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Abstract: Forecasting reservoir water levels is essential in water supply management, impacting
both operations and intervention strategies. This paper examines the short-term and long-term
forecasting performance of several statistical and machine learning-based methods for predicting the
water levels of the Angat Dam in the Philippines. A total of six forecasting methods are compared:
naïve/persistence; seasonal mean; autoregressive integrated moving average (ARIMA); gradient
boosting machines (GBM); and two deep neural networks (DNN) using a long short-term memory-
based (LSTM) encoder-decoder architecture: a univariate model (DNN-U) and a multivariate model
(DNN-M). Daily historical water levels from 2001 to 2021 are used in predicting future water levels.
In addition, we include meteorological data (rainfall and the Oceanic Niño Index) and irrigation
data as exogenous variables. To evaluate the forecast accuracy of our methods, we use a time series
cross-validation approach to establish a more robust estimate of the error statistics. Our results show
that our DNN-U model has the best accuracy in the 1-day-ahead scenario with a mean absolute error
(MAE) and root mean square error (RMSE) of 0.2 m. In the 30-day-, 90-day-, and 180-day-ahead
scenarios, the DNN-M shows the best performance with MAE (RMSE) scores of 2.9 (3.3), 5.1 (6.0),
and 6.7 (8.1) meters, respectively. Additionally, we demonstrate that further improvements in
performance are possible by scanning over all possible combinations of the exogenous variables and
only using a subset of them as features. In summary, we provide a comprehensive framework for
evaluating water level forecasting by defining a baseline accuracy, analyzing performance across
multiple prediction horizons, using time series cross-validation to assess accuracy and uncertainty,
and examining the effects of exogenous variables on forecasting performance. In the process, our
work addresses several notable gaps in the methodologies of previous works.

Keywords: dam water level; time series forecasting; machine learning; deep neural networks; LSTM

1. Introduction

In 2019, Metro Manila, the economic and cultural center of the Philippines and home
to a population of over 12 million, suffered one the worst water shortage crises in the
past decade [1]. Low water levels in nearby reservoirs triggered daily rotational service
interruptions, forcing residents to line up daily to meet their water consumption needs.
In order to better address this problem in the future, we believe that more robust forecasting
methodologies should be developed for the use of the various water resource managers and
agencies in the Philippines. This study was initiated to aid in the forecasting of water levels
in the dams that supply water to Metro Manila, with the final goal of full implementation
and adoption of the methods described in this work.

Dams and reservoirs play a crucial role in water resource management. Not only are
they used to supply water to urban areas, they are also used for flood control, irrigation
for farmland areas, and in the generation of hydroelectric power. To maintain the optimal
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performance of a multipurpose water storage facility, the reservoir or dam level needs to
be continuously monitored so that necessary adjustments can be made in a timely manner.

However, forecasting water levels happens to be one of the more challenging tasks for
operators and planners in the water supply management domain. Although water levels
mainly depend on the inflows to the reservoir and outflow releases for purposes such as
water consumption, irrigation, hydroelectric power, etc., there may be uncertainties in other
related variables, such as long-term changes in the dynamics of rainfall and unforeseen
fluctuations in consumer demand.

In its early days, the prediction of water levels relied on linear mathematical relation-
ships based on the experience of the operators and rule curve guidelines derived from
the analysis of historical inflows and climatology [2]. Recent decades have seen the intro-
duction of machine learning (ML) models, allowing higher levels of accuracy since they
are capable of capturing non-linearities in a dynamical system, which traditional models
do not necessarily address. They are also advantageous in dealing with large amounts of
data in terms of efficiency, accuracy, multi-dimensionality, scalability, and flexibility [3].
In addition, specific ML models can be trained to learn more efficient representations of
complex non-linear relationships. This includes capturing the impact of the uncertainties in
measuring watershed parameters, hydrological variables, and even operational decisions.

Recently, several works have examined the use of ML models for forecasting various
features in the water resource management and hydrology research domains. These include
studies in predicting dam inflow and runoff, as well as forecasting the water levels of lakes,
reservoirs, and other bodies of water. In the case of dam operation and management,
ML has been investigated as a means of generating reliable predictions in order to improve
the safety of operations [4,5].

In a previous study, tree-based models, such as decision trees (DT), random forests
(RF) and gradient boosted trees (GB), together with artificial neural networks (ANN) were
used to forecast the dam inflow into the Soyang River Dam in South Korea [6]. The work
demonstrated that an ensemble approach that combined the forecasts of RF/GB with
a multilayer perceptron (MLP) could achieve a greater level of performance compared
to using a single individual model. The predictive power of tree-based techniques is
also highlighted in the case of the Upo wetland in South Korea, where RF was shown
to have the best forecast accuracy when pitted against ANNs, DTs, and support vector
machines (SVM) [7]. Other methods, such as the gaussian process (GP), multiple linear
regression (MLR), and k-nearest neighbor (KNN), have also been compared to tree-based
and ANN models in predicting the water level of Lake Erie [8]. Their results highlight how
ML methods, specifically the MLR and M5P model tree, had higher accuracy and were
much faster to train compared to the process-based advanced hydrologic prediction system
(AHPS) [9].

Specific work has also been conducted that explores different neural network and
deep learning (DL) architectures for forecasting water levels. In one study, two neural
network models were made to generate forecasts for the water levels of 69 temperate lakes
in Poland [10]. The results showed that a fully connected feed forward architecture slightly
outperformed a deep neural network composed of autoencoder layers, convolution layers,
and long short-term memory (LSTM) cells. Recurrent neural networks (RNN), specifically
LSTM networks, have also been used in predicting the daily runoff of the Yichang and
Hankou hydrological stations located along the Yangtze River [11]. The work combines sea-
sonal and trend decomposition using Loess (STL) with neural networks and demonstrates
that better performance can be achieved by using a time series decomposition method
before applying the DL model. Finally, LSTM-based sequence-to-sequence (seq2seq)
architectures have also been utilized to predict the two-day inflow rate of the Soyang
River Dam [12]. The study provides a comprehensive ablation study of their proposed
architecture and demonstrates how their model exhibits state-of-the-art accuracy by out-
performing proposed models from other studies.



Water 2022, 14, 34 3 of 21

This paper presents a comprehensive framework for evaluating water level predictions
that addresses several significant gaps in the methodology of the works outlined above.

First, while most of the works mentioned above focus on producing one-step forecasts,
examining how well forecasting methods perform in multi-step forecasting scenarios is
often more useful. Generating both short- and long-term forecasts provides more utility
to the managers and operators of water resources in terms of strategic planning and
intervention. A previous study that attempted to predict the water levels of a hydropower
reservoir, in the Miño River in Spain, looked at statistical and ML-based techniques for both
long-and short-term scenarios [13]. While a persistence-based approach using a typical
year showcased high accuracy in the long-term when compared to detrended fluctuation
analysis (DFA) and autoregressive moving average models (ARMA), a comparison with
more established ML methods such as RF, GBM, SVM, and ANN was not examined in the
long-term case. In contrast, our work uses the same collection of statistical and ML-based
methods for all sets of prediction horizons.

Second, most of the previously mentioned studies used a single train-test partition for
model evaluation. This approach provides a simple unbiased way to calculate the error
metrics for time series forecasting, however it does not accurately capture how well the
models generalize any unseen data. In most ML applications, cross-validation (CV) is
the standard method for analyzing model performance. Most standard CV techniques,
such as k-fold cross-validation, are typically inappropriate for time series data if applied
without some modifications to the method. We propose using a time-series cross validation
approach [14] to better understand how well each forecasting method generalizes any
future data.

Third, we found that most of the cited works failed to include simple baseline methods,
a common staple in forecasting competitions [15,16]. To properly gauge the relative per-
formance of the ML models, we also include two simple forecasting methods as baselines,
namely the naïve (also called the persistence method) and seasonal mean methods. This
will allow the performance results to be better contextualized, especially regarding the
relative complexity between models.

Finally, previous works tend to include explanatory/exogenous variables in the mod-
eling process by default and often fail to examine if their addition provides positive
(or negative) gains in performance. In fact, past competitions in time series forecasting
have shown that additional variables are not necessarily helpful [17]. This work examines
how prediction accuracy changes based on the inclusion of exogenous variables.

In summary, the novelty and innovation of this work lies with the consolidation
of our proposed solutions for each of the shortcomings mentioned above into a single
generalized framework:

1. We provide an analysis of deep neural networks for both short-and long-term fore-
casting horizons using multiple exogenous variables;

2. We propose the use of a time series cross-validation method in order to obtain more
robust estimates of prediction accuracy;

3. We include simple baseline methods, namely the naive/persistence and seasonal
mean methods, in order to properly contextualize the relative performance of the
more sophisticated models;

4. We examine prediction accuracy based on the inclusion or exclusion of several related
exogenous variables.

2. Models and Methodology
2.1. Study Area

The Angat Dam and reservoir is located within the Angat Watershed Forest Reserve
in Bulacan, Philippines shown in Figure 1. Construction of the facilities lasted from 1964 to
1967, and it became operational in 1968. The main inflow to the dam reservoir is the Angat
River with three major tributaries: Talaguio River; Catmon River; and Matulid River. The
Angat Dam is a multipurpose dam used for the water supply of residential and industrial
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consumers, farmland irrigation, flood control, and power generation. The dam supplies
approximately 90% of Metro Manila’s (the capital region of the Philippines) potable water
supply and irrigates 31,000 ha of farmland in the provinces of Pampanga and Bulacan [18].
The dam has an effective storage capacity of about 850,000,000 m3.
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Figure 1. The study area consists of the Angat Dam, located within the Angat Watershed. The Angat
Dam is a multipurpose structure used in irrigation, water supply, hydroelectric power, and flood
control. The dam is the main source of Metro Manila’s water supply system, serving more than
1 million households or about 6 million Filipinos in the capital of the Philippines. Image from [19].

2.2. Data Description

Water level data for the Angat Dam was obtained from Manila Water Company Inc.
(MWCI) [20], the largest water utility firm in the Philippines and one of two concession-
aires of the government-run Metropolitan Waterworks and Sewerage System (MWSS).
As a concessionaire, MWCI has the right to treat, distribute, and sell the water from the
Angat Dam to consumers in certain parts of Metro Manila (designated as the East Zone).
The historical observations cover the period from 1 January 2001 to 30 April 2021 (over
20 years). For illustration, Figure 2 depicts the daily observations for the water level of the
Angat Dam. We note that this data is publicly available, courtesy of MWSS [21].
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Figure 2. Historical water levels (above mean sea level) of the Angat Dam, from 1 January 2001 to
30 April 2021, in meters. The time series shows a drastic drop in 2019 (corresponding to the 2019
Metro Manila Water Crisis) that has only been seen on one other occasion, in 2010. Blue observations
denote the training set and green observations denote the test set.
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In addition to dam water levels, we examine the effects of integrating several exoge-
nous variables on the accuracy of our forecasts. Specifically, we look at two meteorological
variables (rainfall and the Oceanic Niño Index) and an irrigation variable. Figures 3–5
illustrate their respective time series data, where blue observations denote the training
set and green observations denote the test set. We note that since the observations of the
Oceanic Niño Index (ONI) are published at a monthly level of granularity, we perform
a naïve interpolation to transform the data into a daily time series. Specifically, the value
for a specific month and year is used as the index’s daily observation.
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Figure 3. Historical daily rainfall for the Angat Dam in millimeters. Spikes in the observations are
attributed to periods of intense rain caused by the monsoon season or typhoons. Since the Philippines
has a distinct rainy season, the annual seasonality of rainfall is reflected in this plot. The yearly peaks
usually occur in the middle of this rainy season. Blue observations denote the training set and green
observations denote the test set.
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Figure 4. Oceanic Niño Index. The index is used to monitor the El Niño-Southern Oscillation and is
calculated by averaging sea surface temperature anomalies in an area of the east-central equatorial
Pacific Ocean. Monthly observations are transformed to daily frequency using a naïve interpolation.
Blue observations denote the training set and green observations denote the test set. Data obtained
from [22].
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Figure 5. Historical irrigation releases from the Angat Dam in cubic meters per second (cms). As
the Angat Dam is also the primary source of irrigation for nearby farmlands, a portion of the water
stored is allocated regularly for irrigation use. Blue observations denote the training set and green
observations denote the test set.

In summary, the list of variables used in this study is shown in Table 1 along with
other relevant information.

Table 1. List of variables used in this study. All variables have a daily granularity, and the units for
each are as indicated.

Variable Units Training Set Test Set

Water Level meters
1 January 2001

to
31 December 2017

1 January 2018
to

30 April 2021

Rainfall millimeters
Oceanic Niño Index

Irrigation Releases cubic meters
per second

2.3. Forecasting Methods

In this section we introduce the statistical and machine learning models used and
describe how their parameters are tuned and selected. All methods described below
are implemented in Python using the NumPy, Pandas, and Matplotlib libraries, as well
as the Statsmodels, Scikit-learn, and PyTorch packages for the time series and machine
learning methods.

2.3.1. Baseline Methods

To properly gauge the performance of statistical and machine learning-based forecast-
ing methods, we opt to include the evaluation results of two simple baseline forecasting
techniques: a naive method and a seasonal mean method.

The naive method constructs an n-day forecast by using the last observed value in the
training set and supposing that all future values will equal that last observation,

ŷt+n = yt (1)

where yt is the last observed value in the data, ŷt+n are the future forecasted values, and n
is the number of days ahead being forecasted.

In contrast, the seasonal mean method constructs said n-day forecast by averaging
all previously observed values from the same season of the year. In this case, since the
data exhibits a yearly seasonality, we take the mean of the values from the same day of all
previous years,
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ŷt+n =
1
k

k

∑
i=1

yt+n−365×i (2)

where k is the total number of years preceding the year being forecasted. For example,
to generate a 30-day forecast for 1–30 April 2019, we would calculate the average of the
observations for all previous 1–30 April from 2001 to 2018 and use them as the predictions.

2.3.2. ARIMA

Autoregressive integrated moving average (ARIMA) models are a class of time series
methods used to model non-stationary stochastic processes. ARIMA has been used as
a benchmark for comparison against ML models, such as in [23–25]. The model can be
broken up into three parts: An autoregressive component (AR), an integrated component (I),
and a moving-average (MA) component [26].

The AR component specifies that the current value of the time series is linearly depen-
dent on its previous values plus some error term, while the MA component specifies that
the current value of the series is linearly dependent on the current and previous values of
the error term,

yt = c +
p

∑
i=1

φiyt−i +
q

∑
i=1

θiεt−i + εt (3)

Finally, the I component specifies the amount of one-step differencing needed to
eliminate the non-stationary behavior of the series.

Before fitting the ARIMA model, we perform pre-processing on the dataset to maxi-
mize the effectiveness of the time series model. Specifically, we transform the time series
data using seasonal differencing with lag l > 1 (not to be confused with the integrated
component I whose lag l = 1) to remove the seasonality in the data,

yt = yt − yt−l (4)

The Autocorrelation Function (ACF) plot for the Angat Dam series shown in Figure 6
indicates a one-year seasonal trend. This is illustrated by the sinusoid shape of the plot,
specifically the peaks in lagged correlation that occur every 365 timesteps (in this case, days).
Applying both seasonal differencing with l = 365 and first-order differencing suppresses
the seasonal trend as shown in Figure 7. For this work, we use the above differencing
parameters and reverse the differencing after generating the forecasts.
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by the periodic shape, with peaks occurring every 365 days.
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Figure 7. Autocorrelation Plot of the Historical Water Levels after applying seasonal differencing
with l = 365 and first-order differencing. First-order differencing is applied when fitting the ARIMA
model with d = 1.

We then fit an ARIMA model to the seasonally differenced series. The parameters
(p, d, q) are determined using a grid-search heuristic that minimizes the Akaike information
criterion (AIC). AIC provides an estimate of the out-of-sample prediction error and is
a commonly used statistic in the literature. The chosen model parameters are summarized
in Table 2.

Table 2. Summary of model parameters for the ARIMA model.

Model Parameter Value

ARIMA
p 1
d 1
q 2

To test the correctness of our estimated ARIMA model, we follow the conditions
outlined by Brockwell and Davis [27] and check (1) if the data is stationary and (2) if
the ACF is rapidly decreasing. We first note that the second condition is illustrated by
Figure 7. Next, to check the stationarity of the differenced time series we use an Augmented
Dickey-Fuller (ADF) test, which uses the model,

∆yt = α + βt + γyt−1 + δ1∆yt−1 + δ2∆yt−2 + . . . (5)

where ∆ is the first difference operator. We test the null hypothesis that γ = 0 given the
ADF statistic,

ADF =
γ

SE(γ)
(6)

The test is conducted using the statsmodels.tsa package and indicates an ADF statistic
of −26.76 with critical values of −3.43, −2.86, and −2.57 at 1%, 5%, and 10% significance
levels, respectively. Consequently, the corresponding p-value is very close to 0. Thus, we
reject the null hypothesis that the series has a unit root and conclude that the series is
stationary.

We also perform a serial correlation test on the residuals using the Lljung-Box statistic,

QLB = n(n + 2)
h

∑
k=1

ρ̂2
k

n− k
(7)

and the Box-Pierce statistic,

QBP = n
h

∑
k=1

ρ̂2
k (8)

where n is the sample size, ρ̂k is the sample autocorrelation at lag k, and h is the number of
lags being tested. Both tests were also conducted using the previously mentioned package
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and reveal p values greater than 0.94 at all lags l ≤ 10, indicating that the residuals are
uncorrelated. Finally, we perform a normality test using said package on the residuals
using the Jarque–Bera statistic,

JB =
n
6

(
S2 +

1
4
(K− 3)2

)
(9)

where n is the sample size, S is the sample skewness, and K is the sample kurtosis. The test
results in a p value of 0.00, indicating that the residuals are non-normal. As noted in [14,27],
the normality of residuals is not required for using ARIMA models. Normality as a property
of the residuals merely allows us to calculate prediction intervals using analytical formulas.
Since this work aims to analyze forecast accuracy and not to perform any inference on the
coefficients nor to calculate confidence intervals, the non-normality of residuals should not
compromise our assessment of the forecasting performance of the ARIMA model.

2.3.3. Gradient Boosting Machines

Boosting methods are a type of ensemble method that combines several base models
to produce a single optimal predictive model. Compared to conventional techniques,
optimization in boosting is done in a parametrized function space, which can be extended
to parametrized base-learner functions [28].

In this work, we use gradient boosting machines (GBM), a class of boosted models
that utilizes gradient descent to minimize the differentiable loss function of a model by iter-
atively optimizing “weak learners” (usually simple models with relatively low predictive
power) that concentrate on areas where the existing learners are performing poorly. Note
that while any model can be used, the method is typically associated with decision trees,
which we use in this study. Tree-based implementations of GBM are defined by several
parameters such as the learning rate (which controls the gradient update steps), max depth
(the maximum depth of a tree), and n estimators (the number of trees/boosting stages).

The algorithm works as follows: First, it begins by computing an initial estimate of
the target variable based on the average value. Second, the residuals are calculated using
the initial estimates and the actual observed values. Third, a tree model, whose depth is
controlled by the max depth parameter, is trained to predict these residuals. Fourth, the new
estimate is given by a combination of the old estimate and the forecasted residuals. In
order to prevent overshooting, the forecasted residual is modulated by the learning rate
parameter. Finally, the algorithm returns to the second step and is repeated up to a desired
number of stages, which is controlled by the n estimators parameter.

Mathematically, if we wish to train an ensemble model f (x) to predict y, then GBM
constructs the ensemble model at each stage m = 1, 2, . . . , n estimators such that,

fm+1(x) = fm(x) + αhm(x) (10)

where α is the learning rate and given a squared error loss function,

L =
1
2
(y− f (x))2 (11)

the new estimator hm(x) is given by:

hm(x) = − ∂L
∂ fm

= y− fm(x) (12)

Several works have evaluated the use of GBM as a time series forecasting model,
such as in [29–31]. GBM and its variants have been a popular choice of model in the
recently concluded M5 Competition and many other time series forecasting competitions
where they have been demonstrated to provide the most robust results that balance accuracy
and training time [16].
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Due to their non-linear nature, GBM models can learn the complex seasonal features
of the data. In addition, GBMs can handle multiple predictor variables. Thus, data for the
dam water levels, rainfall, irrigation releases, and ONI were used as input variables for our
implementation of GBM.

Since we are using a machine learning regression model on time series data, we must
first decide on an appropriate lookback window (i.e., the number of days we lookback to
predict the future). This is equivalent to the p parameter of an AR process. For this study,
we heuristically select the window size to be double the length of the forecast horizon,
except in the case of the 1-day-ahead forecast where we choose a 7-day lookback window.
Based on plots of the water level series and its ACF plots, we observe that the window
sizes of the lookbacks give sufficient opportunity for the trends and seasonality of the time
series to emerge, given the length of the target horizon.

When choosing the hyperparameters for our GBM models, we again use a grid-search
heuristic and select the parameters that minimize the mean absolute error (MAE). The
chosen model parameters are summarized in Table 3.

Table 3. Summary of model parameters for the GBM model.

Model Forecast Horizon Window Size Parameters Value

GBM
(Multivariate)

1 7 loss least squares
30 60 learning rate 0.1
90 180 max depth 5
180 365 n estimators 50

2.3.4. Deep Neural Networks

Neural networks (NN) are a family of machine learning models that attempt to mimic
the structure of the biological brain. NNs have been applied to a wide variety of time
series forecasting problems in a meteorological context, such as weather forecasting [32–34]
and solar radiation modeling [35,36]. Like GBMs, they can handle multiple independent
variables and learn the non-linear relationships between these input variables. In this work,
we focus our attention on deep neural networks (DNN), which are models characterized by
many deep hidden layers (often with complex architectures) capable of learning efficient
representations of high-dimensional data. We use the long short-term memory (LSTM),
a type of recurrent neural network (RNN) that is designed to handle sequential data such
as text data and time series data [37].

Compared to a standard RNN, LSTMs have a similar recurrent feedback structure,
however they have additional components that can regulate the flow of information at
each time step. Essentially, these regulating components allow the architecture to better
deal with the vanishing gradient problem (i.e., multiplying many small gradients can
cause the gradient updates to go to zero) that RNNs sometimes experience during training.
For illustration, Figure 8 depicts the internal structure of an LSTM cell. From left to right,
the σ-blocks are called the forget f , input i, and output gates o, respectively. The forget
gate controls the amount of information being let through from the previous cell state ct−1.
The input gate is used to determine the new cell state ct given the current input xt and
previous hidden state ht−1. Furthermore, the output gate is used to determine the new
hidden state ht. Formally, the gate and state Equations of each component are given by:

ft = σ
(

Wi f xt + bi f + Wh f ht−1 + bh f

)
(13)

it = σ(Wiixt + bii + Whiht−1 + bhi) (14)

ot = σ(Wioxt + bio + Whoht−1 + bho) (15)

ct = ft
⊙

ct−1 + it
⊙

tanh(Wicxt + bic + Whcht−1 + bhc) (16)

ht = ot
⊙

tanh(ct) (17)
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where σ refers to a sigmoid activation function and
⊙

refers to an element-wise
product operator.
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Figure 8. A representation of an LSTM cell. From left to right, the σ-blocks are called the forget,
input, and output gates. The forget gate controls the amount of information allowed to flow in from
the past, while the input and output gates look at the current input and previous hidden state to
determine the outputs of the cell. In the diagram above, the σ refers to a sigmoid activation function.

In this paper, we examine two versions of the DNN model: a univariate LSTM-
based encoder-decoder model (DNN-U) that only uses lagged water levels as input and
a multivariate model (DNN-M) that incorporates the exogenous variables discussed above,
together with the historical water levels.

Our DNN models closely follow the original sequence-to-sequence (seq2seq) architec-
ture proposed by Sutskever et al. [38]. As illustrated in Figure 9, the encoder LSTM takes
in lagged observations of the water level y and exogenous variables x (which are absent
in DNN-U) and encodes them into a hidden state h and cell state c. These encoder states
are then used as the initial states for the decoder LSTM, which accepts known future dates
d as input, representing the target dates we wish to forecast. The decoder outputs are then
passed to a time distributed dense layer, which generates the actual forecasts.
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Figure 9. Our DNN architecture. The encoder LSTM takes in lagged observations of the water level y
and exogenous variables x and encodes them into a hidden state h and a cell state c. These encoder
states are then used as the initial states for the decoder LSTM, which accepts known future dates d
as input. The decoder outputs are then passed to a time distributed dense layer, which generates
the forecasts.
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For the decoder inputs, each month–day date is encoded into a pair of features
dt = [dsin, dcos ] using sine and cosine transformations (called trigonometric or cyclical
encoding),

dsin = sin
( zt

365
× 2π

)
(18)

dcos = cos
( zt

365
× 2π

)
(19)

where zt = 0, 1, 2, . . . is an index variable corresponding to the date at time t. This specific
encoding allows us to represent the 365-day periodicity of the dates as a pair of values each
between −1 and 1.

This particular DNN architecture possesses several advantages. First, the model
provides a way to incorporate known future exogenous variables if they are available.
Second, the LSTM-based encoder can accept a variable length input at the inference time.
This implies that one does not have to input the entire history to make predictions, which is
more convenient for shorter horizons. Third, the LSTM-based decoder allows us to produce
forecasts of arbitrary length. This means that we can train a single model to generate
multi-horizon forecasts. For the window size, we set this to 365 since water levels exhibit
a 365-day seasonality. For the number of LSTM units, we perform a grid-search heuristic
on the set {8, 16, 32, 64, 128} and select the parameter that minimizes MAE. For the sake
of tractability, the other training parameters and hyperparameters for the DNN models
were kept on their default settings or manually tuned. The chosen model parameters are
summarized in Table 4.

Table 4. Summary of model parameters for the DNN-U and DNN-M model.

Model Forecast
Horizon Window Size LSTM

Units Parameters Value

DNN-U
(Univariate)

1 365 64 activation tanh
30 epochs 50

DNN-M
(Multivariate) 90 batch size

optimizer
63

Adam
180 loss Huber

2.4. One-Step and Multi-Step Forecasting

In this work, both one-step and multi-step forecasting of daily dam levels are at-
tempted. A one-step forecast describes the prediction of a future event that is one-step
ahead of the last observed value in a time series. Similarly, an n-step forecast predicts
n sequential future events (i.e., n-step ahead of the last observation). This work examines
the performance of our models in generating 1-day, 30-day, 90-day, and 180-day forecasts.
We believe that these prediction horizons should capture short-term and long-term fore-
casting scenarios that may arise in water resource management problems. In practice,
our proposed architecture is able to predict any arbitrary horizon length.

2.5. Evaluating Model Performance

To evaluate model performance, we use three error metrics: mean absolute error
(MAE), root mean squared error (RMSE), and mean absolute percentage error (MAPE).
We also include the R2 statistic as a goodness-of-fit measure. These are defined as,

MAE =
1
n

n

∑
i=1
|yi − ŷi| (20)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (21)

MAPE = 100× 1
n

n

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣% (22)
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R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (23)

where yi is the true value, ŷi is the forecasted value, y is the mean of the observed data, and
n is the number of data points being forecasted.

In addition, this work proposes the use of time series cross-validation (TSCV). Cross-
validation is a resampling technique typically used in prediction problems to gain insight
into how well a model generalizes and as a method for estimating the uncertainty of error
statistics. For time series data, using standard cross-validation methods (e.g., k-fold cross-
validation) is inappropriate due to the sequential nature of the data. Thus, TSCV is used to
produce unbiased estimates of the error statistics. In this procedure, the distribution of the
error metric (e.g., MAE, RMSE, MAPE) is estimated by calculating the statistic over a series
of test sets.

As an example, Figure 10 illustrates this process for one-step-ahead forecasting. After
calculating the error metric, we serially construct training and test partitions by “rolling in”
test observations. Note that the training set consists only of data that occurred prior to the
observations that form the test set. Thus, no future observations can be used in constructing
the forecast, leading to an unbiased estimate. The process is similar for an n-day-ahead
forecast, with the test set containing n observations instead of one.
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Figure 10. TSCV for one-step-ahead forecasting. The blue dots refer to the training set while the green
dots refer to the test set. The sampling distribution of an error statistic is estimated over a sequence
of constructed train-test partitions.

For training and testing, the setup is as follows: the last 1215 data points (i.e., observations
from 1 January 2018 to 30 April 2021) are withheld as the initial test set and the remaining
observations comprise the initial training set. After training a model and calculating the
test metrics, the next day’s observation is removed from the test set and rolled into the
training set. The process is repeated until the test set is exhausted, and we have constructed
an approximation for the test metric’s sampling distribution. We then calculate the average
and standard deviations of the error statistics to summarize model performances.

3. Results and Discussion
3.1. Time Series Description and Characteristics

Before discussing model performance, we briefly describe some notable characteristics
of our time series datasets.

For daily rainfall, we note that spikes in the dataset (seen in Figure 3) can be attributed
to periods of intense rain usually caused by the monsoon season or typhoons. For example,
the massive spike in rainfall at the tail end of 2004 corresponds to the passage of Typhoon
Nanmadol through Luzon Island [39].

Next, we incorporate climate data through the Oceanic Niño Index. This is one of the
main indices used to track the El Niño-Southern Oscillation (ENSO), a climate phenomenon
that affects temperature and precipitation worldwide. Since dam levels are primarily driven
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by rainfall, and rainfall is heavily influenced by the El Niño and La Niña phenomena,
we believe that the addition of ONI should help with our forecasting models.

Lastly, a portion of the water stored in the Angat Dam is allocated for farmland ir-
rigation. Consequently, there is a strong relation between irrigation releases and daily
water levels. The irrigation releases are scheduled by the National Irrigation Adminis-
tration (NIA), a government-owned and controlled corporation responsible for irrigation
development and management.

3.2. Model Performance Results and Analysis

We now discuss and summarize the performance of each forecasting model. Tables 5–8
show the average MAE, RMSE, and MAPE estimates with their standard deviations,
indicating the accuracy of the predictions and the associated uncertainty for each met-
ric, respectively. For completeness, we also include the R2 statistics, which illustrates
the goodness-of-fit of the models for each prediction horizon. In the discussions below,
we focus our attention on the MAE, RMSE, and MAPE metrics as these statistics more
appropriately measure prediction accuracy and how well the model generalizes any unseen
(i.e., future) data.

Table 5. Estimates for MAE, RMSE, MAPE, and R2 calculated using TSCV for a 1-day forecast.

1-Day Forecast

Model MAE RMSE MAPE R2

Naïve 0.291 (0.424) 0.291 (0.424) 0.002 (0.002) 0.999
Seasonal Mean 8.088 (6.080) 8.088 (6.080) 0.043 (0.036) 0.560

ARIMA 0.261 (0.467) 0.261 (0.467) 0.001 (0.002) 0.999
GBM 0.256 (0.411) 0.256 (0.411) 0.001 (0.001) 0.999

DNN-U 0.198 (0.390) 0.198 (0.390) 0.001 (0.002) 0.999
DNN-M 0.239 (0.372) 0.239 (0.372) 0.001 (0.002) 0.999

Table 6. Estimates for MAE, RMSE, MAPE, and R2 calculated using TSCV for a 30-day forecast.

30-Day Forecast

Model MAE RMSE MAPE R2

Naïve 3.344 (2.631) 3.909 (2.991) 0.017 (0.014) 0.890
Seasonal Mean 8.136 (5.818) 8.371 (5.795) 0.043 (0.034) 0.560

ARIMA 3.379 (2.732) 4.008 (3.148) 0.017 (0.014) 0.896
GBM 3.059 (2.501) 4.557 (2.818) 0.016 (0.005) 0.890

DNN-U 2.938 (2.368) 3.322 (2.576) 0.015 (0.013) 0.906
DNN-M 2.892 (2.263) 3.273 (2.493) 0.015 (0.013) 0.910

Table 7. Estimates for MAE, RMSE, MAPE, and R2 calculated using TSCV for a 90-day forecast.

90-Day Forecast

Model MAE RMSE MAPE R2

Naïve 8.390 (5.469) 9.825 (6.157) 0.044 (0.029) 0.358
Seasonal Mean 8.210 (4.954) 8.987 (5.069) 0.044 (0.030) 0.565

ARIMA 7.934 (5.287) 9.339 (6.021) 0.041 (0.028) 0.411
GBM 6.209 (3.603) 8.261 (3.989) 0.033 (0.006) 0.638

DNN-U 5.371 (2.965) 6.243 (3.312) 0.028 (0.016) 0.735
DNN-M 5.103 (3.091) 5.962 (3.510) 0.027 (0.017) 0.746
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Table 8. Estimates for MAE, RMSE, MAPE, and R2 calculated using TSCV for a 180-day forecast.

180-Day Forecast

Model MAE RMSE MAPE R2

Naïve 13.408 (7.079) 15.475 (7.856) 0.070 (0.040) −0.702
Seasonal Mean 8.469 (3.791) 9.911 (3.845) 0.046 (0.023) 0.472

ARIMA 11.431 (4.947) 13.614 (5.422) 0.060 (0.026) −0.360
GBM 7.335 (2.743) 9.578 (3.109) 0.039 (0.005) 0.518

DNN-U 7.113 (2.982) 8.668 (3.445) 0.038 (0.018) 0.547
DNN-M 6.652 (3.092) 8.128 (3.767) 0.036 (0.019) 0.581

Figure 11 depicts a snapshot of sample forecasts for each of the forecasting methods at
each prediction horizon. We note that the naïve and seasonal mean methods are meant to
be baselines for the short-term and long-term horizons, respectively. Hence, their noticeably
poor performance at the opposing extreme horizons. The sample forecasts are purely meant
to be illustrative, as each forecast only represents a single test set in the time series cross-
validation. As such, the plots do not represent the average performance of each method.
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Figure 11. Sample forecasts for each prediction horizon and each forecasting method. The black line
depicts the actual observed water level, while the dashed lines indicate the model forecasts. We note
that forecasts such as these are generated at each step of TSCV and their error and goodness-of-fit
statistics are calculated at each step. As such, we note that these plots do not reflect the average
performance of each model.
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Overall, our results show that the statistical and ML models had lower errors on
average and higher goodness-of-fit scores compared to the naïve and seasonal mean
methods. In particular, the non-parametric ML models showed superior performance
compared to the linear ARIMA model, with both DNNs having the more accurate water
level forecast (across all metrics) for both short- and long-term horizons with the least
amount of uncertainty.

For 1-day-ahead forecasting, the best performing model, DNN-U, displayed a 32%
improvement in MAE/RMSE over the baseline naïve/persistence forecast. This result
highlights how much additional performance is gained, given the relative complexity and
intensive computational requirements of deep neural networks versus a naïve method that
is calculated effortlessly. Essentially, this allows us to properly contextualize the trade-off
between the model’s complexity and its performance. In this scenario, it appears that a uni-
variate model (i.e., no exogenous predictors) has superior performance when compared to
its multivariate counterparts. This result seems to imply that for very short horizons, the
addition of covariates is actually detrimental to performance. From a practical perspective,
fewer variables mean it becomes easier for the model to learn and less computational power
is needed.

In the 30-day horizon, we see that the DNN-M slightly edges out its univariate
counterpart. This suggests that recent observations of rainfall and the climate index (which
influences dam inflow) together with irrigation releases (a primary driver of outflow)
possesses information that the neural network can learn from.

We see this trend continue for long-term forecasts, where the multivariate DNN model
takes the clear lead in terms of all error metrics. For the 90-day-ahead forecast, DNN-M
displayed a 0.27 m and a 0.28 m improvement over DNN-U’s MAE and RMSE scores,
respectively. This also applies to the 180-day-ahead forecasts, with DNN-M showing lower
average MAE, RMSE, and MAPE scores, as well as having less uncertainty in regard to the
estimates. Of particular note is the fact that DNN-M exhibits a 21% improvement in MAE
and an 18% improvement in RMSE, over a baseline seasonal mean forecast. Effectively, this
measures how much more effective the DNN-M model is over simply taking the average
water level of previous years. These results highlight and quantify the effect of exogenous
variables on forecast accuracy and its uncertainty. In this case, adding predictors can lead to
a higher number of errors in very short-term forecasts, however leads to better performance
once we start generating predictions with longer horizons.

In addition to examining point forecasts, one can also look at prediction intervals
in order to gauge the uncertainty around the predictions themselves. Figure 12 presents
a sample forecast for two long-term scenarios: a 6-month forecast covering November
2020 to April 2021 and a 3-month forecast covering February to April 2021. As DNNs are
inherently non-probabilistic in nature, calculating a prediction interval in an analytical
fashion is not possible. Thus, we apply a bootstrapping method on the model’s residuals in
order to estimate the prediction intervals [14].

As the plots illustrate, the uncertainty around our predictions increases the further
ahead we try to forecast. In the case of the 3-month forecast, the DNN-U appears less
optimistic about the water level in the coming months, as its prediction bands diverge
slightly from those of its multivariate counterpart. The DNN-M model’s slight uptrend
looks more accurate however, given the slight bump in water level observed at the middle
of February. For the 6-month forecast, it appears that the multivariate DNN model has
a tighter band compared to DNN-U, especially in the period after February, corresponding
to the summer season in the Philippines. This suggests that conditioning our forecasts on
historical climate, rainfall, and irrigation trends can lessen the uncertainty of a long-term
prediction, especially at critical times of the year when rainfall is sparse.
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3.3. Effects of Exogenous Variables on Multi-Step Forecasting Performance

In this section, we analyze the effects of each exogenous variable on the multi-step
prediction accuracy of our DNN model. Previously, we have seen that the DNN-M,
which uses all available exogenous variables, outperforms the DNN-U in the multi-step
forecasting, especially in the longer-term horizons. We are interested in understanding if
some of these variables actually impede performance, which may run contrary to intuition.
Tables 9–11 summarize the average MAE and RMSE values for every possible combination
of exogenous variable. We note that the differences in the MAPE and R2 values were very
minimal across the combinations. As such, we omit them from our results.

Table 9. Average estimates for MAE and RMSE, and their standard deviations calculated using TSCV
for a 180-day forecast across different combinations of exogenous variables.

180-Day Forecast (DNN)

Exog. Variables MAE RMSE

Rain, Irrigation, ONI 6.652 (3.092) 8.128 (3.767)
Rain, Irrigation 6.458 (3.432) 7.997 (4.003)

Rain, ONI 6.739 (3.479) 8.290 (4.213)
Irrigation, ONI 7.040 (2.708) 8.523 (3.341)

Rain 6.601 (3.352) 8.142 (3.942)
Irrigation 6.551 (3.248) 7.999 (3.827)

ONI 6.814 (2.450) 8.258 (3.025)
No Exog. 7.113 (2.982) 8.668 (3.445)
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Table 10. Average estimates for MAE and RMSE, and their standard deviations calculated using
TSCV for a 90-day forecast across different combinations of exogenous variables.

90-Day Forecast (DNN)

Exog. Variables MAE RMSE

Rain, Irrigation, ONI 5.103 (3.091) 5.962 (3.510)
Rain, Irrigation 5.034 (3.317) 5.870 (3.729)

Rain, ONI 5.146 (3.393) 5.986 (3.812)
Irrigation, ONI 5.367 (2.869) 6.225 (3.216)

Rain 5.108 (3.278) 5.960 (3.698)
Irrigation 5.370 (3.022) 6.223 (3.479)

ONI 5.375 (2.773) 6.272 (3.114)
No Exog. 5.371 (2.965) 6.243 (3.312)

Table 11. Average estimates for MAE and RMSE, and their standard deviations calculated using
TSCV for a 30-day forecast across different combinations of exogenous variables.

30-Day Forecast (DNN)

Exog. Variables MAE RMSE

Rain, Irrigation, ONI 2.892 (2.263) 3.273 (2.493)
Rain, Irrigation 2.880 (2.512) 3.253 (2.692)

Rain, ONI 2.953 (2.437) 3.321 (2.632)
Irrigation, ONI 3.039 (2.375) 3.398 (2.588)

Rain 2.763 (2.283) 3.160 (2.516)
Irrigation 2.901 (2.249) 3.315 (2.486)

ONI 2.942 (2.318) 3.338 (2.543)
No Exog. 2.938 (2.368) 3.322 (2.576)

In the 180-day and 90-day forecast horizons, we see that the combination of rainfall
and irrigation gives results that are superior to using all available variables. In the 30-day
horizon, using only the rainfall variable gave the best accuracy. In fact, our results suggest
combinations that don’t include the climate variable, represented by the Oceanic Niño
Index, have lower average MAE and RMSE scores. While a more sophisticated causal
analysis of the relationship between each covariate is beyond the scope of this work, we can
see that naively adding features to the DNN model can have negative empirical effects on
the quality of the forecasts.

3.4. Practical Implications

In terms of practical application, our methodology can be used to evaluate multiple
water level forecasting models. Ultimately, well-performing models can be selected by
water resource managers for long-term strategic planning and short-term intervention.
A common use case described by the domain experts of the operations and planning team
of MWCI is scenario planning. This is when they consider several dam level scenarios
and prepare allocation and conservation strategies for each situation. Water utility com-
panies that provide drinking water and wastewater services in the Philippines typically
need a 6-month ahead (180-day ahead) forecast at minimum to properly plan contingency
measures for the following summer season when water levels are at their lowest.

For short-term use cases, 1-day ahead forecasts are not as critical to the day-to-day
operations of a water utility, although this tends to be the focus of most of the works
described previously. Instead, operations and planning managers favor periods within
the range of 1-week and 1-month ahead forecasts as these horizons allow them ample
time to plan and execute short-term interventions. These interventions include dam
operators scheduling ad hoc water releases during periods of strong rainfall brought about
by typhoons due to immediate threats to the structural integrity of a dam. Naturally,
the proper planning of these types of occurrences can have an impact beyond the water
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industry, as situations like those described earlier can be tied to external events such as the
flood disaster risk management of nearby areas.

As a regulated industry, having high quality forecasts that are both data-driven and
rigorously validated can significantly reduce the uncertainty faced by water utilities and,
at the same time, increase transparency for regulators by having a precise and formalized
methodology.

4. Conclusions

This work has proposed a comprehensive framework for evaluating water level
forecasts that addresses several significant gaps in the methodologies of previous studies.
We have evaluated the performance of several statistical and machine learning-based
forecasting methods in predicting the daily water levels of the Angat Dam. Our results
indicate that DNN models outperform classic models like ARIMA and other machine
learning models like GBM. This is in terms of average MAE, RMSE, and MAPE values
estimated using a time series cross-validation approach. Both GBM and DNN models
also tended to have a lower level of uncertainty in regard to the MAE, RMSE, and MAPE
estimates compared to the baseline methods.

Additionally, the DNN-U variant showed superior performance in generating 1-day
forecasts when compared to its multivariate counterpart. This indicates that naïvely
adding exogenous predictors to a forecasting method does not necessarily lead to better
performance, and in fact, it may lead to more difficulties in training ML models, as more
noise is added to the system. However, for multi-step forecasting, especially long-term
forecasting, we see that the DNN-M shows better performance, beating out both GBM and
DNN-U. This indicates that deep neural networks can incorporate multiple variables that
exhibit complex behavior to produce superior forecasts with long time horizons. However,
our results also show that certain combinations of covariates can still have a negative
impact on forecast accuracy. Thus, careful analysis of the relationship between the target
variable and each exogenous variable is critical in order to train robust forecasting models.

While the results shown in this study have been focused on the Angat Dam,
the methodologies described here can be applied to other forecasting problems in water
resource management and hydrological research. Recent studies have shown how pow-
erful deep neural networks (and machine learning in general) are at learning complex
patterns in time series data. Our work demonstrates that much of the work in the literature
can be improved on, not just in terms of model complexity but also in designing a more
robust evaluation methodology for one-step and multi-step forecasting scenarios by using
resampling techniques such as time series cross-validation.

For future work, deeper analysis of explanatory and exogenous variables is recom-
mended. Feature importance analysis of machine learning models and explainable AI is
a new and developing field of research that can help identify and quantify which variables
provide measurable and significant gains to predictive performance. Formal techniques in
causal analysis can also be applied to the relevant covariates to determine if these variables
truly warrant inclusion in the modeling process. Additionally, a more thorough and empiri-
cal examination of lookback window sizes and other hyperparameters can be conducted to
further optimize the performance of ML and DL models. This includes optimizations to the
DNN architectures and its various training parameters. In particular, a more detailed abla-
tion study of the various DNN components that explores their strengths and weaknesses
can be made. Finally, an ideal forecasting method should also be able to incorporate future
dam release decisions made by management and regulators. Thus, scenario-based model-
ing techniques that incorporate the expert judgement of dam managers and regulators can
also help improve the usability of said methods.
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