practicable in similar types of urban areas. The City of Tampa is
used as our target city since it is the largest city in Tampa Bay Area, near the Gulf of Mexico,
and it attracts many new residents every year to settle down [15]. Predicting future costs
in the coastline belt amidst sea-level rise has significant benefits for residents to choose
locations of their properties. More importantly, this assessment of the impact of sea-level
rise will support improved understanding of vulnerability of coastal areas in the future,
which is critical for coastal planning and for assessing the benefits of climate mitigation,
as well as the costs of any failure to act. To the best of our knowledge, this research is the
first to explore the sea-level rise caused flooding risk of individual properties, including
residential, commercial, industrial, agricultural, and governmental buildings, at a fine
spatial scale. To achieve this objective, this paper performs spatial-temporal analysis of
elevation data and property data with sea-level rise data. It first uses high-resolution LiDAR
data to estimate precise elevations of individual properties, then leverages recently released
satellite altimeter data to obtain a corrected sea-level prediction, and finally performs
spatial and temporal data analyses over parcel-level property data.

In summary, the major contributions of this paper include: (i) a granular sea-level
rise flooding analysis method is introduced to understand spatial and temporal impacts
of climate changes for a coastal city; (ii) the flooding property cost is analyzed, providing
a valuable indicator to the local government and the public for flooding risk mitigation;
and (iii) the spatial-temporal results reveal the vulnerability of several commercial and
residential areas in Tampa against sea-level rise.

The research of this study is organized as follows: In Section 2, we describe the study
area, publicly available datasets and methods we use in this study. Section 3 summa-
rizes our geospatial data analysis results, followed by discussions in Section 4. Section 5
concludes and discusses our future work.
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2. Materials and Methods
2.1. Study Area

Tampa is located in Hillsborough County, west central Florida in USA. It is the largest
city in Tampa Bay Area, near the Gulf of Mexico, and the fourth largest county in Florida.
Tampa is well known to be vulnerable to sea-level rise due to its special location, high
density of population, and increasingly condensed urban development. Even though
Florida suffers several major hurricanes every year, the City of Tampa has not been hit
by an extreme hurricane since 1921. For this reason, many tourists have been attracted
to spend their vacations here, along with new immigrants who settle down in Tampa.
According to the 2020 census, the current metro area population of Tampa is 2,877,000, and
this number increased 1.23% compared to 2019. Last year, 27,000 new residents have put
their roots in Hillsborough County. Such population booming makes Tampa Bay one of the
country’s fastest growing regions in the U.S.; hence, it is critical for local governments to
understand the economic costs through impacts to private properties, public infrastructure,
the environment, and tourism. In Figure 1, we map and visualize the parcel-level property
in Tampa, Florida.

Since 1946, the surrounding sea level has increased by 0.2 m [16]. Over the past
decades, some researchers have investigated the sea level rise vulnerability of the Tampa
Bay. For example, Fu et al. [17] used a spatial hedonic approach to estimating the economic
cost in Tampa Bay region in future due to inundation caused by sea level rise. More
recently, Fu and Peng [18] developed a conceptual vulnerability assessment framework to
operationalize the full concept of vulnerability and test it through a case study in the Tampa
Bay. Sherwood and Greening [19] analyzed potential impacts of sea level rise on Tampa
Bay estuary and critical coastal habitats. With the increasing threat of climate change, the
2015 Peril of Flood Act mandates that municipalities in Florida need to consider sea-level
rise in the coastal element of the comprehensive plan. However, because the mandate lacks
specificity, a more recent study revealed an inconsistent compliance guidance provided by
state agency staffs, and a top-down mandate strategy was suggested to spur sea-level rise
planning [20].

2.2. Data

In this research, the following datasets will be used, including LIDAR-based dig-
ital elevation model, Global mean sea-level rise prediction data, and Tampa Property
value datasets.

2.2.1. LIDAR-Based Digital Elevation Model (DEM)

This dataset is part of a series of DEMs produced for the National Oceanic and
Atmospheric Administration Office (NOAA) for Coastal Management’s Sea-level Rise
and Coastal Flooding Impacts Views (https://coast.noaa.gov/dataviewer, (accessed on 9
October 2021)). The DEM includes the best available LiDAR data known to exist at the time
of DEM creation. The DEMs are “hydro flattened” such that water elevations are less than
or equal to 0 m. The spatial resolution (cell size) of the raster DEM is 3 m, and the vertical
accuracy is 10 cm. In this paper, a subset of data for the city of Tampa area was generated
from a larger data set and includes all valid data within the requested geographic bounds.

2.2.2. Global Mean Sea-Level Rise Prediction Data

This paper will use the projection data of global mean sea-level rises [21], which
use precise satellite altimeter data from the TOPEX/Poseidon (The Ocean Topography
Experiment POSEIDON) Jason-1, Jason-2, and Jason-3 satellites that measure height above
sea surface. We will use the measured global mean seal-level rise acceleration to obtain
the sea-level rise in the future, in which short-term variability largely driven by volcanic
eruptions (e.g., the eruption of Mount Pinatubo in 1991) and potential error drifts have
been removed.

https://coast.noaa.gov/dataviewer
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2.2.3. Property Value Datasets

This paper will use the parcel-level property tax GIS data to estimate the total values of
properties, which are vulnerable to the coastal flooding. This dataset for the city of Tampa
can be downloaded from Florida Department of Revenue (i.e., https://floridarevenue.com/
property/, (accessed on 9 October 2021)), containing various information of individual
property such as assessed value, land size and value, land use type, number of units, and

https://floridarevenue.com/property/
https://floridarevenue.com/property/
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so on, from property appraisers and tax collectors in local governments. These data are
yearly updated, and we use the most recent data collected for the year of 2020.

2.3. Methods

To estimate the total economic cost of sea-level rise, those properties that will be
located in flooding areas need to be identified. This can be underaken by comparing
high-resolution digital surface elevations with the projected sea level. We consider an area
as a possible flooding area when the elevation is lower than the sea level. Once all possible
flooding areas are identified, a refining process is also performed to remove those areas
that are not connected to the ocean, like valleys and lakes.

First, we will use the corrected global mean sea-level rise acceleration from a recent
research [21] to obtain an approximated sea-level rise in the next several decades. Given the
sea-level rise acceleration a and the initial sea-level rise rate v0, we are able to calculate the
future sea levels, denoted by s, t years later using the following quadratic equation [21–27]:

s = v0t +
1
2

at2 (1)

Next, the following procedures will be performed to extract all possible areas to be
flooded in the target area using ArcGIS:

1. Given a sea level h and a DEM raster image D, one can produce a new raster image P
to identify areas below the sea level in ArcGIS (Raster Calculator Toolbox) using the
following formula,

p =


0
1

No Data

∣∣∣∣∣∣
if d > h
if d ≤ h

d = No Data

 (2)

where d and p denote the variable for the DEM and the output raster image, respectively.
2. Each individual pixel value in the raster image P is then reclassified using the reclassify

tool in ArcGIS (Reclassification Toolbox) with the following equation:

g =

{
1

No Data

∣∣∣∣ p = 1 (i.e., d ≤ h)
p = 0 or p = No Data (i.e., d > h or d = No Data)

}
(3)

where g is the new cell value of the reclassified raster image G. This step aims to assign
all unflooded areas as No Data, and only keep those areas whose elevation below the
given sea level. Cells in D with values d which satisfy the condition d > h are assigned
a value of No Data in G, and cells in D inundated by a rising sea are given a value of 1.

3. However, it has been noticed that these flooding areas may include areas that have
lower elevations than h but are not connected to the coastline, such as lakes, ponds,
and valleys, in other words, these areas will not be flooded due to the sea-level rise,
and they can be considered as anomalies to be removed prior to further processing.
To do this, it is necessary to leverage coastlines as boundaries to select only those
flooding areas that spatially intersect with the coastlines. To achieve this, this study
will first convert the raster data G to the polygon feature class which consists of a
list of polygons S = {s1, s2, . . . sN}, each of which denotes the areas lower than the sea
level, supposed that N polygons are detected. Given a coastline L provided by NOAA,
one can check if each of N polygons intersects with L or not, and only keep those
intersects, using the following equation:

S =

{
S− {si}

S

∣∣∣∣ if si ∩ L = ∅, removed
otherwise

}
, i = 1, 2, . . . , N (4)

4. The property value dataset provides house-level GIS information, and then one can
identify all properties (e.g., houses, buildings, and other infrastructure) in flooding
areas by spatially overlapping the property map with flooding areas. We summarize
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the data flow of our parcel-level flooding analysis in Figure 2. Each property has a
land use code, indicating the type of property’s predominant use including residential,
commercial, industrial, agricultural, institutional, governmental, and miscellaneous
use. The detailed property value cost due to sea-level rise can be further analyzed for
each type of property.
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3. Results

Using the corrected sea-level rise acceleration 0.084 ± 0.025 mm/year2 obtained from
25-year precision satellite altimeter data, we can estimate future sea levels using Equation (1)
coupled with an initial average climate-change-driven rate of sea-level rise of 2.9 mm/year.
Table 1 illustrates the resulting predicted sea-level change from 2030 to 2150. It shows
that the sea-level rise projections by the end of this century range from 46 cm for a low
warming scenario (the best case) to 64 cm for a high warming scenario (the worst case).
This projection is slightly higher than the one reported by the U.N.’s Intergovernmental
Panel on Climate Change, where a sea-level rise of 41cm for low-end warming and 61 cm
for high-end warming is projected [28].

In the rest of our analysis, we design three sea-level rise scenarios, i.e., low-end
warming with amin = 0.059 mm/year2, medium-end warming with aavg = 0.084 mm/year2,
and high-end warming with amax = 0.109 mm/year2. We think the three scenarios will
help enhance the understanding of the assessment of potentially flooded areas along the
Tampa coastline and then identify and map all properties that are located in the areas under
each scenario, respectively.

In Figure 3, we visualize all parcel-level properties in Tampa and those flooded from
2030 to 2150 under low-end, medium-end, and high-end warming scenarios in the absence
of any protection. It shows that a large area in the south of Sun Bay South, particularly
MacDill Air Force Base, and two major islands in Hillsborough Bay will be flooded by
2030. Table 2 summarizes the total amount of properties to be flooded and their associ-
ated land areas (in million square feet) due to sea-level rise in Tampa. It is predicted that
there are around 4000 properties in total that will be flooded at the end of this century.
This number would dramatically grow after 2100. For example, it will almost double
(i.e., 7577 properties) by 2150 under the high-end warming scenario. Table 3 shows the
total amount of flooded property value released by the Department of Revenue for the year
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of 2020. As shown in Table 3, this will lead to around 10 billion dollars property cost at the
end of this century. It also shows an accelerated trend of property cost over time due to the
sea-level rise. We would like to note that the costs shown in Table 3 are just direct costs
which are only a fraction of total costs due to the sea-level rise. Additional indirect costs
that are usually difficult to estimate would also include [29,30]: (1) the sectoral diffusion
and inflation of damages (e.g., housing prices, demand surge, and company bankruptcy),
(2) the response of economic shock (e.g., loss of invest confidence, and deepening inequal-
ity), and (3) financial and technical constraints that slow down reconstruction
(e.g., availability of land for housing replacement).

Table 1. Predicted Sea-Level Rise (years 2030–2150) Using Corrected Sea-Level Rise Acceleration of
0.084 ± 0.025mm/year2 with an Initial Rate of 2.9 mm/year.

Year 2030 2050 2070 2100 2150

Sea-level Rise (cm)
amin = 0.059 mm/year2 5.01 13.76 24.87 45.96 92.91

Sea-level Rise (cm)
aavg = 0.084 mm/year2 5.29 15.29 28.66 55 115.7

Sea-level Rise (cm)
amax = 0.109 mm/year2 5.58 16.83 32.44 64.03 138.48
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Table 2. Total amount of flooded properties and their total land area (million square feet) (years
2030–2150).

Years 2030 2050 2070 2100 2150

Low-end Warming
Total Amount 3334 3563 3724 3946 4518

Total Area 15,419 15,430 15,465 15,649 15,861

Medium-end Warming
Total Amount 3357 3586 3767 4005 5753

Total Area 15,420 15,457 15,468 15,663 16,243

High-end Warming
Total Amount 3371 3605 3827 4064 7577

Total Area 15,420 15,458 15,471 15,680 16,362

Table 3. Total value of flooded properties in million dollars (years 2030–2150).

Years 2030 2050 2070 2100 2150

Low-end Warming 8347 8686 8914 9141 10,333
Medium-end Warming 8386 8768 8961 9258 11,355

High-end Warming 8400 8785 8999 9332 12,256

In addition to the total property value, we also analyze different types properties to
be flooded under three warming scenarios. In particular, the following six categories of
properties are considered: residential, commercial, industrial, agricultural, governmental,
and other properties. Figure 4 shows the trend of the number of flooded properties
under these six categories. It shows that residential property takes the largest portion
of all flooded properties, indicating that sea-level rise will bring about the largest loss
to those residents who live along coastline. In order to further understand the mostly
affected area, we illustrate all residential, commercial and industrial properties (Figures 5–7,
respectively) that will be flooded in 2150 under the high-end warming scenario. From
Figure 5, it can be shown that residential properties in neighborhoods of Bay Crest Park,
Dana Shores, and Sunset Park have high risks of coastal flooding due to sea-level rise.
Figure 6 shows that many commercial properties in Port Tampa City and Greater Palm
River Point CDC will be flooded due to the sea-level rise. Since many industrial properties
are also located in these two areas, Figure 6 shows that these two places have high risks of
coastal flooding for industrial properties. The distribution of these mostly flooded areas
can help local governments take specific adaptation and/or mitigation actions (e.g., using
dikes or reinforcing buildings) to different areas so that the direct costs due to various sea
levels can be significantly reduced.
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4. Discussion

This study proposed three types of sea-level rise scenarios according to the climate
change, using the high-resolution DEM data and the recently released high-precision sea
level acceleration data, and then assessed the total land area and the cost of properties to be
flooded due to the sea level rise in the city of Tampa, FL, USA. While this study only consid-
ers the current property value that might not reflect the exact cost for future sea flooding, it
still provides meaningful guidance and insights to the impacts of sea level rise on urban
assets and urban planning, which help governments and local communities design better
planning strategies and mitigation actions. For example, the local government may design
specific budgets, e.g., the amount of property tax to be used for mitigation, applications
of different resources to specific communities within severe flooding areas, funding for
building levees, dikes, and seawalls, or specific budget for vulnerable infrastructures that
are identified in this study.

The findings of this study can be also used by governments, decision makers, and
coastal planners to identify the most vulnerable population in sea-level rise flooding areas.
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It is also worth noting that the property cost we reported in this study is just a fraction of the
total cost. Other costs, such as house appliances and furniture cost, property replacement
cost, and possible cost of labor for moving, are difficult to estimate and are not considered
in this study. In addition, this study does not consider the tide effects on the flooding
property analysis. With different levels of tides, more lands and properties could be flooded
due to the sea level rise plus extreme weather effects on tides such as hurricanes. The
regular tide is caused by moon’s gravitational force, and the tide height is also subject to
winds. This tide effect could be understood by adding a variation to the forecasted global
sea level rise for a particular year.

While the Tampa Bay area is only studied in this research, the proposed work can
be easily extended to other large coastal areas such as New York City and San Francisco,
where the high-resolution LiDAR-based DEM data are available, and the spatial property
maps and values are publicly available. The method and data flow developed in this paper
can be helpful for other researchers and urban planners to analyze property impacts of
sea-level rise flooding in other coastal regions.

However, we would also note that there are several uncertainties, including sea-
level rise projection uncertainty, urban surface elevation uncertainty, and property value
uncertainty, which are not considered in this paper and deserve further studies in future
works. Firstly, the sea-level rise project uncertainty derives from the exclusion of local-level
sea-level rise factors such as subsidence, erosion, and regional ocean currents; although, this
paper considers three levels of global mean sea level rise (mean plus and minus standard
derivation). The projection of local sea-level rise would provide a better estimation of
coastal flood inundation. Secondly, the urban surface elevation uncertainty comes from
the fact that the urban elevation will change with the urbanization process over time and
the building of new infrastructure for flood mitigation. While it is hard to model such
uncertainty, the inclusion of some simple models or assumptions would be also beneficial
to understanding the impact of future sea-level rise flooding. Lastly, the property value
uncertainty describes possible changes in property values in the future. Note that this
paper only uses the latest property values for cost estimation. While this can help local
governments and the public to have a direct understanding of the total economic cost if no
further action is made, the estimation of future property values may provide more realistic
economic costs related to the sea-level rise flooding.

5. Conclusions

This research examined the impact of sea-level rise on parcel-level properties in the city
of Tampa, Florida. Rather than performing a global-scale analysis, this study focused on
sea-level changes and associated urban property impacts in a typical coastal city. We used
corrected sea-level rise estimates to predict sea levels in the future and identified potential
areas of coastal flooding using a high-resolution LiDAR-based precise DEM. Coupled with
parcel-level property value data, we further identified all properties with different types
of use, which might be flooded due to the estimated sea level rise under three types of
sea-level rise and climate change scenarios. These results enable the local governments and
communities to better understand the risk of property damage due to sea-level rise induced
by climate change. Therefore, our urban flooding risk analyses provide guidance and
implications to local governments who could use it to adjust their approach to mitigation
sea-level rise and climate change and reduce potential property damage costs. For example,
the government may consider the percentage of property taxes every year to be assigned
for building seawalls that could reduce the areas at risk of flooding. Our research in this
paper focuses on the city of Tampa, and the spatial and temporal analyses can be easily
extended by researchers or local governments to the major coastal cities in USA, such as
New York City, San Francisco, and others coastal megacities across the world.
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