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Abstract: Pressure sensor placement is critical to system safety and operation optimization of water
supply networks (WSNs). The majority of existing studies focuses on sensitivity or burst identification
ability of monitoring systems based on certain specific operating conditions of WSNs, while nodal
connectivity or long-term hydraulic fluctuation is not fully considered and analyzed. A new method
of pressure sensor placement is proposed in this paper based on Graph Neural Networks. The method
mainly consists of two steps: monitoring partition establishment and sensor placement. (1) Structural
Deep Clustering Network algorithm is used for clustering analysis with the integration of complicated
topological and hydraulic characteristics, and a WSN is divided into several monitoring partitions.
(2) Then, sensor placement is carried out based on burst identification analysis, a quantitative metric
named “indicator tensor” is developed to calculate hydraulic characteristics in time series, and the
node with the maximum average partition perception rate is selected as the sensor in each monitoring
partition. The results showed that the proposed method achieved a better monitoring scheme with
more balanced distribution of sensors and higher coverage rate for pipe burst detection. This paper
offers a new robust framework, which can be easily applied in the decision-making process of
monitoring system establishment.

Keywords: pressure sensor placement; water supply network; graph neural network; structural deep
clustering network; monitoring system; pipe burst identification

1. Introduction

Water supply networks, as one of the most important urban infrastructures, need to
be monitored for the perspective of safety and optimized operation [1]. Considering the
complex characteristics of WSNs, the monitoring system should be robust under economic
constraints [2]. The reasonable and effective arrangement of pressure monitors in WSNs
has attracted significant research interest in the past few years.

Heuristic methods were widely used for monitor arrangement optimization to achieve
better sensitivity for the hydraulic conditions monitoring. Meier et al. [3] introduced genetic
algorithms into the arrangement of monitoring sensors, transformed the arrangement of
monitors into an optimization problem, and carried out experiments in a real pipe network
to verify the effectiveness of the optimization method. Then, many researchers made
improvements on genetic algorithms, increasing the accuracy and efficiency for monitor
placement application [4–6]. Xiao Zhou et al. [7] considered the sensing range of the
monitoring system as the objective function and used a genetic algorithm to optimize the
number and location of pressure sensors based on the sensitivity matrix. Weiping Cheng
et al. [8] proposed a leak detection objective function for pipe burst detection and achieved
good results using a genetic algorithm to solve the objective function. In addition, Sousa
et al. [9] adopted the simulated annealing algorithm, which reduced the running time
compared with the genetic algorithm and achieved good results.

Conversely, the researchers also used clustering algorithms for monitoring arrange-
ment [10,11], based on the fact that pressure fluctuation caused by demand change or pipe
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burst was regional in the network [12], which could be analyzed with the pressure sensitiv-
ity matrix to arrange a limited number of pressure monitors. Li Cheng [13] proposed the
formula derivation for solving the pressure sensitivity matrix directly, instead of the matrix
generation with nodal demand disturbance. Then, K-means [14] clustering algorithm was
introduced to analyze the sensitivity matrix row vector, measure the similarity of each
node, and search for the centers of each cluster as the monitoring location.

The existing research on sensor placement is mainly carried out for the following two
scenarios: the first is oriented for daily management and operation optimization based
on pressure monitoring data [3,7,13]. The second scenario is used for abnormal event
detection in WSNs, such as pipe burst or leakage, which can be identified by the turbulence
of monitoring data [8,9]. As leakage and burst detection and management is important for
water supply safety [15], sensor placement analysis oriented for the second scenario is still
a hot research topic in recent years.

However, due to the complex characteristics of WSNs, there are still some unresolved
problems. Most of the existing research on sensor placement is only based on the analysis of
hydraulic features and their fluctuations caused by demand, pipe burst or leakage [8,16,17].
However, nodal connectivity presented by network topology is also an important factor
that should be considered in the evaluation of monitoring systems. The method that
pays attention to only hydraulic characteristics instead of topological characteristics of
the network will lead to uneven distribution of pressure sensors [18]. Another issue is
that the hydraulic conditions of WSNs always change according to system operation and
customer consumption. In previous studies, the sensitivity or burst recognition ability of
the monitoring system was mainly analyzed based on specific operating conditions. [7,13]
These existing studies have limited methods to deal with time-varying hydraulic conditions
during system operation.

With the development of Graph Neural Networks (GNN) [19,20], researchers find that
graph convolution can effectively combine graph topology information and feature infor-
mation of nodes for cluster analysis. In 2020, Deyu Bo et al. [21] proposed the Structural
Deep Clustering Network (SDCN); this algorithm introduced graph convolution opera-
tion [22,23] into the deep clustering algorithm, which enabled the clustering algorithm to
be effectively expanded on graph data for the first time.

Inspired by recent research, this paper proposes a method of pressure sensor place-
ment in WSNs based on Graph Neural Network. First, the Structural Deep Clustering
Network (SDCN) [21] algorithm was used for cluster analysis with the combination of
topological structure and hydraulic characteristics under multiple operating conditions,
and the WSN is divided into several monitoring partitions according to cluster analysis.
Then, pipe burst was simulated using hydraulic modeling, and pressure change threshold
of historical monitoring data was compared with the simulated pipe burst pressure data.
The most sensitive nodes were selected as sensors in each monitoring partition based on
the development and analysis of a multi-dimensional quantitative metric named indicator
tensor. The proposed method is verified and applied in both experimental and real-world
WDNs and compared with the classical clustering algorithm for sensor placement analysis.

2. Methodology

The pressure sensor placement method proposed in this paper consists of two parts,
as shown in Figure 1. The first part is the establishment of monitoring partitions: SDCN
algorithm is used for cluster analysis, and the WSN is divided into monitoring partitions
by integrating time-dependent hydraulic characteristics and topological characteristics of
the pipe network. The second part is sensor arrangement: the most sensitive nodes in
each monitoring partition are selected as the sensor location according to burst identifica-
tion analysis.
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Figure 1. The framework of pressure sensor placement based on graph neural network
clustering method.

2.1. Monitoring Partition Establishment of WSNs

The network system can be divided into small partitions based on both nodal similarity
and connectivity because of the regional characteristics in WSNs. The nodal similarity refers
to the similarity of pressure and its change trends. In this paper, the clustering algorithms
are used to calculate the nodal similarity through the distance between samples, which is
defined by the specific algorithm [21]. In order to ensure the perception and identification
ability of monitoring systems in WSN, Structural Deep Clustering Network (SDCN), a
clustering algorithm based on Graph Neural Network, was used to comprehensively
analyzed hydraulic and topological characteristics of WSNs.

The overall process is shown in Figure 2. The adjacency matrix and pressure data
matrix of the nodes are used to represent the topological and hydraulic characteristics of
the WSN respectively, and the clusters (node sets) are obtained through feature fusion
with SDCN algorithm. Then, the clusters are processed according to nodal connectivity to
establish spatially continuous monitoring partitions of WSN.
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Figure 2. Monitoring partition establishment.

(1) Hydraulic characteristics and topological characteristics

The hydraulic model of a WSN includes not only the hydraulic conditions but also
the topological structure information of the WSN. The hydraulic characteristics of nodes
in WSNs include pressure and demand. The pressure sensors monitor the nodal pressure
directly, and change of nodal demand will cause pressure fluctuation, which can also be
monitored by the pressure sensors. Therefore, in this paper, the pressure matrix PNodes×T
(which only contains nodal pressure data) obtained with extended-period simulation is
used to represent the hydraulic characteristics of WSNs, where T represents the time series
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length and Nodes represents the number of nodes in the WSN. A graph is the best way to
represent topological structure information, and a WSN can be regarded as a directed graph
with attribute values. Therefore, information such as whether the nodes are connected and
the flow direction between nodes under normal operating conditions is used to construct
the directed graph G of the WSN, and the adjacency matrix ANodes×Nodes of graph G is
used to represent the topological characteristics of WSNs. The asymmetric structure of the
adjacency matrix ANodes×Nodes contains not only the connection information of the nodes,
but also the flow direction information of the pipes, which can be learned by the graph
convolution operation of the SDCN [21] algorithm later.

(2) Node clustering with SDCN algorithm

Structural Deep Clustering Network (SDCN) [21] is used in this paper to integrate
hydraulic characteristics and topological characteristics of the WSNs to establish monitoring
partition in WSNs. The SDCN algorithm consists of three parts: deep neural network (DNN)
module, graph convolution network (GCN) module and dual self-supervised module. The
DNN module adopts an auto-encoder structure to representation learning. The GCN
module weighted sums the features learned by graph convolution and learned by auto-
encoder, and then propagates and fuses the features on the graph structure by using
multi-layer graph convolution operation. Finally, the dual self-supervised module unifies
the DNN module and the GCN module in a framework, effectively performing end-to-end
clustering training on them.

This article uses the SDCN algorithm implemented in the PyTorch framework (code:
https://github.com/bdy9527/SDCN, accessed on 16 October 2021). SDCN algorithm
is used to learn the hydraulic characteristics PNodes×T and topological characteristics
ANodes×Nodes of the network. The clustering result includes clusters C = [C1, C2, · · · , Cn]
(also discribed as n node sets with specific features in WSNs) as well as the probability
matrix ProNodes×n, representing the probability that each node belongs to each cluster.

(3) Monitoring partitions

Although SDCN algorithm takes consideration of topological connectivity of nodes in
the WSN while calculating clusters, it will contain non-connected nodes in the results. To
achieve spatially connected node sets in WSN, this paper adopts the following strategies to
optimize clusters results, so as to obtain the final node sets C′ =

[
C′1, C′2, · · · , C′n

]
:

a. For the graph structure Gi represented by each cluster Ci, the node set corresponding
to the largest connected subgraph in Gi is selected as the partition i and is represented as
C′i , while the remaining nodes in Ci are regarded as discrete points.

b. The discrete points are assigned to the nearest connected and most likely regional
cluster C′k, where connectivity is judged by graph structure, and probability is judged by
matrix ProNodes×n.

Then, the node sets indicated by C′ =
[
C′1, C′2, · · · , C′n

]
are used as the final moni-

toring partitions. The whole establishment process of monitoring partitions is shown in
Algorithm 1.

https://github.com/bdy9527/SDCN
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Algorithm 1 Monitoring partition establishment

Input: WDN’s graph G, SDCN’s clusters C = [C1, C2, · · · , Cn], ProNodes×n
Output: optimized clusters C′ =

[
C′1, C′2, · · · , C′n

]
1: S = {}
2: for i ∈ {1, 2, · · · , n} do
3: C′i = {nodes | nodes = largest connected subgraph o f Ci}
4: S append

{
node

∣∣ node ε (Ci − C′i )
}

5: end
6: repeat
7: for node ∈ S do
8: for j ∈ {indexs = arg sort o f Pronode} do
9: if {C′j , node} is connected graph do
10: C′j append node
11: break
12: end
13: end
14: end
15: until S is empty
16: return C′ =

[
C′1, C′2, · · · , C′n

]
2.2. Pressure Sensor Arrangement

Based on the monitoring partition of the WSN, this paper assigns pressure sensors in
each partition to make the arrangement of sensors more targeted for pipe burst identifica-
tion. The process is shown in Figure 3. In each partition, the most sensitive node is selected
as the pressure sensor according to a quantitative metric named indicator tensor generated
by pipe burst identification analysis.
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(1) Pipe bursting simulation

In this paper, EPANET2.2 pressure-driven model (PDA) [24,25] is used for hydraulic
simulation. By assigning the emitter coefficient c of the node, the pipe burst under different
conditions is simulated.
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The demand of the nodes under the PDA model is calculated by the following formula:

D∗i =


0, pi < pmin

i

Di

(
pi−pmin

i
preq

i −pmin
i

)γ

,

Di, pi > preq
i

pmin
i < pi < preq

i (1)

where D∗i represents the actual water output of node i, Di is the water demand of node i, pi
is the pressure of node i, pmin

i and preq
i are the minimum pressure and demand pressure

of node i, γ is the coefficient and generally is 0.5 [26]. The pmin
i and preq

i are determined
according to the pressure demand of the WSN and the recommended value of the literature.
In this paper, pmin

i and preq
i take the values 0 and 18 m, respectively [7,26].

The pipe burst event is simulated by means of an emitter, and the calculation formula
of pipe burst flow rate is as follows [27]:

Qburst= βµσAD
√

2gH (2)

where Qburst is the flow rate of pipe burst, the coefficient β takes the value 0.67, the flow
coefficient µ takes the value 0.61, σ is the burst area ratio, AD is the cross-sectional area of
the pipe connected to the burst node, and H is the node pressure.

In the EPANET2.2 model, the emitter tool can be used to simulate the burst outflow of
the node. The flow rate is described as a function of the node pressure. The formula is as
follows:

Qburst= cHγ (3)

where c is the emitter coefficient; γ is the pressure index.
According to Equations (2) and (3) together, the pressure index γ = 0.5, the emitter

coefficient c = βµσAD
√

2g and Qburst can be calculated with leakage area ratio and node
pressure accordingly.

(2) Indicator tensor

The occurrence of pipe burst and leakage events will reduce the pressure of some
nodes and present certain regional characteristics in WSNs. Indicator tensor, a quantitative
metric which describes the identification ability of each node in WSN on different oper-
ating conditions, is proposed in this paper based on the definition of pressure threshold,
perception node, and indicator matrix.

a. Pressure threshold:

The historical monitoring data of WSNs are analyzed, and probability density fit-
ting on the pressure data Pk,t of node k is performed at the same time t on different
days. The pressure value *Pk,t is considered the pressure threshold of node k at time t if
p(Pk,t > *Pk,t) = 95%.

b. Perception node:

The perception node is described as the node with a significant pressure drop when a
pipe burst event occurs. The mathematical definition is as follows: When a pipe bursting
event or leakage event occurs at time t, if the pressure value Pi,t of node i at time t is lower
than the pressure threshold *Pi,t, then node i can identify abnormal signals and is regarded
as the perception node.

c. Indicator matrix:

At time t, pipe bursts at each node are simulated according to the set value of σ. With
each node traversed for burst simulation, the pressure values of all nodes at time t are
obtained, and the pipe burst pressure matrix σt − BPNodes × Nodes is obtained, where Nodes
represents the number of nodes in a WSN hydraulic model. The σt − BPj,i represents the
pressure at point i when the burst event occurs at node j, when the time is t and the leakage
area ratio is σ.
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Based on the calculation of pressure matrix σt− BPNodes × Nodes and pressure threshold,
the indicator matrix σt − INodes × Nodes is defined as follows:

σt− Ij,i =

{
1 , σt− BPj,i <

∗P i,t
0 , σt− BPj,i ≥ ∗P i,t

i, j = 1, 2, · · · , Nodes (4)

The matrix σt − INodes × Nodes is a matrix containing only digits 0 and 1, σt − Ij,i = 1 if
and only if node i is a perception node, when the time is t and the leakage area ratio is σ.
The indicator matrix represents the information of the perception nodes in the WSN when
the pipe burst event occurs.

d. Indicator tensor:

The pipe burst event is simulated at multiple times t ∈ {t1, t2, · · · , tT} and multi-
ple levels σ ∈ {σ1, σ2, · · · , σB}, and then the indicator matrix set I is obtained under the
multi-hydraulic conditions. The indicator matrix set I = {σitj − INodes×Nodes, i = 1, · · · , B;
j = 1, · · · , T} is integrated into a multi-dimensional array IB×T×Nodes×Nodes, and
IB×T×Nodes×Nodes is defined as indicator tensor I.

(3) Pressure sensor arrangement

In order to ensure the best identification ability of sensors under different hydraulic
conditions in WSNs, sensor’s arrangement is conducted according to the following steps
on the basis of the indicator tensor analysis:

(1) Define nodal partition perception domain and partition perception rate. The
partition perception domain of node i is a set of nodes in partition, which means that
when any node in the set bursts, it will cause node i to produce a significant pressure drop.
The partition perception rate of node I represents the proportion of node i’s perception
domain in the entire partition. The mathematical definitions are as follows: at time t and
burst level σ, given the monitoring partition C′l , for node i belonging to C′l , the node set
Di,σt =

{
j
∣∣σt− Ij,i = 1, j ∈ C′l

}
is called partition perception domain of the node i. The

τi,σt =
|Di,σt|
|C′l |

is called partition perception rate of node i, where |Di,σt| and
∣∣C′l ∣∣ represent

the size (number of nodes) of the node set Di,σt and C′l .
(2) Select pressure sensor location. In monitoring partition C′l , calculate the partition

perception rate τi,σt, k ε C′l of node i, traverse B× T operating conditions based on indicator
tensor I, and obtain the average partition perception rate of node I in the multi-hydraulic
state:

τi =
∑B

σ=1 ∑T
t=1 τi,σt

B× T
, iεC′l (5)

Finally, select the node with the highest average partition perception rate in each
partition C′l as the pressure sensor in this partition.

3. Case Studies
3.1. Case 1

In order to verify the effectiveness and necessity of SDCN algorithm for integration
of hydraulic and topological characteristics in WSN, an experimental WSN model was
designed in this paper. The total simulation duration was 24 h, and the time step length
was 1 h, as shown in Figure 4. The network consists of two parts in a symmetrical topology
structure, connected by a reservoir in the middle. The WSN model consists of 20 nodes and
26 pipes each of which was 100 m in length. The base demand, pattern and other details of
each node and pipe are shown in the Figure 4. In general, the topological characteristics
are symmetric, while the hydraulic characteristics are asymmetric in this experimental
WSN model.
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Figure 4. The experimental model.

After model simulation of 24 h duration, pressure data of each node were obtained as
hydraulic characteristics P20 × 24, and the adjacency matrix A20 × 20 of the network directed
graph was used as topological characteristics. SDCN algorithm was adopted to cluster
all nodes into two classes. SDCN clustering result is shown in Figure 5a. All nodes were
divided into two classes, and the result is highly related to the layout of the WSN, indicating
that SDCN algorithm can effectively integrate the topological and hydraulic characteristics
of the WSN.
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In this paper, K-means clustering algorithm was adopted for the comparison with
SDCN algorithm. Only hydraulic characteristic P20 × 24 was used to drive K-means algo-
rithm for clustering all nodes into two classes. The result is shown in Figure 5b. It can
be clearly seen that the clustering result was highly related to the nodal pressure layout.
The nodes with a short distance from the reservoir are classified into one class, with the
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nodes at the end of the left and right parts of the network into another. K-means algorithm
extracted the hydraulic characteristics of WSNs successfully, but topological characteristics
are neglected because of the algorithm limitations. Therefore, the clustering results of
K-means algorithm cannot be directly used for regional monitoring and inspection of
the WSN.

The clustering results of the experimental water supply network model show that
SDCN algorithm can integrate topological and hydraulic characteristics of the WSN ef-
fectively, which is applicable for regional management of water supply network with
complex topology structure and provides a new scenario for the application of Graph
Neural Network in WSNs model analysis.

3.2. Case 2

A real-world network was employed to illustrate the application of pressure sensor
placement method proposed in this paper. The case study is a sub-section network of an
industrial district in eastern China with 8.2 km2 service area and 16,000 m3 average daily
water supply.

The network model shown in Figure 6 consists of 464 nodes and 482 pipes, with a
total length of about 25.8 km. According to the monitoring data of the SCADA monitoring
system, a hydraulic model with a total duration of 60 days for different hydraulic states
was established and verified, including changes in hydraulic states caused by seasonal
changes and pipeline network scheduling changes.
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Figure 6. The study water supply network.

(1) Proposed method

According to the method proposed in Section 2.1, the hydraulic model with a 60-day
duration and 1-min timestep was used to obtain the hydraulic characteristics of WSN,
represented by a pressure data matrix P86400 × 464 (with 464 nodes and 60 d × 24 h × 60 min
= 86,400 records for each node).

According to the topological structure and flow direction of the WSN, the directed
graph of the WSN is constructed, and the topological characteristics are obtained, which
is represented by the adjacency matrix A464 × 464. Considering the sparsity of the WSN
topological characteristics, the number of neurons in the DNN module in the SDCN
algorithm should be set larger such that the SDCN model can effectively learn the topology
characteristics of the WSN. The DNN module of the SDCN algorithm is an autoencoder
composed of seven linear layers, and a number of autoencoder neurons is set to 512, 256,



Water 2022, 14, 150 10 of 18

256, 128, 256, 256, 128 through continuous manual tuning. The other hyper-parameters
are set as follows: learning rate set to 0.001, parameters optimization method set to Adam,
epoch set to 360.

In order to analyze the identification ability of the monitoring systems with different
number of sensors, the case study network is divided into 6, 8, 10 and 12 partitions,
while economic constraint and conventional monitor density in WSNs is also taken into
consideration. The number of cluster is set to 6, 8, 10 and 12, according to the numbers of
monitoring partitions. After SDCN cluster, monitoring partitions are obtained according to
the process in Algorithm 1, and the partition division results are shown in Figure 7.
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In water supply networks, historical monitoring data and hydraulic models are an-
alyzed, and the pressure threshold for each node is calculated according to the method
in Section 2.2. Occurrence of pipe burst is considered to be a random event, and the pipe
burst flow rate varies. In order to ensure the robustness of the monitoring system against
the randomness of pipe burst event, the pipe burst simulation parameters are uniformly
selected in a wide range, while calculation cost should be also taken into consideration.
The pipe burst level σ is set to 0.25, 0.5, 0.75, 1.0, and time t is set to 2, 4, 6, 8, 10, 12, 14, 16,
18, 20, 22, 24 in a day, respectively. The indicator tensor I is calculated based on the burst
data and the pressure threshold.

In each monitor partition, the node with the highest average partition perception rate
is selected as the pressure sensor according to the method in Section 2.2. The results was
shown in Figure 7.



Water 2022, 14, 150 11 of 18

(2) K-means Clustering method

At present, in the research on pressure sensor placement of water supply network, the
cluster method is mostly used to analyze the sensitivity matrix and determine the position
of the pressure sensors at the cluster’s center. Therefore, this paper applies the method
published by Li Cheng et al. [13] to compare results extracted using the proposed approach.

This method consists of two parts. The first part introduces the formula for calculating
and deriving the sensitivity matrix, and the sensitivity matrix can be calculated via the
formula quickly, avoiding multiple hydraulic calculations. In the second part, K-means
algorithm is used to cluster the row vectors of the sensitivity matrix, and the cluster center
of each category is selected as the final pressure sensor location.

In previous studies, because of the hydraulic and computational complexity of the
water supply network, it was difficult to formulate simple, unified and effective evaluation
indicators for the performance of the WSN monitoring system. In view of this, this paper
proposes the definition and calculation formula of coverage rate to evaluate the performance
of pressure sensors.

Coverage rate: The coverage rate indicates the ratio of the number of nodes that can be
detected by the monitoring system to the number of nodes in the entire WSN, it can evaluate
the monitoring performance of the monitoring system. The mathematical definition is
as follows: at time t, the coverage rate of pressure sensors is defined as the ratio of |D|
and |WDN|. |D| represents the number of elements in D = Dm1,t

⋃
Dm2,t ∪ · · · ∪ Dmm ,t,

and Dmm ,t represents perception domain of pressure sensor mm. The symbol m means the
number of pressure sensors, |WDN| is the total number of nodes in the network model.
The mathematical expression of coverage rate ρ is as follows.

ρ =
|Dm1,t

⋃
Dm2,t ∪ · · · ∪ Dmm ,t|
|WDN| (6)

(3) Comparison and analysis of results

In order to verify the effectiveness of the proposed method in this paper, comparison
was carried out with K-means clustering algorithm mentioned used in literature records.
The sensitivity matrix of the network nodes was calculated, and the network of case study
2 was divided into 6, 8, 10, 12 clusters, with the center of each cluster chosen to be the
pressure sensor location.

The monitoring placement results are shown in Figure 8, which can be compared with
the monitoring arrangement obtained with SDCN method, as shown in Figure 7.

Using the K-means clustering approach to analyze the sensitivity matrix, the nodes
that belong to pipes with a larger diameter in the network are more likely to be selected as
pressure sensor locations, leading to more imperceptible nodes on branch pipe sections.
In contrast, the sensors arranged with SDCN method are more evenly distributed in the
network, which will lead to effective monitoring of branch pipe section.

In order to compare the effects of the two methods, the level of pipe bursting σ = 0.2, 0.3,
0.4, 0.5, 0.6, and the time of pipe burst t = 14:00 p.m., 12:00 p.m., 1:00 a.m. (corresponding
to average flow, maximum flow and minimum flow, respectively) are set to obtain the
indicator tensor under 5 × 3 = 15 different operating conditions.
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The coverage rates of sensor placement schemes with 6 and 12 monitors obtained with
different methods are calculated, as shown in Figure 9. Using the same number of pressure
sensors, the coverage rate of the proposed method is on average about 11% higher, which
verifies the effectiveness of the proposed method.

According to Figure 9, the coverage rate of the monitoring system varies depending
on hydraulic conditions. With the proposed method, the coverage rate at average flow is
higher than that at maximum flow and minimum flow when the pipe burst level is lower
than 0.4. This is because the sensor location selection using the proposed method is based
on the calculation of the average partition perception rate and indicator tensor generated
from hydraulic conditions of the WSN with 60-day duration, in which the average flow
hydraulic condition has the highest probability of occurrence. With the K-means method,
average flow hydraulic condition is used to calculate the sensitivity matrix and arrange
monitoring sensors; thus, the coverage rate at average flow is also higher compared with
other hydraulic conditions.
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Figure 9. Coverage rates of different sensor placement schemes. The abscissa of the chart represents
the level of pipe burst, the ordinate represents the coverage rate, the red curve represents the
proposed method, and the blue curve represents the K-means clustering method. (a–c) represent the
coverage rates of different monitoring schemes at average flow, maximum flow and minimum flow,
respectively.

It can also be found that the change of hydraulic conditions has different influence
on the identification ability of the monitoring system. The proposed method is robust to
the change of hydraulic conditions compared with K-means method because the former
takes multiple hydraulic conditions into consideration, while the latter is based on a single
hydraulic time step. For example, for the monitoring scheme with six sensors at 0.2 burst
level, when the hydraulic condition is switched from average flow to maximum flow, the
coverage rate of the proposed method is relatively reduced by 5.1%, while the coverage
rate of K-means method is relatively reduced by 16.9%. When the hydraulic condition is
switched from average flow to minimum flow, the coverage rate of the proposed method
and K-means method is relatively reduced by 17.1% and 26.7%, respectively. This verifies
the necessity of analyzing multiple hydraulic states of the WSN and selecting the node
with the highest average partition perception rate as the sensor in the partition. This
phenomenon remains the same when the number of sensors is 8 and 10 and the detailed
coverage rate data can be found in the Supplementary Material Tables S1 and S2.

Conversely, when the pipe burst level reaches 0.4 and higher, for three different
hydraulic conditions, the nodal pressure drop caused by the pipe burst is relatively large.
For each monitoring scheme, the detected nodes are generally fixed (except for the nodes
far away from the sensors or on the branch pipes with small diameters which remain
undetected when pipe burst reaches a certain high level); thus, the coverage rate under the
three hydraulic conditions tends to be the same.
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(4) Discussion

This paper proposes a pressure sensor arrangement method based on SDCN algorithm
and uses indicator tensor I and coverage rate to evaluate the performance of the monitoring
system. This section discusses the influence on the coverage rate of the monitoring system
with different numbers of sensors and different levels of pipe bursts.

The pipe burst level σ was set at 0.2, 0.3, 0.4, 0.5, 0.6, and pipe burst time t was set
at 14:00 p.m., 12:00 p.m., 1:00 a.m. (corresponding to average flow, maximum flow and
minimum flow during one-day duration, respectively) to obtain the indicator tensor under
5 × 3 = 15 different operating conditions. The coverage rate of monitoring schemes with
different number of monitors was calculated according to Equation (6), and the results are
shown in Figure 10.
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As shown in Figure 10, when the number of pressure sensors is fixed, the coverage rate
of the monitoring system increases with the increase of the burst level σ, which means that
the perception domain of each monitoring sensor is extended. However, when σ reaches
a certain high level, limited by the number of sensors and the different distribution of
monitoring schemes, nodes far away from the sensors, especially the nodes on the branches
with small pipe diameters, are still undetected; thus, the coverage rate of the monitoring
system tends to be flat for each monitoring scheme. Considering the coverage rate of the
six sensors under the average flow conditions, for example, when σ increases from 0.2 to
0.3, the coverage rate increases from 0.50 to 0.76. However, when σ increases from 0.5 to
0.6, the coverage will only increase from 0.93 to 0.94.

Figure 11 presents the coverage rate of the six sensors under different burst levels σ,
and average flow conditions. When the burst level σ is 0.2, the monitoring system cannot
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sense the nodes in the middle branches, even if some points are close to the sensor. When
the burst level σ increases to 0.3, most of the nodes with larger pipe diameters can be sensed.
When the burst level σ increases to 0.5 or 0.6, except for several small-diameter branches
distributed at the end of the pipe network, more than 93% of the nodes can be sensed by
the pressure sensor.
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Conversely, in case of a fixed level of pipe burst, as the number of pressure sensors
increases, the coverage rate of the monitoring system will increase. However, when the
number of sensors reaches a certain number, the coverage rate of the monitors will also
increase. For example, under the average flow conditions, when the burst level σ is 0.3, the
coverage rate of the six sensors is 0.76. When sensors increase to eight, the coverage rate
increases to 0.87. When sensors increase to 12, the coverage rate also increases to 0.89.

We can also find that the coverage rate of the monitoring system is more sensitive to
the change of pipe burst level than the change of sensor numbers. For example, in each
monitoring scheme, when the pipe burst level increases from 0.2 to 0.3, the coverage rate
increases 0.29 on average for different operating conditions. However, when the number of
sensors increases from 6 to 12, at each pipe burst level, the coverage rate only increases 0.07
on average for different operating conditions. It provides us the strategy that during the
process of monitoring system establishment, the monitoring accuracy target (the minimum



Water 2022, 14, 150 16 of 18

level of pipe burst) should be determined first, and then the number of sensors can be
reasonably assigned in the system accordingly.

Based on the calculation of the indicator tensor and the analysis of the coverage rate,
the identification ability of the monitoring system can be analyzed under the conditions
of a different number of sensors and different levels of pipe burst. This method provides
an applicable framework of monitoring systems evaluation to the stakeholders of WSNs
and helps them to quantitatively analyze the monitoring system corresponding to different
operating conditions under certain cost (number of pressure sensors) constraints during
the construction of the monitoring system. It can also help them quantitatively analyze and
optimize the performance of existing monitoring systems.

4. Conclusions

In this paper, a framework of pressure sensor placement in WSNs was proposed
based on Graph Neural Network algorithm. The SDCN algorithm was used to process hy-
draulic characteristics and topological structure characteristics for cluster analysis of WSNs.
The network was divided into several partitions according to both hydraulic conditions
similarity and topological connectivity of the WSN. Then, the sensitivity of pipe burst iden-
tification was analyzed by indicator tensor and partition perception rate calculation, and
the node with the highest average partition perception rate was selected as the monitoring
position in each partition. Case studies were conducted, and the proposed method was
compared with classical K-means cluster method for pressure sensor placement. The key
findings are summarized below:

(1) Experimental results show that SDCN algorithm can integrate topological and
hydraulic characteristics of WSNs effectively. Based on monitoring partition establishment
and partition perception rate analysis, the proposed method achieves a better monitoring
scheme with more balanced distribution of sensors and higher coverage rate for pipe
burst detection.

(2) When hydraulic condition changes, the monitoring system deployed with the pro-
posed method is robust compared with K-means method, which shows that it is necessary to
take multiple hydraulic conditions into consideration when arranging monitoring sensors.

(3) The coverage rate of the monitoring system is more sensitive to the change of
pipe burst level than the change of sensor numbers. Thus, the monitoring accuracy target
(minimum pipe burst level) should be determined first, and then the number of sensors
can be reasonably assigned in the system accordingly.

(4) The proposed methodology facilitates the stakeholders of water supply systems to
analyze the identification ability of monitoring systems under different operating conditions
and economic constraints, which offers necessary and valuable guidance in the decision-
making processes of the monitoring system establishment.

This paper uses nodal pressure to represent hydraulic characteristics, and the adjacency
matrix of the WSN directed graph represents topological characteristics. In future research,
we should consider introducing other hydraulic characteristics such as nodal demand
and topological characteristics such as pipe diameter and pipe length, which will enhance
topological feature presentation learning and improve the clustering effect of graph neural
network analysis. Moreover, some important customers with little tolerance of water supply
failure in the WSN should be covered in the perception domain during analysis process;
thus, these places can be monitored effectively. At the same time, more complex hydraulic
conditions, such as the scenarios of seasonal changes, system operation scheduling and
water treatment plants switching, should be studied in the future.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/w14020150/s1, Table S1: coverage rates of different sensor schemes
arranged by the proposed method under different hydraulic conditions; Table S2: coverage rates of
different sensor schemes arranged by the K-means method under different hydraulic conditions.

https://www.mdpi.com/article/10.3390/w14020150/s1
https://www.mdpi.com/article/10.3390/w14020150/s1
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