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Abstract: Evaluating the long-term spatiotemporal variability in soil moisture (SM) over Africa is
crucial for understanding how crop production is affected by drought or flooding. However, the lack
of continuous and stable long-term series and high-resolution soil moisture records impedes such
research. To overcome the inconsistency of different microwave sensors (Advanced Microwave Scan-
ning Radiometer-EOS, AMSR-E; Soil Moisture and Ocean Salinity, SMOS; and Advanced Microwave
Scanning Radiometer 2, AMSR2) in measuring soil moisture over time and depth, we built a time
series reconstruction model to correct SM, and then used a Spatially Weighted Downscaling Model to
downscale the SM data from three different sensors to a 1 km spatial resolution. The verification of
the reconstructed data shows that the product has high accuracy, and can be used for application
and analysis. The spatiotemporal trends of SM in Africa were examined for 2003–2017. The analysis
indicated that soil moisture is declining in Africa as a whole, and it is notably higher in central Africa
than in other subregions. The most significant decrease in SM was observed in the savanna zone
(slope < −0.08 m3 m−3 and P < 0.001), followed by South Africa and Namibia (slope < −0.07 m3

m−3 and P < 0.01). Seasonally, the most significant downward trends in SM were observed during
the spring, mainly over eastern and central Africa (slope < −0.07 m3 m−3, R < −0.58 and P < 0.001).
The analysis of spatiotemporal changes in soil moisture can help improve the understanding of
hydrological cycles, and provide benchmark information for drought management in Africa.

Keywords: downscaling; soil moisture; spatially weighted downscaling model (SWDM); Africa;
vegetation temperature condition index (VTCI)

1. Introduction

Soil moisture (SM) changes, as a vital factor in climate change, play a significant
role in the environment [1–3]. SM has been widely applied in many fields, notably in
weather forecasting [4–6], agricultural drought monitoring, and land degradation, which
provides information for hydrological applications [7,8]. In practice, SM is strongly cor-
related with drought, so it is considered an indicator of crop water demand in drought
modeling [9]. Therefore, monitoring the spatiotemporal distribution of SM dynamics is
crucial to understanding crop water demand and drought events in semiarid regions [10,11].
In addition, timely access to accurate SM data will help to map the spatial distribution
of SM, which is important in food security and dryland management. There are many
traditional methods of obtaining soil moisture, such as drying and weighing, capacitance,
neutron meter detection, tensiometer techniques, and time domain reflection (TDR). These

Water 2022, 14, 74. https://doi.org/10.3390/w14010074 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w14010074
https://doi.org/10.3390/w14010074
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0002-1288-8428
https://orcid.org/0000-0002-1744-8974
https://doi.org/10.3390/w14010074
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w14010074?type=check_update&version=1


Water 2022, 14, 74 2 of 21

are slow and continuous, and only offer a limited monitoring scale [12]. The number of
ground soil moisture observation sites is often limited, especially in Africa. Although
SM data can be obtained from weather stations with traditional point measurements, it
is difficult to investigate the spatiotemporal patterns of SM over a large area because of
spatial differences [13]. Remote sensing technology develops rapidly, and can provide
real-time dynamic information for an entire region, so it is a practical method for obtaining
SM information in developing regions with limited ground measurements, which may
underpin analysis of the impact of drought on agriculture [12,14,15].

The remote sensing technique of SM retrieval mainly involves two methods: mi-
crowave and optical remote sensing methods [16]. In general, microwave methods are
more acceptable than optical methods (near-infrared and thermal infrared bands), in that mi-
crowave signals have a higher penetration capability, which means they are more sensitive
to SM [17]. Microwave remote sensing encompasses passive and active methods, providing
the opportunity to obtain SM information on a large scale, which helps in the monitoring
of soil moisture and groundwater [18–20]. Many microwave radiation sensors, such as
the Advanced Microwave Scanning Radiometer-Earth observing system (AMSR-E) [21,22],
the Advanced Microwave Scanning Radiometer 2 (AMSR2) [23], Scanning Multichannel
Microwave Radiometer (SMMR) [24,25], the Soil Moisture Ocean Salinity (SMOS) sys-
tems [26], Fengyun [27], and the Tropical Rainfall Measuring Mission Microwave Imager
(TRMM-TMI) [28], are used for studying SM dynamics. Although the SM data obtained
from these microwave radiometers are very effective for drought monitoring and hydro-
logical investigations [29], they have coarse spatial resolutions (10–40 km), and are thus
difficult to use at regional scales for certain research models [30]. Thus, it is necessary to
downscale the SM products from coarse to fine scales [31].

Multiple methods have been developed by correlating soil moisture and visible/thermal
infrared remote sensing to improve the resolution of microwave radiometers [32]. Down-
scaling techniques based on the higher resolution of visible/thermal infrared data can
provide more accurate SM data, and have been widely employed to reflect the spatial
heterogeneity of low-spatial resolution data [11,33]. This downscaling approach originated
from the ‘universal triangle’ concept [34,35], which describes the correlation between SM,
vegetation indices, and land surface temperature (LST) [36]. Many studies have used linear
regression formulas for downscaling soil moisture [36,37]. For instance, Choi et al. [36]
applied linear regression analysis to AMSR-E SM data. Guevara et al. [38] also applied
a machine learning technique to boost the pixel size of passive microwave SM data, and
found that the accuracy of the downscaled datasets was very good at the size of 1 km
pixel compared with the original data at the size of 27 km pixel. Likewise, Chen et al. [39]
downscaled AMSR-E SM data by using a random forest algorithm and cubist models with
multisource remote sensing data. Peng et al. [40] proposed a simplified model to increase
the spatial resolution of microwave SM with the vegetation temperature condition index
(VTCI) as a distinctive downscaling factor. However, there are still challenges in the down-
scaling of remotely sensed SM: (1) the relationship between SM and land surface variables
(e.g., surface albedo, surface roughness length, land surface temperature, and land cover)
is dynamic and cannot be adequately described by linear models. (2) In complex terrains,
downscaling is low in terms of effectiveness, and more methods need to be explored. (3)
Many factors determine SM, so downscaling techniques that use only a limited number of
factors cannot be optimized.

All of the above SM downscaling approaches are based on a single microwave sensor.
Consequently, it is very difficult to find reliable long-term SM data with fine spatial resolu-
tion over large areas, such as the African continent. Africa is one of the largest continents
in the world. Drought threatens the lives and livelihoods of millions in African countries,
as their economies mainly depend on agricultural activities, and their food mostly relies on
rainfed crop production [41]. Over the last decades, most of the African subregions have
encountered severe agricultural drought that profoundly impacts crop production, and
leads to severe food insecurity issues [42]. In recent years, major drought events in the sub-
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regions of Africa have been recorded, such as Tunisia and Algeria in northern Africa from
1999 to 2002 [43], western African shale regions from the early to mid-1980s [44], eastern
African countries during the 1980s [45], and southern African regions from 2001 to 2003 [46].
Therefore, it is critical to understand the dynamic variability of SM for the management of
agriculture in Africa [47]. The objectives of this study were to (1) downscale SM data to ob-
tain high-resolution datasets from 2003 to 2017 for Africa based on visible/thermal infrared
data; (2) use in situ measurement points to validate the downscaled time series data; and
(3) take advantage of microwave radiometer measurements to examine the spatiotemporal
changes in SM that occurred in African subregions.

2. Materials and Methods
2.1. Study Area

According to the United Nations geographic classification scheme, the African conti-
nent covers five main geographical subregions: north, south, east, west, and central, with
54 countries (Figure 1). The boundaries of the region are shaped by the Mediterranean Sea
to the north, the Red Sea to the northeast, the Atlantic Ocean to the west, and the Indian
Ocean to the southeast.
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Figure 1. Overview of the station locations and study regions across Africa: north (I), west (II), central
(III), east (IV), and south (V).

Africa’s climate and topography vary from warm lowland to moderate and wet
highland and littoral. Geographical scientists divided Africa into two regions based on
elevation: high (from southern Ethiopia to South Africa) and low (plains for the rest of
the region) [48]. The rainfall in Africa is highly variable even over a small area, and this
variability refers to the effect of complex topography, streams, and wet weather with
seasonal dynamics [49]. The average annual rainfall ranges from 100 mm to 3000 mm, with
lower rainfall over arid and semiarid regions, such as the Sahara zone in the north and west,
and higher rainfall over the savanna and rainforest zones. The average annual precipitation
from the Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) over Africa
from 2003 to 2017 was 345 mm (Figure 2a).
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Figure 2. Annual mean Africa climate factors: (a) precipitation (mm), (b) land surface temperature
(◦C) from 2003 to 2017, and (c) land use/land cover classes from the MODIS satellite (MCD12C1, 2017).

During most months of the year, most areas of Africa experience extreme temperatures,
especially arid and semiarid areas, with a mean annual temperature of 33.9 ◦C. According
to the Moderate Resolution Imaging Spectroradiometer (MODIS) monthly data at a spatial
resolution of 1 km from the Aqua satellite (MYD11C3), the average annual LST from 2003
to 2017 was 27 ◦C (Figure 2b). Africa’s population was estimated at 1.3 billion in 2018.
Africans are dependent on agricultural production (crop and livestock) as the main source
of food and economy. Most African countries experience numerous drought events because
of their high dependency on rainfed agriculture, which has resulted in the depletion of SM
coupled with an increase in population growth.

Due to the low resolution of passive microwave images, most of the pixels are mixed
pixels. In order to simplify the analysis, we reclassified the surface types. MODIS land
cover (MCD12C1) was reclassified into six classes (Figure 2c): water, forests (evergreen
coniferous forests, evergreen broadleaf forests, deciduous coniferous forests, deciduous
broadleaf forests, and mixed forests), shrublands (closed shrublands and open shrublands),
savanna (woody savannas and savannas), built-up lands (urban and built-up lands, and
cropland/natural vegetation mosaics), and barren land (barren). Currently, the dominant
land cover types are bare areas and cropland, accounting for approximately 38 and 18%,
respectively, of the land surface.

2.2. Data Collection and Processing
2.2.1. Soil Moisture Data

Three SM products were used to investigate the variation in SM over the African
continent at different time scales. The Aqua satellite with AMSR-E was launched in May
2002, and passes over the equator two times per day (1:30 p.m. and 1:30 a.m., equatorial
local passing time) [50,51]. The coverage of AMSR-E soil moisture data level 3 was from
July 2002 to September 2011, available at the EOS Data Gateway site (ftp://n4ftl01u.ecs.
nasa.gov/SAN/AMSA/AE_Land3.002/, accessed on 29 December 2018), with a spatial
resolution of 25 km.

The AMSR2 sensor, as a successor to AMSR-E, was mounted on the Global Change Ob-
servation Mission–Water 1 (GCOM-W1) satellite by JAXA, and launched in 2012. AMSR2 is
close to AMSR-E because it has daily data at 1:30 p.m. (ascending) and 1:30 a.m. (descend-
ing) at the equatorial local time [51]. SM data from AMSR2 were retrieved using brightness
temperature (Tb) (C- and X-bands). In this study, the AMSR2 Level 3 SM data were obtained
from JAXA’s GCOM website (http://suzaku.eorc.jaxa.jp/, accessed on 12 January 2019).
Therefore, we needed to obtain soil moisture product data from other satellites.

The European Space Agency’s (ESA’s) SMOS was launched in 2009, and is equipped
with L-band sensors that can retrieve soil moisture. SMOS uses the L-band at incidence
angles from 0–55◦ to measure the brightness temperature released from land across a
swath of ~1000 km at a spatial resolution of 35 to 50 km. The soil moisture observa-
tion depth in the L-band is deeper than that of AMSR-E and AMSR2. However, the
transit times of ascending and descending orbits are at approximately 06:00 a.m. and
06:00 p.m., respectively. SMOS-IC V105 SM data were obtained from the CATDS website

ftp://n4ftl01u.ecs.nasa.gov/SAN/AMSA/AE_Land3.002/
ftp://n4ftl01u.ecs.nasa.gov/SAN/AMSA/AE_Land3.002/
http://suzaku.eorc.jaxa.jp/
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(https://www.catds.fr/Products/Available-products-from-CEC-SM/SMOS-IC, accessed
on 18 January 2019).

2.2.2. MODIS Data

MODIS products were used in this work, including the 16-day composite Normalized
Difference Vegetation Index (NDVI) product (MYD13A3) and the 1-km, 8-day composite
LST (day/night) product (MYD11A2), which were used as input parameters for the veg-
etation temperature condition index (VTCI) model. The calculated result was used as a
weighting factor to downscale the coarse-scale soil products. The MODIS LST product
was obtained from NASA’s Land Processes Distributed Active Archive Center (LPDAAC)
(https://lpdaac.usgs.gov, accessed on 25 December 2018). A small number of missing
values were filled by interpolation methods [52]. In addition, The Shuttle Radar Topog-
raphy Mission (SRTM) DEM data with a resolution of 1 km were obtained from USGS
(https://lpdaac.usgs.gov/, accessed on 25 December 2018), which provides terrain factors
(e.g., elevation and slope) for the downscaling model. The remote sensing data description
is shown in Table 1.

Table 1. Summary of the remote sensing data used in this research.

Sensor Product Time Spatial Resolution Unit Level

AMSR-E Soil moisture
daily

25 km % L3
AMSR2 Soil moisture 25 km % L3
SMOS Soil moisture 25 km % L3

MYD11A2 LST 8 days 1 km K L3
MYD13A3 NDVI 16 days 1 km L3

SRTM Digital elevation
model (DEM) - 90 m m -

2.2.3. Ground Observation Data

It is assumed that the validation of remote sensing SM products across Africa will
reveal new significant challenges, which will improve the accuracy of satellites, and the
processing accuracy of raw data and recovery algorithms [53]. The SM data from the
International Soil Moisture Network (ISMN) were used to verify and precisely control
the downscaling of the SM products. These stations were established in different regions
of the study area. Table 2 shows some observation networks (Cosmic-ray Soil Moisture
Observing System, COSMOS; Carbon Cycle and Other GHG gases in Sub-Sahara Africa,
CARBOAFRICA. Dahra is a town in Senegal; Plate Boundary Observatory H2O network,
PBO_H2O). Some of these network data are fused into the ISMN, and are freely available,
and more detailed information can be found on the ISMN website (https:/ismn.geo.tuwien.
ac.at/en, accessed on 25 August 2019) [54–57], which enables global verification of satellite
imagery products. In this study, the five observatories used for verification were placed
in the most significant countries based on the availability of data. The SM data from the
ground observation sites were interpolated to a 1 km raster dataset for the purpose of
downscaling for validation.

Table 2. Information about in situ ground soil moisture observation networks and sites in Africa.

Network Kenya Namibia Sudan Senegal South Africa

COSMOS 2 (2011–2017) 1 (2014–2017) / / 5 (2014–2018)
CARBOAFRICA / / 1 (2002–2010) / /

DAHRA / / / 1 (2002–2016) /
PBO_H2O / / / / 4 (2014–2017)

Note: “/” represents missing data.

https://www.catds.fr/Products/Available-products-from-CEC-SM/SMOS-IC
https://lpdaac.usgs.gov
https://lpdaac.usgs.gov/
https:/ismn.geo.tuwien.ac.at/en
https:/ismn.geo.tuwien.ac.at/en
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2.2.4. Vegetation Temperature Condition Index (VTCI)

The lower the VTCI value, the lower the soil moisture value (drier). In contrast, the
higher the VTCI value, the higher the soil moisture value (wetter). Therefore, the VTCI was
used as a scaling factor to enhance the quality of the SM products. Many variables, such as
clouds, terrain, and land cover heterogeneity, might affect VTCI data performance [54,58,59].
The VTCI values were calculated following Equations (1)–(3) [54,58,59].

VTCI =
TNDVIi ,max – TNDVIi

TNDVIi, max – TNDVIi, mini
(1)

TNDVIi, max = a + b× NDVI (2)

TNDVIi, mini = a′ + b′ × NDVI (3)

where TNDVIi ,max and TNDVIi, mini are the respective maximum and minimum LSTs of the
pixels with NDVIi values in a study region. TNDVIi is the LST of one pixel; a and b, and a′

and b′ denote the intercept and slope of the dry and wet edge equations, respectively. The
value of VTCI ranges from 0 to 1.

2.2.5. Soil Moisture Time Series Method

The AMSR-E sensor was terminated in October 2011, and AMSR2 was launched in
May 2012 as a follow-up to AMSR-E. Therefore, some SM products are discontinuous
between October 2011 and May 2012. To obtain the long-term sequences of the SM data
sets from AMSR series satellites (same descending and ascending times), we used SMOS
to compensate for the missing data. To ensure the consistency of observation time and
depth, we used the Time Series Reconstruction of Difference Decomposition (TSRDD)
method to obtain the long-term sequence of SM data [60], which was utilized to eliminate
the differences between different products, and the soil moisture data of the overlapping
time of different soil moisture products were used to build a correction model, where W is
defined as the selection window area of the overlapping time (Equations (4)–(6)) [60].

ρ(x, y)day = ρ(x, y)mean + β̌i (4)

ρ(x, y)night = ρ(x, y)mean − β̌i (5)

β̌i =
∑

w
2
i=1

(
βday j − βnight j

)
+ ∑w

i=1+ w
2

(
βday j − βnight j

)
w− 1

(6)

where ρ(x, y)day is the SM reconstructed during the daytime in month y of year x, and
ρ(x, y)night represents the SM reconstructed at night in month y of year x. ρ(x, j)mean

is the mean value in month y of year x. β̌i is the difference between day and night.
βday j and βnight j represent the mean SM for the day and night, respectively. W is the
selected year window size.

2.2.6. Downscaling

The Spatially Weighted Downscaling Model (SWDM) was used to downscale the SM
data from a 25 km spatial resolution to a 1 km spatial resolution. The SWDM depends on
the identification of a negative correlation between the SM products and the VTCI [61].
Based on this, monthly high spatial resolution (1 km) VTCI values were used to weight the
SM data at a low spatial resolution (25 km) pixel by pixel. The weight was used to segment
the SM product from 25 km into 1 km, and was estimated as follows in Equation (7) [60]:

SMi = SMz ×
1−VTCIi

1−VTCImean
(7)
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where SMi is the downscaled SM at a spatial resolution of 1 km, SMz is the original SM
data obtained at a spatial resolution of 25 km, VTCIi represents the VTCI pixel value that
corresponds to the downscaled SM, and VTCImean is the mean of all corresponding VTCI
pixel values of the SMz pixels. The downscaling process is shown in Figure 3. First, we
resample different soil moisture products (AMSR-E, SMOS, AMSR2) to the same resolution,
and then we use MODIS surface temperature products, and NDVI products to generate a
drought index. Finally, we use the downscaling method to downscale the coarse-resolution
soil moisture products after the consistency check.
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2.2.7. Validation

The accuracy of the downscaled SM data was evaluated based on several statistical
measures, such as the correlation coefficient (R) (Equation (8)), root mean square error
(RMSE) (Equation (10)), and mean absolute error (MAE) (Equation (9)), in comparison with
the ground SM data.

R =
∑n

i=1 [(xi − x)(yi − y)]√
∑n

i=1(xi − x)2
√

∑n
i=1(yi − y)2

(8)

MAE =
∑n

i=1|xi − yi|
n

(9)

RMSE =

√
∑n

i=1(xi − yi)
2

n
(10)

where R is the correlation coefficient, xi is the downscaled data, yi is the original/ground
data, x is the overall mean of the downscaled data, and y is the average SM of n ground
station data. RMSE is an indicator reflecting the bias in the mean and spatial variance.
MAE denotes the error magnitude; low values imply excellent performance [62].

2.2.8. Time Series Trend Analysis of Soil Moisture

Soil moisture change trends were calculated using the slope and correlation coefficient
(Equation (11)).

Slope =
k ∑k

j=1
(

j× xmj
)
−∑k

j=1 j ∑k
j=1 xmj

k ∑k
j=1 j2 −

(
∑k

j=1 k
)2 (11)

where k is the study period, j is the number of years (j = 1, 2, 3... u, where u = 15 in this
paper), and xmj is the SM in year j. If the value of the slope reaches 0, the pattern does
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not change (P < 0.05). A positive slope means an increase in SM relative to the previous
period. By contrast, if the slope is negative, SM decreases from the previous period. When
the slope is 0, there is no change from the previous period. The significance of the trend
was assessed using the F-test for each pixel at P < 0.05.

3. Results
3.1. Soil Mositure Time Series Verification

The most suitable time window (W) was chosen to ensure consistency of the data
between different sensors and SMOS during the day- and night-time periods. The SM
data were distributed in the study area, which met the basic criteria for the analysis of the
correlation between the simulated, corrected, and original values. The relationship between
the corrected variables and descriptive variables (original value) varied significantly for
different window sizes (w). The validation statistics for TSRDD are presented in Table 3.
For the average day and night times, the indices were best matched when w was 6: the
RMSE, MAE, and R were 0.0105 m3/m3, 0.0115 m3/m3, and 0.91, respectively. Therefore,
the six-pixel sliding window was the most suitable for correcting and decomposing SM
data from daily SMOS.

Table 3. Test window size between corrected variables and descriptive variables (original value).

W
Average Day- and Night-Time Values (m3/m3)

RMSE MAE R

2 0.067 0.023 0.63
4 0.0153 0.0180 0.90
6 0.0105 0.0115 0.91
8 0.0203 0.0289 0.89
10 0.0130 0.0177 0.87
12 0.0198 0.0182 0.64
14 0.0132 0.0286 0.89

Note: W is the window size for the selected year based on Equation (6).

3.2. Verification of the Downscaled

The SM data from the ISMN were used to test the quality of the downscaled results
for different regions. The R values ranged from 0.73 to 0.93 for all five countries (Kenya,
Namibia, Sudan, Senegal, and South Africa), with an average of 0.836 (Figure 4). The RMSE
ranged from 0.0045 to 0.0181 m3/m3, with an average of 0.0096 m3/m3. The MAE varied
between 0.0015 and 0.0109 m3/m3, with an average of 0.0051 m3/m3. In addition, we
further evaluated the data on a seasonal scale, and the evaluation results (RMSE) are shown
in Table 4. Spring had the maximum average RMSE of 0.0612 m3/m3, followed by summer
with a value of 0.0085 m3/m3.

Table 4. The analysis of the seasonal ground observations in the five countries.

Region Validation
Period Spring Summer Autumn Winter

Kenya 2011–2017 0.0612 0.0135 0.0451 0.0053
Namibia 2014–2017 0.0178 0.0052 0.042 0.0154

Sudan 2003–2010 0.035 0.002 0.0043 0.0136
Senegal 2003–2016 0.046 0.016 0.052 0.049

South Africa 2014–2017 0.051 0.0153 0.056 0.061
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The distribution of RMSE on the seasonal scale differed considerably between the
regions in the east and west. For all stations located in the same locations (i.e., Sudan in
region I, and Kenya in region IV), the maximum RMSE values were observed in summer,
whereas the highest values for most sites in region V were observed in the spring months
(Table 4). The downscaled products showed high SM in the wet season, as expected. The
comparative results suggested that the mean RMSE for the eastern area between ground-
based observation data and SM data during the four seasons was lower than that observed
for South Africa and Kenya (means of 0.0312 m3/m3 and 0.0255 m3/m3, respectively). In
region IV, the spatial heterogeneity of climate change, which is dependent on large-scale
West Indian Ocean pressure systems and neighboring landmasses, may be the reason
for such heterogeneity. The validation results showed that the new high-resolution soil
moisture dataset is reliable.

3.3. Average Soil Mositure Analysis

The spatiotemporal changes in SM in Africa were investigated to analyze the annual
changes in different subregions of Africa during the 2003–2017 period. Figure 5 indicates
that the average SM content was approximately 10.09%, exhibiting a decreasing trend over
the last 15 years.
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From 2003–2011, there were slight fluctuations, but after 2012, the values decreased
sharply. In addition, SM was higher in 2003 (11.77%) and lower in 2017 (7.66%). The
annual average SM content of each subregion indicated that during the previous 15 years,
the SM values in the eastern region were much higher than those recorded in the other
regions (on average 11.70%). This result explains the agricultural drought events that
affected the eastern region from 2008 to 2010, during which more than 12 million peo-
ple were affected [63]. The significant decline in this region shows that it was strongly
affected by ENSO (La Niña) [64]. Additionally, some studies have stated that precipitation
declined in the eastern region, especially in the horn of Africa [65–67]. Generally, the
cumulative annual precipitation has a strong effect on the SM content, including climate
and hydrological systems.

In the northern region, the values from 2003–2011 were consistent with the average
SM over the entire African continent, and the values recorded from 2011–2013 exceeded the
average. The central region (rainforest zone) ranked second, with an average SM of 10.17%,
followed by the northern desert region, the western region, and the southern region, with
averages of 9.63%, 9.52%, and 8.33%, respectively.

3.3.1. Annual Change Analysis

In general, agricultural drought is characterized by a deficiency in SM. To under-
stand the overall SM variation across the African continent from 2003 to 2017, we applied
Equation (11), as shown in Figure 6. The areas with significantly reduced soil moisture
(slope < −0.08 m3 m−3 and P < 0.001) were mainly in the savanna region. The decreas-
ing trend over savanna and green land may be due to the degradation of grassland
and rainforest in these regions [68]. A relatively distinct significantly decreasing trend
(slope < −0.07 m3 m−3) can be observed in the north, the open areas west of the Atlas
Mountains and Ethiopian Highlands situated in the Horn of Africa, Congo, and the desert
area in southern Africa (Namibia). Moreover, the largest dryland between a highland
plateau and the Atlantic Ocean is Namibia. The annual average of precipitation over
Namibia is characterized by low and non-homogenous distribution. Typically, in desert
regions, precipitation is the main source of decline in SM [69]. Decreased soil moisture
leads to drought, which further causes a substantial reduction in crop yields, which has a
great impact on southern African countries, such as Zimbabwe, Mozambique, and Zambia.
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The SM contents increased significantly in the coastal regions close to the Indian
Ocean, the Mediterranean Sea, the Red Sea, and the area close to Lake Victoria in Africa.
The main reason for this is the change in rainfall during the dry season in Africa due to the
influence of the ENSO phenomenon [70,71]. ENSO has a substantial impact on weather
factors, and contributes to drought (soil moisture) throughout the world [72], which often
affects agricultural droughts in South Africa [73].

3.3.2. The Characteristics of the Seasonal Trend

To further investigate the details of SM changes over the past 15 years across Africa,
seasonal SM trends were analyzed (Figures 7 and 8 and Figure S2). In the spring, the rate
of the significant increase in SM was relatively high, except in some areas of region IV,
the areas close to Lake Victoria, and the Ethiopian highland (P-value ranged from 0.05 to
>0.18). In central Africa, more than 93.2% of the region showed different decreasing trends,
especially in Gabon, where the value of the slope was less than −0.07 m3 m−3 (R < −0.58,
and P < 0.001). Another significant severe decline occurred in the savanna zone, especially
in southern Sudan and Nigeria (slope < −0.7 m3 m−3, R < −0.78, and P-value from <0.001
to <0.01). In summer, the distribution of SM changes in the five subregions was obvious,
and a sizeable significant change in the trends occurred in southeastern Tanzania, where
the slope was higher than 0.06 (R > 0.76). The summer soil moisture changes in the Sahel
are mainly affected by the El Niño event and rainfall [74]. Another reason may be that the
temperature in these areas is increasing, which leads to increased evaporation [75,76].
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In southern Africa, the SM trend significantly decreased in Malawi and Madagascar
(slope < −0.07 m3 m−3, R < −0.78, and P < 0.001). Generally, given the substantial inter-
annual changes in temperature and seasonal rainfall, the area under the influence of the
monsoon in the east changed considerably. From summer to winter, the range of the SM
fluctuation in the southern African monsoon region (Malawi and Zambia) increased signifi-
cantly. The SM in the Sahara zone located in regions I and II (Ghana and Togo) showed
an extreme downward trend in autumn (slopes less than −0.08 (R< −0.78). The Sahelian
region is more vulnerable than other Africa regions to the effects of tropical and ocean
weather conditions (Atlantic and tropical Pacific) [77,78]. There was also a significant down-
ward trend in the Republic of Congo, which is bordered by the central region rainforest,
and the southern monsoon region (slope < −0.07 m3 m−3, R < −0.58, and P < 0.001).

The change in soil moisture in summer and winter was obvious, mainly due to the
imbalance of evaporation caused by rainfall and high temperature, which causes great
differences in seasonal and spatial changes in soil moisture. Compared to other seasons,
highly significant (P < 0.001) changes in SM were recorded in winter. The decline occurred
mainly in savanna zones, such as Nigeria, Burkina Faso, and southern Sudan. Furthermore,
rainfall anomalies, including flooding events, were observed in these regions, which have
negative effects on agricultural production. Ground runoff appears to be the principal
reason for the low infiltration rates and increased evaporation trend in cropland areas [79],
which has a strong effect on the growing season.



Water 2022, 14, 74 13 of 21

3.3.3. Soil Moisture Time Series Trend at Monthly Scale

To understand the temporal and spatial changes in soil moisture on a monthly scale in
more detail, we performed further analysis of the SM data on a monthly scale. As shown in
Figures 9 and 10 (significant trends as in Figure S3), the Sahel belt and desert zones in the
northern, southern, and Horn of Africa regions experienced the most significant decreasing
trends (slope < −0.07 m3 m−3, R < −0.78, and P < 0.001) due to an increased warming
trend in March, April, and May. It can be seen from the trend map that in May, the SM
content dropped significantly (slope < −0.07 m3 m−3, R< −0.57, and P < 0.001), accounting
for 76.45% of the total area. Relatively significant decreasing trends (slope < −0.06 m3 m−3,
R < −0.7, and P < 0.001) occurred in Nigeria and Ghana. In June, the area in which the soil
moisture increased accounted for 7.3% of the total area of Africa, and it was most obvious
in the Sahel zone (slope > 0.07 m3 m−3 and P < 0.001); the significance values ranged from
<0.001 to <0.01 (growing season). In September, there was a relatively significant (P < 0.001)
downward trend, accounting for 86.4% of the total area, and this trend continued until
November. These results are suitable for interpreting the decreased annual precipitation
trend during the rainy season over Africa [30]. The cause of agricultural drought is a
regular meteorological drought, which has a direct effect on the SM trend. This means that
the reduction in rainfall and water stored in the soil is the main driving force that reduces
crop yield [30].

Water 2022, 13, x FOR PEER REVIEW 13 of 21 
 

 

To understand the temporal and spatial changes in soil moisture on a monthly scale 
in more detail, we performed further analysis of the SM data on a monthly scale. As shown 
in Figures 9 and 10 (significant trends as in Figure S3), the Sahel belt and desert zones in 
the northern, southern, and Horn of Africa regions experienced the most significant de-
creasing trends (slope < −0.07 m3 m−3, R < −0.78, and P < 0.001) due to an increased warming 
trend in March, April, and May. It can be seen from the trend map that in May, the SM 
content dropped significantly (slope < −0.07 m3 m−3, R< −0.57, and P < 0.001), accounting 
for 76.45% of the total area. Relatively significant decreasing trends (slope < −0.06 m3 m−3, 
R < −0.7, and P < 0.001) occurred in Nigeria and Ghana. In June, the area in which the soil 
moisture increased accounted for 7.3% of the total area of Africa, and it was most obvious 
in the Sahel zone (slope > 0.07 m3 m−3 and P < 0.001); the significance values ranged from 
< 0.001 to < 0.01 (growing season). In September, there was a relatively significant (P < 
0.001) downward trend, accounting for 86.4% of the total area, and this trend continued 
until November. These results are suitable for interpreting the decreased annual precipi-
tation trend during the rainy season over Africa [30]. The cause of agricultural drought is 
a regular meteorological drought, which has a direct effect on the SM trend. This means 
that the reduction in rainfall and water stored in the soil is the main driving force that 
reduces crop yield [30]. 

 
Figure 9. The interannual change (slope) of the monthly average soil moisture from 2003 to 2017. Figure 9. The interannual change (slope) of the monthly average soil moisture from 2003 to 2017.



Water 2022, 14, 74 14 of 21
Water 2022, 13, x FOR PEER REVIEW 14 of 21 
 

 

 
Figure 10. The interannual change correlation coefficient (R) of the monthly average soil moisture 
content from 2003 to 2017. 

3.4. Correlation of SM with Climate and Non-climate Factors 
To better analyze the annual changes in soil moisture, we performed correlation anal-

ysis for the annual average soil moisture, the annual average NDVI, and the annual aver-
age precipitation and temperature (Figure 11). In North Africa, the temperature increased 
considerably across most of Algeria, and decreased in coastal land areas, whereas the veg-
etation and precipitation decreased. In East Africa, the vegetation cover and precipitation 
increased, whereas the LST decreased. For instance, in the semiarid areas of north and 
east Africa, the vegetation decreased, whereas the drought conditions and temperature in 
Sudan and Eritrea increased [76,80]. Philippon et al. [81] revealed that African vegetation 
cover is mostly affected by rainfall shortages. Our results (Figure 9a,b) show that there 
was a positive correlation between SM and NDVI, accounting for 54.5% of the study area, 
especially in central Africa and the savanna areas. As shown in Figure 9, the annual aver-
age soil moisture of 45.41% of the study area was negatively correlated with the annual 
average LST (64.56% was significant). We found a positive correlation between average 
annual precipitation and SM in 47% of the area (58% was significant), but a negative cor-
relation in 53% of the study sites (42% was not significant). 

The correlation coefficient showed that the equatorial rainforest belt and the high-
altitude regions (Atlas Mountains) of central Africa exhibited the strongest correlation be-
tween the average annual SM and the average annual precipitation. Generally, SM is pos-
itively related to precipitation, and is negatively correlated with temperature. This implies 
that the variation in LST and the decline in precipitation due to climate variability and 
climate change determine the spatiotemporal changes in SM. The atmospheric demands 
for evaporation depend strongly on the near-surface air temperature and humidity con-
ditions [82]. More modifications are needed to obtain reliable SM data due to the limita-
tions of the sensors themselves, i.e., near the coastline (such as Madagascar), rivers, and 
lakes (Victoria), and there may be a need to develop ground control verifications (Figure 
11). 

Figure 10. The interannual change correlation coefficient (R) of the monthly average soil moisture
content from 2003 to 2017.

3.4. Correlation of SM with Climate and Non-Climate Factors

To better analyze the annual changes in soil moisture, we performed correlation
analysis for the annual average soil moisture, the annual average NDVI, and the annual
average precipitation and temperature (Figure 11). In North Africa, the temperature
increased considerably across most of Algeria, and decreased in coastal land areas, whereas
the vegetation and precipitation decreased. In East Africa, the vegetation cover and
precipitation increased, whereas the LST decreased. For instance, in the semiarid areas
of north and east Africa, the vegetation decreased, whereas the drought conditions and
temperature in Sudan and Eritrea increased [76,80]. Philippon et al. [81] revealed that
African vegetation cover is mostly affected by rainfall shortages. Our results (Figure 9a,b)
show that there was a positive correlation between SM and NDVI, accounting for 54.5% of
the study area, especially in central Africa and the savanna areas. As shown in Figure 9,
the annual average soil moisture of 45.41% of the study area was negatively correlated
with the annual average LST (64.56% was significant). We found a positive correlation
between average annual precipitation and SM in 47% of the area (58% was significant), but
a negative correlation in 53% of the study sites (42% was not significant).

The correlation coefficient showed that the equatorial rainforest belt and the high-
altitude regions (Atlas Mountains) of central Africa exhibited the strongest correlation
between the average annual SM and the average annual precipitation. Generally, SM is
positively related to precipitation, and is negatively correlated with temperature. This im-
plies that the variation in LST and the decline in precipitation due to climate variability and
climate change determine the spatiotemporal changes in SM. The atmospheric demands
for evaporation depend strongly on the near-surface air temperature and humidity condi-
tions [82]. More modifications are needed to obtain reliable SM data due to the limitations
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of the sensors themselves, i.e., near the coastline (such as Madagascar), rivers, and lakes
(Victoria), and there may be a need to develop ground control verifications (Figure 11).
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4. Discussion

Soil moisture change is a significant challenge, specifically in rainfed Africa. SM is
an essential variable for climate forecasting and drought assessments [83]. In addition,
SM not only directly influences the circulation of surface water, but also affects surface
evaporation, runoff, reflectivity, and emissivity [39]. Soil moisture drought frequently
occurs in many African countries, mainly due to precipitation decreases [84], and these
droughts directly affect soil moisture. In addition, it is challenging to obtain SM data from
field ground stations across African countries. Because of the limitation in the number of
weather stations [76], microwave remote sensing data from satellites can provide better
results over large scales [85].

In this study, visible/thermal infrared remote sensing data (LST/NDVI) at a 1 km spa-
tial resolution were applied to calculate VTCI (1 km) as an input in the Spatial Weight Down-
scaling Model (SWDM) to downscale SM data at a spatial resolution of 25 km × 25 km
to 1 km. By training the accuracy of different time series windows, a suitable window
was selected to downscale the time series SM data with fine spatial resolution at different
time scales (day/night) (extending from 2003–2017, ~1 km). Then, the variations in SM in
Africa were investigated over 15 years at different time scales, which provided new insight
by downscaling the SM data. Our analysis showed that the SM over the 15 years had a
downward trend. Regionally, the SM trends in the Sahel region decreased most significantly
at all time scales (annual, seasonal, and monthly). The SM displayed a slight upward trend
in 2003 of 11.77%, and the lower water content observed in 2017 was 7.77%, with 28%
of the trends being significant (Figure S1b). The strongest significant decreasing trend
was observed in the savanna, followed by desert regions, such as North Africa, and the
highlands in East Africa. The variability of climate factors plays a key role in agricultural
drought in most African regions. In reality, the reasons for drought events in eastern Africa
are related to changes in the Niño–Southern Oscillation (ENSO) and land–atmosphere
feedbacks [86,87].

Additionally, the water system in remote regions depends closely on precipitation [39],
the timing of agronomic practices (e.g., planting, fertilizer, pesticides, and herbicide ap-
plication), and irrigation scheduling, which are all affected by SM conditions [84,88],
and SM changes can regulate LST and evapotranspiration (ET). The trends of high SM
were observed in wet regions, such as rainforest zones and savanna zones, and the im-
pacts of shortages in precipitation in these regions will result in a prolonged period of
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drought [89]. The increase in LST and ET reduces SM, leading to drought, and directly
affecting crops [90,91].

Recently, several regions in Africa have experienced major drying patterns in recent
decades that have caused serious social, economic, and environmental problems. There
are other factors that lead to reduced soil moisture, such as soil degradation, deforestation,
urbanization, and industrialization [92]. Many previous studies have reported that many
social conflicts are related to soil moisture drought events. For example, in 2000–2013,
Ethiopia had prolonged drought events that led to internal conflicts [93], whereas in
Somalia, soil moisture drought occurrence had a significant relationship with violent local
conflicts [94]. These results imply that decreasing rainfall and soil moisture during the
growing season can exacerbate violent fights over water, pasture, and farmland, creating a
full-blown civil war [95].

In vegetated regions, the vegetation covering the land will reduce soil moisture evapo-
ration, and SM and NDVI are positively correlated, especially in dense vegetation regions,
such as savannas and rainforests. In arid and semiarid regions, SM deficiency is a key
factor in vegetation activity. In the Sahelian region, the vegetation cover has a direct re-
lationship with SM accumulated over a long time. Pang et al. [96] reported that SM and
NDVI have a significant correlation in arid and semiarid regions, which are common in
Africa. The correlation between NDVI and soil moisture in Africa, especially in Sahelian
countries, was considered the main factor in assessing land degradation. In addition, the
vegetation change caused by anthropogenic activity has a strong effect on the SM trend,
as the capacity of the soil decreases to retain rainwater, and increases runoff. Vegetation
change can alter soil infiltration and field capacity, thus affecting soil moisture and the
availability of groundwater for human and agricultural purposes [97] (Sterling et al. 2012).

It is important to study SM changes to understand and monitor soil moisture drought
to reduce the consequences that could be faced regionally in the context of food security
in Africa. In Africa, there are regular droughts due to shortages of precipitation, and high
LST. In addition, throughout Africa, SM drought causes social, economic, environmental,
and conflict challenges [98]. Therefore, there is a need to integrate scientific findings
and regional environmental planning in Africa, and abide by international conventions,
such as combating desertification, and mitigating the effect of climate variability and
climate changes.

5. Conclusions

Studying the temporal and spatial changes in soil moisture in Africa is very important
for understanding and managing African agricultural production. In this study, the spa-
tiotemporal changes in SM (2003–2017) were examined using a time series of three types
of passive microwave soil moisture data (AMSR2, AMSR-E, and SMOS) in Africa. The
Soil Moisture Time Series Method was used to confirm the continuity and consistency of
long-term SM data sequences. Then, the Spatial Weight Downscaling Model (SWDM) was
used for downscaling based on the relationship between SM and the Vegetation Tempera-
ture Condition Index (VTCI). The spatiotemporal analysis indicated that soil moisture is
declining in Africa as a whole, and it is notably higher in central Africa than in other subre-
gions. The most significant decrease in SM was observed in the savanna zone, followed by
South Africa and Namibia. Seasonally, the most significant downward trends in SM were
observed during the spring, mainly over eastern and central Africa. In order to improve
the accuracy of soil moisture monitoring, we need to obtain more ground observation data
in Africa. According to topography and climate conditions, Africa is divided into regions,
and local correction models are established using data from ground observation sites in
different regions to further improve the accuracy of soil moisture products, and temporal
and spatial changes analysis, which can help improve the understanding of hydrological
cycles, and provide benchmark information for drought management in Africa.

As a vital drought factor and a significant climate change indicator, SM in Africa is
gradually decreasing on an annual scale. The results showed that despite regional variances,
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an overall decreasing trend of SM was observed across the Africa over the past 15 years,
and the highest SM content during the studied period was in 2003, whereas 2017 had the
lowest SM content. The spatiotemporal analysis of the annual average SM revealed that
the fluctuations in the LST and precipitation were the main factors causing the decrease in
the SM content over Africa. At seasonal and monthly scales, highly significant decreasing
trends were generally observed for SM across Africa. However, the most significant
decreasing SM trends occurred in the desert zone and savanna, whereas an increase was
recorded for wetlands.

Reduced soil moisture leads to an increased risk of drought, so government agencies
and agricultural-based organizations need to prioritize policies and advocacies related to
food sufficiency to reduce the number of people affected by food shortages in developing
countries. Despite decentralization, such as irrigation systems and water recycling, it is
still challenging to reverse agricultural drought, which directly impacts crop production.
Drought mitigation measures should be taken from local to regional scales, and every
country and region should comply with international climate change conventions.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/w14010074/s1, Figure S1. The spatial distribution of the annual soil moisture significance and
area percentage (%) trends in Africa from 2003 to 2017. (***, **, * Significant at the P = 0.001, 0.01 and
0.05 confidence levels, respectively). Figure S2. Significance of the spatial distribution of seasonal
soil moisture trends with area percentage (%) from 2003 to 2017. (***, **, * Significant at the P = 0.001,
0.01 and 0.05 confidence levels, respectively). Figure S3. Significance and area percentage (%) of the
spatial distribution of monthly soil moisture trends in Africa from 2003 to 2017. (***, **, * Significant
at the P=0.001, 0.01 and 0.05 confidence levels, respectively).
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