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Abstract: This study analyzed the multivariate flood risk for the river Thames at Kingston based on
historical flood data from the National River Flow Archive (NRFA) website. The bivariate risk analysis
framework was prepared from the joint return periods of the peak flow (m3/s) and 3-day annual
maximum flow (m3/s) flood pair. A total of 137 samples of flood pairs from 1883 to 2019 were adopted
for risk analysis. The multivariate return periods were characterized depending on the quantification
of the bivariate flood frequency analysis of the pair through copulas methods. The unknown
parameter of each copula was estimated using the method-of-moment (MOM) estimator based on
Kendall’s tau inversion, in which the Clayton copula performed best to model the dependence of the
two flood variables. Then, the bivariate hydrologic risk was characterized based on the joint return
period in AND, established from the Clayton copula method. The results reveal that the flood pair
would keep a constant hydrologic risk value for some time then moderately decrease as the 3-day
AMAX flow increases from 700 m3/s. This hydrologic risk indicator was analyzed under four service
time scenarios and three peak flows whose return periods were positioned at 50, 100, and 150 years.
The outcomes from the bivariate risk analysis of the flood pairs can be used as decision support
during the design of flood defenses and hydraulic facilities.

Keywords: flood risk analysis; distribution; copula; river Thames; multivariate return period

1. Introduction

Some of the major natural catastrophe events are floods, caused by the falling of
extreme rainfall exceeding the capacity of a particular catchment. These events are likely to
be more frequent and severe considering the ongoing radical changes in climate [1]. The
calamity caused by these continuous, heavy inundations poses a significant effect on human
lives and the surrounding environment both socially and economically [2]. In fact, they are
the costliest hydrological events, and account for 31% of the world’s economic loss [3]. In
the last 20 years, there have been 951 weather-related events among the 999 natural disaster
events in Europe, of which 41% of them were floods [3]. Specifically, flash floods, caused
by intense rainfall, need to be comprehensively addressed since they leave little time to
warn the population and cause more deaths than normal floods [4].

Even with the ongoing threat associated with floods, settlements are sited along the
floodplain zones due to the benefits that come from rivers [5]. Such settlements have served
a major contribution to the current flood’s complexity requiring the need for extensive
analysis in predicting and managing the future probability of flood re-occurrence. This
is possible by adopting various flood risk analysis measures [6]. The designing of flood
defenses has been widely applied as a measure to manage and control future flood risk.
So long as a flood magnitude is known, decision-makers are in a position to characterize
the possible location for a flood to occur by predicting flood duration, rising rate, flood
depths, velocities, and damage. For instance, Dottori [7] produced a new dataset for
river flood hazard maps for the European and Mediterranean Basin regions, which can
be used for a range of applications at a continental scale, from evaluating present and
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future river flood risk scenarios to the cost-benefit assessment of different adaptation
strategies to reduce flood impacts. Diakakis [8] developed a database of flood-related
fatalities to investigate qualitative changes in flood mortality in Greece between 1960 and
2010. Chatzichristaki et al. [9] analyzed the flash flood in Rhodes Island (South Greece) on
22 November 2013 through the curve number method and the soil conservation service
runoff estimation method. Rehan [10] developed an innovative micro-scale approach for
vulnerability and flood risk assessment with applications in property-level protection for
an urban area in Teddington, London.

The quantification of a flood risk involves the characterization of different hydrological
factors that need to be taken into consideration during analysis. More clarity is seen by
considering more than one variable in analyses through a multivariate approach [10]. This
kind of approach has been adopted in many research works [11–13] due to its proficiency
in delivering a full screen for a flood event. For example, Karatzetzou [14] developed a
unified seismic-flood-hazard model for the risk assessment of roadway networks in Greece,
which supports the risk assessment of critical elements of transportation infrastructure in a
multi-hazard environment. Moreover, an occurrence of a flood event is a combination of
several attributes, such as peak flow, flood duration, and flood volume. However, flood
factors are dependent on each other, which limits directly combining their marginal dis-
tributions. Recent studies employed copulas in modeling such multivariate hydrologic
events [1,2,10–12,15–20]. The copula function models the marginal distribution and multi-
variate dependency separately, offering flexibility in making the needful adjustment of the
marginal and joint probability functions.

River Thames is the second-longest river in the UK, with a total catchment area of
12,935.77 km2. There have been several reported flood incidences reflected as early as the
Anglo-Saxon Chronicle of 1099 [21], making it a flood-prone river. At Teddington lock
(Kingston), the River Thames changes its regime from being tidal to non-tidal [5]. Recently,
there have been climatic suggestions of an increase in magnitude and intensity of rainfall
as well as a rise in sea level that will lead to an increase in floods. In addition, there are new
developments planned that will interfere with the effectiveness of the measures already
in place to combat floods at the Thames flood plain [21]. Although several mitigation
measures are in place to manage the reoccurring events, the risk of flood is still a threat.
Most flood defenses constructed on the Thames, such as the tidal surge barrier, walls, and
embankments, are coming to an end of their design life. At the moment, there are plans
in place to manage tidal flood risk for the next 100 years. However, implementations of
engineering and managerial measures to combat floods require a properly structured flood
risk analysis among the inputs. Owing to this, most studies conducted on the Thames have
focused on the design and management of tidal floods at the Thames estuary [11,21–23].
Considering the ongoing threat of fluvial floods due to climate change, there are limited
studies that analyze its risk. Furthermore, there are no research works undertaken that
analyze multivariate risk resulting from floods in the Thames River. Multivariate flood
risk analysis aims at finding the best probability estimate of flood re-occurrence on the
river Thames in a specified return period, since it compares different variables using the
copula function.

Therefore, this study aims to analyze the multivariate flood risk in the River Thames
under consideration of multiple flood variables. In detail, this analysis involves quantifying
the joint probabilities of flood peak and three-day maximum flow through different copula
functions. Moreover, the unknown parameters of copulas will be estimated using method-
of-moments (MOM). The performances of the copulas are evaluated through the goodness-
of-fit statistical tests in which the best copula is employed for further flood risk analyses.
In this study, the risk indices under consideration would be the return periods for critical
thresholds of the flood variables, which include the primary, joint, and secondary return
periods. Moreover, the risk of failure will be further characterized based on interactive
analysis of two flood variables aiming at revealing significant effects for persisting elevated
risk levels due to impacts from multiple interactive flood variables.
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2. Overview of the Study Area

The River Thames, as shown in Figure 1 below, is the longest river in England with
a longitude and latitude of 51◦35′8.07′′ N and 0◦36′57.87′′ W, respectively. It has a length
of 346 km flowing from the springs on Gloucestershire east towards the North Sea with
a total catchment area of 12,935.77 km2. The Thames is divided into five sections with
three non-tidal and two tidal sections. It is fed by fifty-one named tributaries having eighty
islands and forty-five weirs and locks throughout its course [24].
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Figure 1. Map of the River Thames catchment at Kingston.

Figure 1 shows the largest basin of the river Thames with a total catchment of 9942 km2

above the Teddington weir (Kingston). The Teddington weir is located at the furthest lower
west end of the catchment located at 51◦24′54.0′′ N and 0◦18′31.9′′ W.

The basin receives precipitation at an average of 710 mm, evenly distributed through-
out the year with the exception of autumn or the early winter maximia. During summer,
460 mm of the precipitation is lost due to evaporation, accounting for 65% of the total
rainfall. The average river flow ranges from 1.5 m3/day to 65.8 m3/day from the upper
side of the river to the tidal limit located at Teddington [25]. The annual runoff of the river
ranges between 99 (in 1934) and 418 mm (in 1951), with an average of 250 mm [26]. The
catchment has a temperate climate with oceanic influence, with temperatures of 16.4 ◦C
and 4.6 ◦C during summer and winter, respectively, and a mean yearly temperature of
11 ◦C [24].

The basin has undergone historical changes in its topography, geology, and land use;
its land cover is comprised of arable agriculture and pasture throughout the catchment,
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while forests and urban areas are mainly located at the lower side of the basin [25]. Despite
several measures placed in the lower Thames to support resilience to climate variability,
there is still future fluvial flood risk due to an increase in rainfall, especially during the
winter season [22]. Flooding has always been one of the major challenges for the River
Thames in the 20th/21st century, such as the 1947 and 2007 floods [27]. The flood-generating
mechanisms have changed in which snowmelt (sometimes over frozen ground) was a more
common mechanism in major flood events (e.g., the 1947 flood) prior to the 1960s, while
rising winter temperatures have seen snowmelt decline as an aggravating factor in relation
to flood risk [28] Furthermore, the sustained heavy rainfall on a saturated catchment caused
the 1894 flood [28].

3. Methodology

This study used an inductive research approach rather than a deductive one for anal-
ysis. Such an approach was chosen with an aim to formulate a hypothesis and develop
a hydrological risk indicator from the joint distributions of two flood variables, i.e., an-
nual peak flow and the corresponding 3-day maximum flow. This study is based on the
quantitative approach of data collection using existing data from the NRFA. Before further
analysis, the collected data was gathered in Microsoft Excel to check for missing data in
any years—no missing data were observed. The data gathered from the gauged daily
flow (GDF) was then calculated further to obtain the three-day annual maxima in each
year from 1 January 1883 to 1 October 2019. The peak flow and three-day maxima flow,
each containing 137 samples, were presented for further analysis in the software MAT-
LAB. These variables are dependent on each other; hence, the copula function was used
to bring together their marginals to form a joint distribution. The Gumbel, Frank, and
Clayton copula methods, which belong to the Archimedean family, were applied to join the
marginal distributions of the variables. The best copula method was then used to model
the hydrological risk based on the joint return period in AND.

Various tools and materials were used in the analysis of the flood risk for the River
Thames at Kingston. The main software used for the analysis of flood risk estimation
were MATLAB and Microsoft Excel. MATLAB was extensively used for the construction
and selection of marginal distributions and copulas, as well as the calculation of the
return period of the flood variables. Several charts were extracted for analysis in this study.
Microsoft Excel was used for the identification of the annual peak flow and 3-day maximum
flow to be used in MATLAB.

3.1. Flood Risk Assessment through the Copula Function

The copula function is seen as a cornerstone in the field of hydrological and meteo-
rological risk analysis. Its uniqueness is stipulated in its ability to incorporate the joint
probabilities of more than one dependent variable to anticipate the future risk of an event,
as shown in Figure 2. It is applied in water resource engineering in analyzing flood fre-
quency, precipitation, storm, and drought characteristics [29]. The joint probabilities of
multiple attributes provide a wider span in analysis, thus improving the accuracy of the
estimated risk [12].

A d-dimensional copula, C: [0; 1] d→ [0;1] is a cumulative distribution function (CDF)
of a random vector (U1,Ud) with uniform marginals (0,1). The generic copulas C(u) is
shown in Equation (1) below as:

C(u) = P[U1 ≤ u1, . . . , Ud ≤ ud] (1)

where p [Uj ≤ uj] = uj for j ∈
{

Uj ≤ uj
}

and 0 ≤ uj ≤ 1.
If a component uj is 0, then C(u) = 0, while C

(
1, . . . , 1, uj, 1, . . . , 1

)
= uj if 0 ≤ uj ≤ 1 [2].
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3.2. Sklar’s Theorem

The copulas theorem was first introduced by Sklar, who considered the existence of
copulas when d-dimensional CDF and F have marginals F1, Fd such that [29]:

F(x1, x2, . . . , xd) = C(FX1(x1), FX2(x2), . . . , FXd(xd)) (2)

where FX1 , . . . , FXd are marginal distributions; if these are continuous, then the copula
function C can be written as follows:

C(u1, u2, . . . , ud) = F
(

F−1
X1

(u1), F−1
X2

(u2), . . . , F−1
Xd

(ud)
)

(3)

Details on copula function properties are described in detail by Zhang and Singh [29]
and Salvadori and De Michele [30].

3.3. Copula Density

If the copula has a probability distribution function (PDF), then it is obtained in the
usual manner as [29]:

c(u1, u2) =
∂2C(u1, u2)

∂u1∂u2
(4)

and the joint probability density function (pdf) of the two random variables is given as:

f (x1, x2) =
∂2C(u1, u2)

∂x1∂x2
=

∂2C(u1, u2)

∂u1∂u2

∂u1

∂x1

∂u2

∂x2
= fX1(x1) fX2(x2)c(u1, u2) (5)

Subsequently, the conditional pdf of X1, given the value of X2, can be formulated as:

f (x1|x2) =
f (x1, x2)

fX2(x2)
= fX1(x1)c(u1, u2) (6)

and the conditional pdf of X2, given the value of X1, can be expressed as:

f (x2
∣∣x1) = fX2(x2)c(u1, u2) (7)

3.4. Types of Copulas

There are five main types of copulas that are applied in different fields; the Gaussian
and student-t copulas, which belong to the elliptical family, while the Gumbel, Clayton,
and Frank copulas are from the Archimedean copulas family.
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The Archimedean family is quite popular and attractive in hydrological flood fre-
quency analysis. This is because of their capability of being easily generated and encap-
sulating a wide range of dependence structures with several desirable properties, such
as symmetry and associativity [31]. Furthermore, it has no limitation on the marginal
distribution for constructing the joint distribution, making it a perfect fit in the analysis of
the joint probability distribution in the flood analysis [12].

The Archimedean copula is a simplified measure of dependence and is defined as [18]:

C(u1, u2, . . . , ud) =

{
ϕ−1(ϕ(u1) + . . . +ϕ(ud)) i f ∑d

j=1ϕ(uj) ≤ ϕ(0)
0 otherwise

(8)

whereϕ(u) is a copula function (C2) called a generator of copular withϕ(1) = 0 while ϕ′(u) < 0
then ϕ is decreasing. ϕ”(u) > 0 for all 0 ≤ u ≤1 [2].

Each copula family’s persistence is constricted by the involvement of the flood vari-
ables (e.g., by using the Kendall’s rank correlation (t) dependence measure). To begin with,
the Clayton copula and Gumbel-Hougaard copula can only model positive dependence
between random variables (i.e., tθ ≥ 0), while the Frank copula can model both negative
and positive dependence structures (i.e., tθ ∈ [−1, 1]). Despite the Ali-Mikhail-Haq copula
being applicable for both negative and positive dependence, the dependence parameter is
restricted for Kendall’s tau, tθ ∈ [−0.1817, 0.3333], and thus its copula parameter θ does
not cover the entire range [−1, 1] of association measures [13]. Their formulas are shown in
Table 1 below.

Table 1. Bivariate Archimedean copula.

Copula Name Cθ(u1,u2) θ∈ Generating
Functions [φ(t)]

Ali-Mikhail-Haq u1u2
[1−θ(1−u1)(1−u2)]

[−1,1) ln( [1−θ(1−t)]
t )

Clayton max([u−θ
1 + u−θ

2 − 1]
−1/θ

, 0) [−1,∞)\{0}
(

t−θ − 1 )/θ

Gumbel-Hougaard exp
{
−[(− ln u1)

θ + (− ln u2)
θ ]

1/θ
}

[1,∞) (− ln t)θ

Frank − 1
θ ln
{

1 + (e−θu−1)(e−θv−1)
e−θ−1

}
[−∞,∞)\{0} ln[ e−θt−1

e−θ−1 ]

3.5. Marginal Distribution of Flood Variables

There are several marginal distributions used for estimating the hydrological vari-
ables, such as normal distribution, lognormal, extreme value type-1 (Gumbel or EVI), and
generalized extreme value distribution (GEV) [12]. Two of the distributions that will be
used in this study are elaborated in Table 2 below.

Table 2. Probability density distribution functions.

Name PDF Denotes

Gumbel f (x) = 1
β exp

[
− x−u

β − exp
(
− x−u

β

)] u: location parameter
β: scale parameter

Lognormal f (x) = 1
xσL
√

2π
exp(− (ln x−µL)

2

2σ2
L

)

µL: mean of logarithm of x
σL: standard deviation of

logarithm of x

3.6. Estimation of Parameters

Several methods are applicable for estimating copula parameters, such as method-of
moments (MOM), maximum likelihood estimators, and matching moments methods [32].
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3.6.1. Method of Moment (MOM)

The MOM is a simple technique that matches the first amount of data with the the-
oretical moments of the distribution. This method is achieved by solving the sample (k)
equations; hence, reducing the theoretical moment of a function of the parameters and
parameter estimation problem. Given the k-th population moment of a random variable Y

as µ′k = E
(

Yk
)

, and the k-th sample moment of a sample Y1 . . . .Yn to be m′k =
1
n

n
∑
i

Yk
i for

k = 1,2,n, the method of moment of the distribution parameters ϑ1 . . . ϑn are attained by
solving the set of p equations expressed as [32]:

u′k = m′k, k = 1, 2, . . . , p (9)

Even though the method-of-moment estimators are not generally efficient, they are
asymptotically normal and unbiased

3.6.2. Maximum Likelihood Estimation (MLE)

Although this method is considered difficult since it involves too many parameters,
especially for large values of d, it is widely applied in flood risk. It takes the probability
distribution of the flood variable, then makes the comparison of the distributed dataset to
acquire a suitable match [32].

The joint pdf of X1, . . . , Xn is the same as the likelihood given as:

L(θ1, . . . , θk

∣∣∣∣∣x1, x2, . . . , xn) =
n

∏
i=1

f (xi|θ1, . . . , θk) (10)

Assuming θ̂(x) as the parameter value at which L(θ|x) attains its maxima as the
function of θ for each sample x, θ̂(x) is the maximum likelihood estimator of the parameter
θ, based on the sample data. Given the likelihood function as C2, the probable MLE
parameter values of θ are solved as [32]:

∂

∂θi
L(θ1, . . . , θk

∣∣∣∣x1, x2, . . . , xn) = 0 (11)

3.7. Goodness-of-Fit Statistical Tests

The goodness-of-fit is a hypothesis test used to determine the correlation of variables
and whether the collected data fit a particular distribution. They evaluate performance
for both marginal and joint probability functions. The measures of the goodness-of-fit are
used in hypothesis testing to test the normality of residuals as well as to check whether
two samples (observed and from the marginal distribution) are drawn from identical distri-
butions. The tests commonly used are: the chi-square, Kolmogorov–Smirnov, Anderson–
Darling, root mean square error (RMSE), and Shapiro–Wilk. The estimation of empirical
non-exceedance probabilities of the flood variables for the observed values is as follows [2]:

P(K ≤ k) =
k− 0.44
N + 0.12

(12)

where P (K ≤ k) is the probability of non-exceedance; N signifies the sample size; k is the
kth smallest observation in the data set.

1. The root mean square error (RMSE)

The root mean square error (RMSE) is one of the most applied measures of the
goodness-of-test. RMSE calculates the variations between the hypothetical model and
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the observed values of the probability distribution. It is known that the smaller the RMSE,
the better the estimation. It is given by [11]:

RMSE =

√
1
n

n

∑
i=1

(Femp − C)2 (13)

where Femp and C are the empirical and theoretical cumulative probability, respectively; n
is the sample size. The smaller the RMSE value, the better the fitting [11].

2. Akaike Information Criterion (AIC)

The AIC value can be obtained as follows, established on the basis of RMSE [11]:

AIC = N × ln(RMSE2) + 2k (14)

where N is the sample size and k is the number of unknown parameters in the probability
distribution

3. The Kolmogorov–Smirnov (K–S) test

The Kolmogorov–Smirnov (K–S) test is preferred since it does not make any assump-
tions about the distribution of data [33]. This method makes a comparison of the maximum
gap of the experimental cumulative distribution function from the theoretical cumulative
distribution function. The K–S test (Dn,nτ ) is used to determine whether the parameters are
acceptable or not and is given by [33]:

Dn,nτ = sup
x
|F1,n(x)− F2,nτ (x)| (15)

where F1,n = experimental distribution; F2.nτ = theoretical distribution; sup = supremum
function.

To perform the goodness-of-fit test, the null hypothesis is applied; it only gets accepted
when the gap between the theoretical is smaller than the expected for the given sample.

3.8. Primary and Secondary Return Period

Primary and secondary return periods can be obtained if the appropriate copula
functions are specified to reflect the joint probabilistic features among flood variables. The
joint return periods can be described in OR and AND, formulated as follows [31]:

TOR
u1,u2

=
µ

1− CU1U2(u1, u2)
(16)

TAND
u1,u2

=
µ

1− u1 − u2 + CU1U2(u1, u2)
(17)

where µ is the mean inter-arrival time of the two consecutive flooding events.
The secondary (Kendall’s) return period plays a vital role in identifying the average

time between two supercritical flood events, thus analyzing the potential risk. The proba-
bility of a supercritical event decreases upon an increase in the primary return period. It is
defined as [31]:

Tu1,u2 =
µ

1− KC(t)
(18)

where KC is the Kendall’s distribution, associated with multivariate copula function Cθ.
For Archimedean copulas, KC can be expressed as [31]:

KC(t) = t− ϕ(t)
ϕ′(t+)

(19)

where ϕ′(t+) is the right derivative of the copula generator function ϕ(t).
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3.9. Flood Hydrologic Risk

In terms of the engineering design of hydrologic infrastructure, the risk is the proba-
bility of downstream flooding due to uncontrolled water release from upstream facilities
associated with flooding [31]. The intensity of flood risk is usually determined by the
period of future re-occurrence of heavy inundation, commonly known as the return period.
Under consideration of the service time (i.e., n) of a hydrological infrastructure, the risk of
failure associated with the return period of a flooding event can be expressed as [31]:

R = 1 − (1 − p)n= 1 − qn= 1 −
(

1 − 1
T

)n
(20)

where R is the risk of failure, p and q are the probability of an event exceeding and not
exceeding the set threshold, and T is the return period.

The failure probability (R) is the measure of flood risk ranging between 0 and 1, with
a greater value indicating a greater risk magnitude. At most, the failure of hydrologic
structures is due to high peak flow, making it an important attribute for risk analysis.
Nevertheless, other flood variables, such as multi-day flood volume and duration, are
also important for flood control. A risk framework that considers more than one variable
may provide more support for actual flood control than the conventional analysis [31]. It
is essential to characterize floods through multiple variable aspects by a process called
bivariate risk analysis. Bivariate risk analysis plays a significant role in taking non-structural
safety measures and developing flood mitigation strategies. Bivariate risk analysis in
relation to joint return period in AND is defined as [31]:

Ru1,u2 = 1−
(

1− 1
TAND

u1,u2

)n

(21)

4. Results
4.1. Marginal Probability Distribution of the Flood Pair

The flow chart of the proposed study is shown in Figure 3 below. The flood variables
were obtained from historical records from the National River Flow Achieve (NRFA)
website. The daily flow data and annual maximum (AMAX) flow data were obtained
from the NRFA website. The daily flow data were then further computed to obtain the
three-day AMAX flow. The flood pairs of peak flow and 3-day AMAX were then used
for the analysis of the bivariate hydrologic risk at the Thames. Lognormal and Gumbel
distributions were used to model the distribution of each flood variable by using the
method of moment (MOM) and maximum likelihood estimation (MLE). The obtained
distributions were tested for their statistical acceptance using the Kolmogorov–Smirnov
(K–S) test, while the best distribution was tested using the root mean square error (RMSE)
and the Akaike information criterion (AIC) methods. The marginal distribution that best fits
the flood data was then used for multivariate risk analysis through copula methods. Three
copula methods were used to model the dependence of flood variables: Gumbel–Hougaard,
Cook–Johnson (Clayton), and Frank copulas. The best one from the three copula models
was then used to calculate the primary, joint, and secondary return periods to characterize
the bivariate flood risk.
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Figure 3. Flow chart of the proposed study.

4.2. Flood Data for Analysis

Figure 4 below shows the sample data used for flood risk analysis. The flood pairs con-
stitute peak, and 3-day maximum flows collected from the NRFA with a total of 137 sample
flows. Flood peak flows were obtained based on the annual scale, meaning that in each
year, one flood would be identified.
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Figure 4. Streamflow hydrograph and flood characteristics of the River Thames: (a) the annual
maximum flow rate; (b) the corresponding 3-day maximum flow rate.
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4.3. Statistical Characteristics of Flood Variables

Flood analysis was undertaken after a thorough characterization of flood data obtained
from the NRFA. Table 3 shows some descriptive statistic values of the considered peak and
3-day annual maximum flow variables. The percentile, mean, standard deviation, skewness,
and kurtosis of each flood variable were calculated. The peak and 3-day AMAX datasets
had skewness coefficients of 1 and 1.05, respectively. The high degree of positive skewness
from both flood variables implies that the variables were right-tailed, having a high range
of values less than the mean. Both data samples had a platykurtic type of kurtosis since
they had coefficients of less than three. The kurtosis values imply that both data samples
were light-tailed with short distributions and tails thinner than the normal distribution.

Table 3. Statistical characteristics of flood variables.

No. Description Peak (m3/s) Three Days Maximum (m3/s)

1 Percentiles

Minimum 94.56 201.50
25% 240.00 683.00
50% 315.61 881.00
75% 384.81 1056.00

Maximum 806.00 2173.00
2 Range 711.44 1971.50
3 Mean 325.11 916.69
4 Standard deviation 116.03 317.46
5 Skewness 1.00 1.05
6 Kurtosis 2.02 2.06

Moreover, the Mann–Kendall trend was adopted to further detect the variation trend
for the historical flood data series. The results indicate that the peak flows had a z-statistic
value of 1.5389 and a p-value of 0.1238. This implies that there is no trend present in the
historical annual peak flows. Similarly, the historical data of the three-day maxima had a
z-statistic of 0.2438 and a p-value of 0.8074, which also indicates no increasing or decreasing
trend in the data series. Consequently, both the annual peak flows and three-day maxima
flows were stationary, which implies that the flood risk analyses based on those historical
data can still be helpful in dealing with future flooding events.

Moreover, to further detect the impacts of climate change and anthropogenic activities
on the discharges of the River Thames, the variation trends for both the annual peak and
3-day AMAX series were characterized by the Mann–Kendall test in a moving window
with a width of 40 years. Table S1 in the Supplementary Materials presents the statistics
and corresponding p-values for the chosen flood variables. The results indicate that no
significant trends were detected for the flood peaks and the associated 3-day flows, even for
the recent time periods. This implied that, even though intensive anthropogenic activities
and climate change have occurred in the Thames Basin, those external inferences have not
led to statistically significant changes in the flood series for the River Thames.

4.4. Marginal Distribution

In this study, two parametric distribution functions—extreme value type I (Gumbel or
EVl) and lognormal—were used to fit the flooding data obtained from the NRFA. These two
parametric distributions were estimated through maximum likelihood estimation (MLE)
and methods of moments (MOM), as shown in Table 4. Results show that there was a slight
difference in values between the two-parameter estimators. For example, the values of the
location parameter (µ) in peak flow of 272.8900 and 272.1989 established from the MOM
and MLE estimators, respectively, showed a slight difference of 0.6911.
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Table 4. Marginal probability distribution of flood variables.

Name Parameters
MOM MLE MOM MLE

Peak Three Days Max

Gumbel u 272.89 272.20 773.82 773.01
β 90.47 94.42 247.52 258.06

Lognormal µL 5.7221 5.7221 6.7628 6.7628
σL 0.3589 0.3576 0.3474 0.3461

4.5. Comparison between Empirical and Expected Probability

The fitted marginal distributions for the two flood variables through EVI and log-
normal distribution functions are illustrated in Figures 5 and 6 below. The observations
denote the empirical probabilities corresponding to the distributions in Table 2. The dis-
tributions were obtained from the method-of-moment (MOM) and maximum likelihood
estimation (MLE) estimators. The obtained CDFs for the marginal distributions from the
two parametric models showed good agreement with the empirical distributions.

Water 2022, 14, x FOR PEER REVIEW 12 of 21 
 

 

Table 4. Marginal probability distribution of flood variables. 

Name Parameters 
MOM MLE MOM MLE 

Peak Three Days Max 
Gumbel u 272.89 272.20 773.82 773.01 

 β 90.47 94.42 247.52 258.06 
Lognormal µL 5.7221 5.7221 6.7628 6.7628 

 σL 0.3589 0.3576 0.3474 0.3461 

4.5. Comparison between Empirical and Expected Probability 
The fitted marginal distributions for the two flood variables through EVI and lognor-

mal distribution functions are illustrated in Figures 5 and 6 below. The observations de-
note the empirical probabilities corresponding to the distributions in Table 2. The distri-
butions were obtained from the method-of-moment (MOM) and maximum likelihood es-
timation (MLE) estimators. The obtained CDFs for the marginal distributions from the 
two parametric models showed good agreement with the empirical distributions. 

 
Figure 5. Comparison between empirical probabilities and theoretical probabilities with the param-
eters estimated by MLE: comparison between empirical probabilities (i.e., Observations) and ex-
pected probabilities obtained through (a) lognormal distribution for flood peak, (b) Gumbel distri-
bution for flood peak, (c) lognormal distribution for the 3-day maximum flows, and (d) lognormal 
distribution for the 3-day maximum flows. 

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

flow rate (m3/s)

C
D

F

(a) Flood peak

 

 

Observations
Lognormal

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

flow rate (m3/s)

C
D

F

(b) Flood peak

 

 

Observations
Gumbel

0 500 1000 1500 2000 2500
0

0.2

0.4

0.6

0.8

1

flow rate (m3/s)

C
D

F

(c) 3-day AMAX flow

 

 

Observations
Lognormal

0 500 1000 1500 2000 2500
0

0.2

0.4

0.6

0.8

1

flow rate (m3/s)

C
D

F

(d) 3-day AMAX flow

 

 

Observations
Gumbel

Figure 5. Comparison between empirical probabilities and theoretical probabilities with the parame-
ters estimated by MLE: comparison between empirical probabilities (i.e., Observations) and expected
probabilities obtained through (a) lognormal distribution for flood peak, (b) Gumbel distribution for
flood peak, (c) lognormal distribution for the 3-day maximum flows, and (d) lognormal distribution
for the 3-day maximum flows.
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Figure 6. Comparison between empirical probabilities and theoretical probabilities with the parame-
ters estimated by MOM: comparison between empirical probabilities (i.e., Observations) and expected
probabilities obtained through (a) lognormal distribution for flood peak, (b) Gumbel distribution for
flood peak, (c) lognormal distribution for the 3-day maximum flows, and (d) lognormal distribution
for the 3-day maximum flows.

4.6. Goodness-of-Fit Statistical Test

The performances of the marginal and joint probabilities of the flood variables were
achieved using the goodness-of-fit test. Three tests were employed—RMSE, AIC, and K–S
tests—as expressed in Equations (13)–(15) and presented in Table 5 below. The results
denote that the quantification of marginal distributions of flood peak and three-day maxima
perform well from all the parametric probabilistic models. The associated p-values of the
K–S tests for both flood variables were larger than 0.05 from both MOM and MLE estimates,
indicating the satisfactory performance of the proposed methods. Furthermore, the RMSE
and AIC methods were further adopted to identify the most appropriate methods for
quantifying the marginal distributions of flood variables. As presented in Table 5, the
Gumbel (EVI) method obtained using the MOM distribution performed best in modeling
both flood variables, with the minimum RMSE and AIC values of 0.0188 and −1086.8 for
the peak and 0.0138 and −1171.6 for the three-day AMAX flow, respectively. The Gumbel
distribution from the MOM estimator would be used to model the joint distributions of the
flood variables through the copula methods.
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Table 5. Statistical test results for marginal distribution estimation.

Flood Variable Distributions
K–S Test

(p-Values) RMSE AIC

MOM MLE MOM MLE MOM MLE

Peak
Gumbel 0.8005 0.8613 0.0188 0.0190 −1086.8 −1083.9

Lognormal 0.7871 0.7856 0.0208 0.0205 −1059.1 −1063.1

Three-day flow Gumbel 0.9688 0.8684 0.0138 0.0168 −1171.6 −1117.7
Lognormal 0.7956 0.8115 0.0182 0.0178 −1095.7 −1101.8

4.7. Dependencies of Flood Variables

The dependency between peak flow and three-day AMAX was evaluated through
Pearson’s linear correlation (r), and one non-parametric dependence measure, Kendall’s
tau. Table 6 below shows the values of Kendall’s tau and Pearson′s r among flood variables,
which were 0.5286 and 0.5905, respectively. The results indicate that the structures of the
two flood variables were positively correlated and highly dependent on each other since
they were above zero and approached a value of one.

Table 6. Correlation coefficients values for flooding variables.

Flood Variables Kendall Pearson

Peak three-day AMAX 0.5286 0.5905

Three copulas from the Archimedean family, including Cook–Johnson (Clayton),
Frank, and Gumbel–Hougaard, were applied to model the dependence among flood
variables. The unknown parameters in the three copulas were estimated by the method-of-
moments (MOM) estimator based on inversion of Kendall’s tau, as shown in Table 7.

Table 7. The values of unknown parameter in copulas.

Flood Characteristics Copulas Kendall Tau

Peak—three-day AMAX
G-H 2.1212

Clayton 2.2424
Frank 6.2811

4.8. Selection of the Joint Probability Distribution

The joint distribution functions for flood peak and 3-day maximum flow, obtained
through the three above-mentioned copulas, are shown in Figure 7. The RMSE and AIC
(expressed by Equations (13) and (14), respectively) were used to identify the best copula
by testing the goodness-of-fit of sample data to the theoretical joint distribution. Table 8
below shows the comparison of RMSE and AIC values for joint distribution obtained
through copula functions for peak and three-day AMAX flow. The results showed that
all three copulas performed well in modeling, due to their slight difference in values.
Among the three, the Clayton copula was the best-fitted model for quantifying the joint
distribution of flood variables, with the lowest value of 0.1727 and −479.2032 for RSME
and AIC, respectively.

Table 8. Comparison of RMSE and AIC values from copula methods.

Copula Method RMSE AIC

Gumbel–Heegaard 0.1804 −467.2165
Clayton 0.1727 −479.2032
Frank 0.1765 −479.2032
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5. Discussion
5.1. Return Periods of Flood Characteristics

The combination of more than one flood variable in flood risk analysis provides
more insightful information for a better understanding of flood behavior. The return
periods were calculated based on the Clayton copula to reflect the historical flooding
characteristics. Table 9 below shows the primary return periods of the peak and three-
day AMAX flood pairs obtained by univariate marginal distribution, as well as joint and
secondary return periods. The AND, OR joint return periods, and the secondary return
periods were calculated based on Equations (16)–(19). The OR return period was much
less than the univariate and AND-joint return period. Both the ‘AND’ and ‘OR’ joint
return periods were not far in values from the univariate return period, showing the strong
correlation between the flood variables. The secondary return period was often higher in
values than the joint return period in OR, but less than the return period in AND, as clearly
seen in Table 9 below.

Table 9. The joint and secondary return for peak—three-day AMAX flood pair.

RP (Years) Peak (m3/s)
3-Day

AMAX
(m3/s)

T and T or T Kendall

5 408.59 1145.09 7.47 3.76 6.29
10 476.48 1330.84 15.60 7.36 13.09
20 541.60 1509.01 31.90 14.57 26.72
50 625.90 1739.63 80.79 36.20 67.65

100 689.06 1912.46 162.29 72.26 135.88

Note: T and, the joint return period in AND; T or, the joint return period in OR; T kendall, the joint return period
in Kendall.
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Figure 8 below shows the contour plots of the joint return periods and secondary
return periods for the peak and 3-day AMAX flood pairs. The curved lines show that the
flood pairs were highly correlated.
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Figure 8. The joint and secondary return periods for the flood pair: (a) the joint return period in
AND; (b) the joint return period in OR; (c) the joint return period in Kendall.

5.2. Bivariate Hydrologic Risk Analysis for River Thames

The reflection of bivariate risk analysis was based on the ability to incorporate peak
flow with other flooding variables. For this study, a 3-day AMAX flow was adopted. Since
flood peak was the key factor for consideration in flood risk analysis, three peak scenarios
were considered, which were 625.9, 689.1, and 725.9 m3/s with return periods of 50, 100, and
150 years, respectively. The values of peaks from the three return periods were estimated
based on the marginal distribution of the flooding peak flow. Moreover, four service
times for the hydraulic facilities are assumed to be 10, 30, 50, 70 years. Figure 9 shows
the bivariate hydrologic risk analysis for the River Thames at Kingston under different
flooding peak-3-day AMAX flow scenarios. Results show that at the same service time, the
hydrologic risk would decrease with the increase in the design flow. For example, in the
10-year service time, the risk was estimated to decrease from 18.2 to 6.5% as the design of
peak return period increased from 50 years to 150 years, with design flow increasing from
625.9 m3/s to 725.9 m3/s, respectively.
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Figure 9. Bivariate flood risk of the flood pair under different service time scenarios: (a) Bivariate
risk with three design periods under 10-year service time; (b) bivariate risk with three design periods
under 30-year service time; (c) bivariate risk with three design periods under 50-year service time;
(d) bivariate risk with three design periods under 70-year service time.

Similarly, the bivariate hydrologic risk would increase with the rise of service time of
the hydraulic facilities. Upon assuming the service time and the designated standard, the
bivariate hydrologic risk values would remain constant and start decreasing as the 3-day
AMAX got larger than the 700 m3/s, as shown in Table 10 below. This is due to a high
correlation between flood variables. This raises the concern that a flood with a high peak
will be accompanied by a large amount of a 3-day AMAX flow. For example, as shown in
Figure 9 above and Table 10 below, if the service time of the River Thames was estimated to
be 10 years, then the risk of failure of the three designed flows at 400 m3/s 3-day annual
maximum flow would be 18.3, 9.6, and 6.5%. Moreover, if the service time is assumed
to be 10 years at a peak of 625.90 m3/s, the risk will be 18.3% from 400 m3/s and begin
to decrease at 700 m3/s. This applies to all service times and peaks. Thus, for this study,
the hydraulic risk indicator may change when the 3-day AMAX flow exceeds 700 m3/s at
different peak scenarios and service times. However, increasing the design standards of the
hydraulic facilities would decrease the hydrological risk.

The implication for the bivariate risk of flooding peak flow and 3-day AMAX flow is
to provide decision support for hydrologic facility design and the establishment of flooding
diversion areas. The actual flooding control practices and the excess water of floods can
be redirected temporarily to holding ponds or other bodies of water with a lower risk or
impact to flooding. In flood diversion practice, the bivariate risk for flood peak and 3-day
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AMAX flow would be an important reference for the design of flooding diversion areas.
For example, as shown in Figure 9 and Table 10, for the river levee with a designed flow
of 626 m3/s and 10-year service period, the flooding risk value would be 18.3%, 18.3%,
18.3%, 18.1, 17.4, 15.8% with a 3-day AMAX being 400, 500, 600, 700, 800, and 900 m3/s,
respectively. These risk values suggest that the flood diversion area should be designed
based on a 3-day flow of 700 m3/s, such as the bivariate risk, which would not decrease
significantly for the 3-day flow less than 700 m3/s.

Table 10. The flooding risk in River Thames under different scenarios (%).

3-Day AMAX (m3/s)

Peak (m3/s) 10-Year Service 30-Year Service 50-Year Service 70-Year Service

625.9 689.1 725.9 625.9 689.1 725.9 625.9 689.1 725.9 625.9 689.1 725.9

400 18.3 9.6 6.5 45.5 26.0 18.2 63.6 39.5 28.4 75.7 50.5 37.4
500 18.3 9.6 6.5 45.4 26.0 18.2 63.6 39.5 28.4 75.7 50.5 37.4
600 18.3 9.5 6.5 45.4 26.0 18.2 63.5 39.5 28.4 75.6 50.5 37.3
700 18.1 9.4 6.4 45.0 25.7 18.0 63.1 39.1 28.1 75.2 50.1 37.0
800 17.4 9.1 6.1 43.6 24.8 17.3 61.5 37.8 27.1 73.7 48.6 35.8
900 15.8 8.2 5.6 40.4 22.7 15.8 57.7 34.9 24.9 70.1 45.2 33.0

1000 13.5 7.0 4.7 35.4 19.6 13.5 51.7 30.5 21.5 63.9 39.9 28.8
1100 10.9 5.6 3.8 29.3 15.9 10.9 43.9 25.1 17.6 55.4 33.3 23.7
1200 8.3 4.3 2.9 23.0 12.3 8.4 35.3 19.7 13.6 45.7 26.4 18.5
1300 6.1 3.1 2.1 17.3 9.1 6.2 27.1 14.7 10.1 35.8 20.0 13.9
1400 4.4 2.2 1.5 12.6 6.6 4.4 20.1 10.7 7.3 26.9 14.6 10.0
1500 3.1 1.6 1.0 8.9 4.6 3.1 14.4 7.6 5.1 19.6 10.4 7.1
1600 2.1 1.1 0.7 6.2 3.2 2.1 10.1 5.2 3.5 13.9 7.3 4.9
1700 1.4 0.7 0.5 4.3 2.2 1.5 7.0 3.6 2.4 9.7 5.0 3.4
1800 1.0 0.5 0.3 2.9 1.5 1.0 4.8 2.4 1.6 6.6 3.4 2.3

6. Conclusions
6.1. Summary of Current Study

The novelty of this study was to analyze the flood risks for the River Thames within
a multivariate context and further reveal the failure probabilities under consideration of
the joint return period with different service time scenarios. Initially, a framework for
bivariate hydrologic risk analysis for peak flow and 3-day annual maximum flow was
prepared. This analysis was done based on historical data from 1883 to 2019, obtained
from the National River flow regime website (NRFA). The marginal distribution of the
obtained flood variables was conducted using Gumbel and lognormal methods by using
two estimation methods—method of moment (MOM) and maximum likelihood estimation
(MLE). The flood variables were hypothetically tested for statistical satisfaction. The
Kolmogorov–Smirnov test was adopted to check for the acceptability of the variables, while
the root mean square error (RMSE) was used to decide the best choice among the four
options. The best fit from both flood variables was the Gumbel method obtained from
MOM. The distributions of the two flood variables were joined using different copula
methods—the Clayton, Frank, and Gumbel–Hougaard methods. The estimation of the
unknown parameter of copula was conducted using the MOM method. The obtained
copulas were then tested for statistical correlation using the Kolmogorov–Smirnov test.
The results showed that all the methods were statistically correlated. The root mean square
error (RMSE) and Akaike information criterion (AIC) methods were then used for the
identification of the best copula among the three copula methods. Based on the selected
copula, the primary, joint, and secondary return periods were developed. The bivariate
hydrologic risk (i.e., failure probability) of the peak 3-day AMAX flow was then defined
from the derived joint return periods
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6.2. Main Findings and Recommendation

The Clayton copula was used to model the joint return period of the two flood vari-
ables to characterize the bivariate hydrological risk. Three return periods were estimated:
primary, joint, and secondary return periods. The essence of calculating the secondary
return period was to show the correspondence of the supercritical flood event. The sec-
ondary return period was located between TOR and TAND, whilst TOR was the shortest
return period, less than the return period of individual flood variables, and TAND was the
longest one among the joint and secondary return periods.

Therefore, the hydrological risk analysis of the flood pair was analyzed based on the
TAND joint return period. Results showed that during a flood event, the bivariate hydrologic
risk for the flood pair would have a constant 3-day flow up to 700 m3/s. However, there
will be a decrease in flood risk as the 3-day flow rose above the stated value. Such bivariate
values could be useful in the design of various engineering facilities that are to be placed
on the Thames for flood control. Analysis of this study outlines the need to consider more
variables apart from peak flow during infrastructure design to produce a more standardized
design of the hydrologic facilities that can withstand extreme conditions of floods.

6.3. Suggestions for Future Research

This study only considered one flood pair, i.e., peak flow and 3-day AMAX flow, for
risk characterization. During heavy inundation, peak was the major flooding factor for
the failure of hydraulic facilities, making it an important factor for consideration of flood
risk analysis. However, other factors have a role to play in the control and alleviation of
river flooding. Such factors include flooding volume, duration, and annual maximum
days flow. Analyzing flooding duration assists in the understanding of flood pressure,
enabling its control while results from the volume factor airs out information on diversion
of floods. Thus, further studies are required that consider other flood pairs (peak-volume,
peak-duration, and peak-5-day AMAX) in order to come up with a robust multivariate
flood analysis for the Thames.

Moreover, the developed model for multivariate risk analysis is based on stationary
data series for both flood peaks and 3-day AMAX flows, since no significant variation
trends are detected based on the historical records. Nevertheless, these stationary fea-
tures may not be valid in the future due to the increasing effects of climate change. It is
widely accepted that assuming stationarity in the hydrologic variables used for long-lived
engineering designs is no longer tenable [34,35]. For the Thames Basin, it may hardly
introduce covariates into the estimated parameters in the established copula model based
on stationary historical records. One way to address the non-stationarity that may occur in
future flood series is to generate flood series through reliable hydrological models based
on climate projections as done by Bell et al. [22]. The copula model can then be developed
based on the projected flood series, in which covariates such as time can be used to reflect
the nonstationary features in the flood series. Such a model can be applied for supporting
flood resilience under climate change. Nevertheless, the results from the current study are
still useful for flood control even though these results are based on stationary data series.
These results can be considered as the reference baselines for future flood protection under
climate change.

Supplementary Materials: The following supporting information can be downloaded at: https:
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