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Abstract: We propose a novel probabilistic approach to flood hazard assessment, aiming to address
the major shortcomings of everyday deterministic engineering practices in a computationally efficient
manner. In this context, the principal sources of uncertainty are defined across the overall modeling
procedure, namely, the statistical uncertainty of inferring annual rainfall maxima through distribution
models that are fitted to empirical data, and the inherently stochastic nature of the underlying
hydrometeorological and hydrodynamic processes. Our work focuses on three key facets, i.e., the
temporal profile of storm events, the dependence of flood generation mechanisms on antecedent
soil moisture conditions, and the dependence of runoff propagation over the terrain and the stream
network on the intensity of the flood event. These are addressed through the implementation of
a series of cascade modules, based on publicly available and open-source software. Moreover, the
hydrodynamic processes are simulated by a hybrid 1D/2D modeling approach, which offers a good
compromise between computational efficiency and accuracy. The proposed framework enables the
estimation of the uncertainty of all flood-related quantities, by means of empirically derived quantiles
for given return periods. Lastly, a set of easily applicable flood hazard metrics are introduced for the
quantification of flood hazard.

Keywords: flood hazard; stochastic simulation; synthetic hyetographs; curve number; varying time
of concentration

1. Introduction

Typical flood defense infrastructure design is tackled as a sequential application of
deterministic formulas and models, fed by a hypothetical storm event (hyetograph) that
follows a prespecified temporal pattern (e.g., alternating blocks) and corresponds to a
desirable return period [1]. In this procedure, the unique probabilistic concept is that of the
return period of the design rainfall, which is set a priori, to denote the acceptable probability
of exceedance of all quantities of interest associated with flood hazard assessment (peak
flows, flood hydrographs, flow depths and velocities, inundated areas, etc.).

Arguably, this so-called event-based approach is considered particularly risky in the con-
text of hydrological infrastructure design [2], due to the oversimplification, ignorance, or misuse
of important concepts and mechanisms of the rainfall–runoff transformation. Specifically:

• The role of varying and, thus, uncertain antecedent soil moisture conditions, which
are a major driver of floods, is ignored [3,4].
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• The simplified and deterministically specified shape of input hyetographs, as well
as the concept of critical rainfall duration [5], is far from representative of the actual
probabilistic regime of extreme storm events [6,7].

• The time parameters that are embedded in the description of routing processes (time
of concentration, lag time, etc.) are handled as constant properties rather than flow-
dependent variables [8,9].

• The spatial heterogeneity of storms is not included in the analysis, although this can
be a rather important factor, especially in rainfall events generated by orographic
phenomena [10,11].

• The probability (or, equivalently, return period) of rainfall is considered as a proxy
of the flood probability [12]—a key hypothesis that is yet strongly influenced by the
rainfall mechanisms and the catchment characteristics [13].

To address the above challenges, as well as the multiple complexities and uncertainties
that span over the whole spectrum of the flood generation, routing, and drainage processes
(also affected by the changing climate), the hydrological community has called for more
integrated approaches in flood modeling, which follow the continuous simulation con-
cept [14–16]. The generic definition of simulation refers to the representation of a dynamic
(i.e., changing) system in the long run, preferably using synthetic data that are statistically
equivalent to the observed ones (thus, the correct term should be continuous stochastic
simulation). In the context of a drainage system (e.g., a river basin), this approach allows
for investigating its response (e.g., the generation of flood runoff) against a wide range of
inputs (i.e., rainfall events) and states (i.e., soil conditions), with different probabilities.

The major shortcoming of continuous stochastic simulation over event-based deter-
ministic approaches is the substantially larger computational effort. This is induced by the
need for running time-demanding process representation models, namely, rainfall–runoff
and hydraulic (better referred to as hydrodynamic), with finely resolved data, induced
by the typically small temporal scale of interest (e.g., 15-min), which extend over very
long horizons. For instance, in order to evaluate probabilistic quantities that correspond
to a T-year return period through empirically based statistical approaches (e.g., Monte
Carlo analysis), the underlying sample size should be much larger [17]. Furthermore, the
rainfall–runoff and hydrodynamic models should be fully coupled to allow for representing
the flood generation and routing processes with satisfactory accuracy, thus making the
whole approach extremely difficult, if not prohibitive, for the engineering community
and practicians [18]. For this reason, continuous simulation and stochastic event-based
methods are often tackled as alternative approaches [19]. Other alternatives are based on
“semi-continuous” schemes, where synthetic rainfall events are inserted into continuous
historical rainfall records, and then used in hydrological models [20].

In order to handle the flood hazard assessment challenge by ensuring an acceptable
compromise between realism and consistency in process representation, as well as computa-
tional effectiveness and feasibility, we propose a hybrid framework, which is implemented
through a cascade of stochastic, rainfall–runoff, and hydrodynamic simulation models of
different levels of detail (1D and coupled 1D/2D). The overall approach is founded on the
Monte Carlo paradigm, by retaining the fundamental concept of return period of the design
rainfall at the 24 h scale. In this vein, for specific return periods, the flood hazard and
resulting risk (i.e., combination of hazard and adverse consequences) are evaluated through
a wide range of synthetically generated scenarios of potential states (i.e., soil moisture
conditions) and inputs (i.e., rainfall patterns) with different probabilities. This allows assess-
ing the system’s performance when pushed outside the deterministic (regulation-based)
design events, a procedure which is becoming known as “resilience assessment” [21]. The
methodology is demonstrated in a real-world hydraulic design study, involving an urban
stream in the southwestern Attica region, Greece (Trachones stream and its main drainage
network), which crosses highly urbanized suburbs of the Athens Metropolitan area, while
also including lands of exceptional commercial value in its downstream region.
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2. The Hybrid Stochastic Simulation Framework in a Nutshell

The concept of flood hazard and, eventually, flood risk, under the prism of stochastic
simulation, entails the modeling of all important processes across the drainage system, their
forcing through stochastically generated drivers, and the subsequent statistical description
of the resulting effects in the areas of interest. Ideally, this should be a continuous procedure,
to enable a direct statistical analysis of the simulated flooding data. However, as already
highlighted, in the context of common engineering practice, such simulations are still
computationally infeasible. Therefore, another approach must be considered, to ensure
a reasonable balance between accuracy in the representation of uncertainties and the
computational cost. In this context, it is useful to conceptualize the stochastic simulation
procedure as a chain of cascading modules, i.e., weather generation (through a timeseries
synthesis model), rainfall–runoff transformation (through a hydrological model), and
hydraulic routing (through a hydrodynamic model).

In this vein, the key uncertainties of each module are explicitly handled and next
transferred to subsequent modules by means of input–output exchanges. As shown in
Table 1, the proposed framework pays attention to statistical and process uncertainties,
while other sources of uncertainty (structural, parametric) are ignored, e.g., those associated
with the hydraulic modeling (e.g., roughness conditions, model of choice, survey and
topographic data accuracy, and structure attributes) [22].

Table 1. Uncertainties for each module considered in the present study.

Weather Generation Rainfall–Runoff Transformation

# Statistical uncertainty of annual
rainfall maxima # Antecedent soil moisture conditions

# Temporal distribution of storm events # Runoff routing over sub-basins

# Hydrograph routing along the
stream network

Having established the main uncertainties, we can now introduce the overall sim-
ulation approach, involving the sequential application of different modeling tools and
associated data exchanges, as illustrated in Figure 1. A more detailed description of
individual models and their key novelties is made in the subsequent sections.

Firstly, synthetic rainfall on the daily scale is generated for N years, where N has
to be large enough to provide statistically reliable estimations of extreme probabilistic
quantities. The daily scale is proposed in order to avoid the large computational cost
associated with generating long synthetic timeseries for sub-daily scales. Then, a statistical
model for the extreme annual rainfall is fitted to the synthetic data, on the basis of which
n values are inferred for k return levels of interest. Next, n × k sub-daily storm events
are generated by disaggregating the associated daily rainfall values at the desired fine
scale of hydrological and hydrodynamic simulation (in our case, 15 min). This procedure
simultaneously addresses the main uncertainties associated with the stochastic simulation
of the extreme rainfall, while also retaining a low computational cost.

Subsequently, the catchment state (i.e., soil moisture conditions) is associated with
the antecedent cumulative rainfall (here referred to the 60 day scale, as result of the dry
regime of the study area) and mapped to the key, spatially distributed input of the rainfall–
runoff modeling procedure, i.e., the curve number, CN. The stochastic storm events and
the randomly generated system states (in terms of CN values) become inputs to a semi-
distributed event-based hydrological model, i.e., the NRCS-CN. The time-related inputs of
the system (i.e., unit hydrograph and channel velocities) are also allowed to vary, according
to the severity of the storm event. In this manner, the two main uncertainties regarding the
rainfall–runoff processes are treated, whereas the effective rainfall generation mechanism
is a priori assumed.
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Figure 1. Cascade of models and exchange of input and output data within the hybrid stochastic
simulation framework. In the present study, we use N = 10, 000, n = 100 and k = 10.

The outputs of hydrological simulations, i.e., the n× k flood hydrographs, are assigned
as point inflows (inflow boundary conditions) to a hydrodynamic simulation model of the
drainage network (stream/river) in the lower course of the catchment, which is our area of
interest. In order to address the computational cost associated with detailed simulation
(e.g., 2D) we propose a hybrid 1D/2D scheme. Specifically, we first employ the 1D model
to run the entire set of storms. On the basis of the results, the so-called critical scenarios
are identified and subsequently simulated in the detailed model. These are defined on
the basis of a priori determined thresholds that are exceeded by the variables of interest
(e.g., flow velocity, water level etc.). As a result, the detailed simulations produce scenarios
of flood extents that are statistically analyzed to obtain the relevant flood hazard metrics,
while the 1D simulations produce useful statistics across all simulated flood events.

In the next sections, the individual components of the framework are discussed in
detail according to the specific case study presented herein. While in the implementation
of the proposed framework, specific tools are employed and some of their inputs and
assumptions are by definition based on local data, the framework is—by construction—
nonexclusive. In contrast, it allows for the integration of any models/tools which are
capable of addressing the associated uncertainties and producing the required results.

3. Study Area and Data

Trachones is an urban stream that drains an area of 23.48 km2, which extends in the
south Athenian plain, between the foothills of Mount Hymettus and the southern coastal
zone of Athens (Saronikos Gulf). Its drainage network, which mainly crosses urbanized
areas, is formulated by two main branches and several smaller tributaries. The lower
course of the stream lies in the northern boundary of the so-called Metropolitan Pole of
Hellinikon–Agios Kosmas, which is a planned urban development on the site of the former
International Airport of Athens, covering an area of approximately 6.2 km2. The exceptional
character of this investment makes the proper assessment of flood hazard across these areas
even more challenging.
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In the context of hydrological analyses, the flood generation and routing processes
are represented through a conceptual semi-distributed scheme, which is implemented
in the HEC-HMS environment. As shown in Figure 2, the drainage area is divided into
22 sub-basins, while the flood flows are conveyed through a reach network comprising
20 elements, including natural channels (mainly in the upstream parts) and storm sewers
(open channels, closed conduits). The level of detail of this schematization is dictated
by the corresponding level of analysis of the underlying design study. Given that only
limited parts of the downstream network are still open, in order to delineate the sub-basin
boundaries within the urban environment and identify the actual water paths across the
covered parts of the natural stream network, we took advantage of topographic maps from
the late 19th century and macroscopic information retrieved from satellite maps.
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Figure 2. Hydrological modeling system of Trachones stream.

Since the catchment is ungauged, the sole hydrometeorological information used in
this study was a daily rainfall record, retrieved from the Hellinikon meteorological station.
The raw data were logged in 12 h intervals and cover a period of 65 years (from 1955 to
2019), without gaps. Due to the relatively small extent of the study area, we considered this
station as representative of the rainfall regime of the overall catchment.

4. Weather Generation

To incorporate the meteorological uncertainty within flood hazard assessment, rainfall
is treated as a stochastic process, through the use of probabilistic methods and stochastic
simulation techniques. This approach enables the generation of a large number of synthetic
rainfall timeseries, by means of storm events (hyetographs) of 15 min resolution, which are
statistically consistent with the historical data. These are then used as inputs to deterministic
simulation models, allowing an analysis of their response under uncertainty.

In this research, two main aspects of uncertainty are examined and modeled. The first
concerns the statistical uncertainty associated with the estimation of 24 h annual rainfall
maxima, which is, by definition, impossible to be completely eliminated, due to the finite
length of historical data, as well as the sampling uncertainties and/or biases. The second
aspect regards the temporal distribution of rainfall events (i.e., storm profile), which plays
a key role in the generation of floods; recall that a given rainfall total (e.g., 24-h event) can
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be the aggregated outcome of an infinite number of lower-temporal-level rainfall events (in
the specific case, hyetographs of 15 min resolution).

Aiming to address the first aspect mentioned above, we use the anySim R-package
that allows the simulation of realizations of stochastic processes with any marginal distri-
bution and autocorrelation structure [23]. Through this tool, we generate 10,000 years of
synthetic daily rainfall by employing the multitemporal simulation module of the pack-
age that couples two stochastic models, one for the annual scale and one for the daily
one [24]. Taking advantage of the daily data, we further analyze the probabilistic behavior
of daily annual maxima. Specifically, we first extract from the full synthetic sample the
subset of daily annual maxima (10,000 values); next, we obtain estimates for both the
distribution of daily (more precisely, 24-h) maxima, as well as its confidence levels, CL.
In this respect, we apply a procedure that combines the generalized extreme value (GEV)
distribution with a Monte Carlo resampling fitting approach [25], to provide estimations for
10 characteristic return periods, T = {2, 5, 10, 25, 50, 100, 200, 500, 750, 1000} (years)
and for CL = {0.1, 0.25, 0.5, 0.75, 0.9}. The results are depicted in Figure 3. For instance,
for T = 100 years and CL = 50%, the daily rainfall intensity is 5.89 mm/h (this value
corresponds to a daily depth of 141.4 mm); it is noted that the maximum value of daily
rainfall intensity of the historical sample (subset of 62 daily annual maxima) is 5.91 mm/h.
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Figure 3. Maximum daily (24 h) rainfall intensity, x(T) (mm/h) vs. return period T (years) (including
confidence levels).

Next, we generate (also using anySim) a number of synthetic rainfall hyetographs, at
the timescale of interest, i.e., 15 min, which correspond to the desirable return periods and
confidence levels of the daily maximum rainfall. This implies that the cumulative rainfall
of each hyetograph, consisting of 96 partial depths, should equal the 24 h rainfall value,
dictated by the corresponding combination of T and CL. This challenging task is employed
through (a) a novel downscaling approach for reconstructing the key statistical properties
(i.e., mean, variance, probability dry, and autocorrelation) at the timescale of interest [26],
(b) a multiscale distribution fitting approach, using the Burr type XII distribution [27],
and (c) a novel, recently introduced disaggregation approach [26] to disaggregate the 24 h
maximum rainfall values to the temporal level of 15 min. We underline that the first two
steps are required due to the lack of raw data at the required resolution. If such data were
available, only step (c) would be necessary, as the key statistical quantities at that timescale
would be inferred from the historical sample.

We remark that, for each return period T (10 in total) and confidence level CL (five
in total), we generate 20 equally probable hyetograph realizations, aiming to account for
the uncertainty in the time profile of rainfall at the temporal resolution of 15 min. Overall,
the total number of storm events (i.e., hyetographs) is 10× 5× 20 = 1000, preserving the
desirable marginal distribution and autocorrelation structure, as well as summing up to the
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parent 24 h rainfall. The 5× 20 = 100 synthetic hyetographs, grouped per return period T,
are depicted in Figure 4.
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5. Rainfall–Runoff Modeling
5.1. Overview

The flood simulation procedure implements the semi-distributed schematization of the
Trachones system, comprising 22 sub-basins and 20 reach elements, through the HEC-HMS
package. At the sub-basin level, the model estimates the generation of surface runoff over
the drainage area (effective rainfall), by employing a modified version of the NRCS-CN
method, where its key input, i.e., the runoff curve number, CN, is handled as a stochastic
variable. Eventually, the model is driven with the 1000 synthetically generated storm
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events, while, for each rainfall scenario, a random value of CN is assigned, in order to
account for the variability of antecedent soil moisture conditions at the beginning of each
storm event. As explained next, these are expressed in terms of 60 day accumulated rainfall,
and then mapped to CN.

The effective rainfall produced over each sub-basin is next routed to the corresponding
outlet junction, through the unit hydrograph method. The key assumption here is the
dynamic change of the hydrograph shape against the varying rainfall, as a result of the
dependence of the response time of the basin on the flow conditions.

The hydrographs arriving at all junctions are eventually propagated through the reach
network, by applying routing schemes (lag time, for steep slopes, and Muskingum method,
for mild ones). The time parameter of both methods is also adapted to the changing flow
conditions of each simulated event, via an original velocity approach.

5.2. The NRCS-CN Method in Stochastic Pseudo-Continuous Setting
5.2.1. The Standard NRCS-CN Method

The NRCS-CN method, introduced by the Soil Conservation Service in 1954 (today
referred to as the Natural Resources Conservation Service, NRCS), is recognized as the most
widely used event-based scheme globally. This method describes the temporal evolution
of surface (flood) runoff (also referred to as effective rainfall, he) from a given cumulative
rainfall, h, through the following empirical formula [28]:

he =

0 h ≤ ha0
(h−ha0)

2

(h−ha0+S) h > ha0
, (1)

where ha0 and S are two lumped parameters over the drainage area of interest (in our case,
sub-basin), namely, the initial deficit and the maximum potential retention; the latter is
typically defined as ha0 = λ S (all values are expressed in mm). Furthermore, it maps S
into a dimensional quantity, referred to as runoff curve number, CN, i.e.,

S = 254
(

100
CN
− 1
)

. (2)

CN is a conceptual metric, ranging from 1 to 100, which captures, in a unique value,
the major physiographic properties that are associated with runoff generation over an area
of interest. According to the SCS/NRCS standards, this depends on soil and land-cover
characteristics, as well as on the moisture present in the soil profile before a rainfall event.
The literature provides CN values for average soil moisture conditions and the typically
used initial abstraction ratio λ = 0.20 (herein referred to as reference conditions). The
recommended values are expressed by means of lookup tables, accounting for several
combinations of land-use/land-cover characteristics and four hydrological soil types [28].

5.2.2. On the Representativeness of 5 Day Accumulated Rainfall for Classifying AMC Types

The standard NRCS-CN approach considers three discrete antecedent soil moisture
conditions (AMC I, II and III), depending on the total 5 day antecedent rainfall and the
season category (dormant or growing). The so-called dry, average, or wet soil states have
been derived through field experiments, mainly employed in small agricultural catchments
in USA. In the literature, the determination of AMC, which is an index of the basin wetness,
has been subject to major critique, due to the limited information about its definition [29].
Nevertheless, it is accepted that the CN values associated with AMC-II represent a central
tendency, while those associated with AMC-I and AMC-III are representative of extremes
of the runoff frequency distribution [30].
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For convenience, the reference CN is determined for average conditions (AMC II),
while, for the other two AMC types, NRCS provides the following empirical conversion
formulas [28]:

CNI =
4.2CNI I

10− 0.058CNI I
, CNI I I =

23CNI I
10 + 0.13CNI I

. (3)

Although the 5 day cumulative rainfall is the typical indicator of the actual soil
moisture conditions within the NRCS-CN scheme, it is also questionable whether this
quantity is representative across all hydroclimates [31]. In particular, in arid, semiarid, and
dry areas (which is our case), characterized by intense yet not often storm events, and long
periods with minimal and even zero rainfall, the definition of AMC on the basis of 5 day
rainfall may lead to far from plausible outcomes. Therefore, an essential question to address
is the aggregation scale of rainfall ensuring a reasonable determination of antecedent soil
moisture conditions.

In this respect, and following the rationale by Hjelmfelt [30], it is assumed that the
classification of dry, normal, and wet soil moisture conditions (and, consequently, the
adjustment of reference CN values according to Equation (3)) corresponds to 10%, 50%,
and 90% probability of non-exceedance of the n-day cumulative rainfall, where n denotes
the scale of aggregation. Using the daily rainfall record from the Hellinikon meteorological
station from 1955 to 2019, we calculate the cumulative rainfall for four aggregation levels
(n = 5, 15, 30, and 60 days), and estimate the three characteristic quantiles, as well as three
more extreme ones (1%, 99%, and 99.9%). The results are summarized in Table 2. It is
remarkable that for all scales except for the 60 day one, the aggregated rainfall assigned to
dry conditions (10% quantile) is zero, while, for the 60 day scale, this value is only 1.9 mm.
In this respect, we consider the characteristic values of 60 day rainfall, h60, as thresholds for
recognizing the discrete soil conditions introduced by NRCS (dry, normal, wet), as well as
the very dry, very wet, and extremely wet states.

Table 2. Accumulated rainfall (mm) for various scales of aggregation at Hellinikon station and
correspondence with soil moisture conditions over the study area.

Rainfall
Quantile

Soil Moisture
Conditions

Scale of Aggregation, n

5 Days 15 Days 30 Days 60 Days

1% Very dry 0.0 0.0 0.0 0.1
10% Dry (AMC I) 0.0 0.0 0.0 1.9
50% Normal (AMC II) 0.0 4.9 16.7 43.2
90% Wet (AMC III) 15.7 42.6 78.3 139.6
99% Very wet 55.1 97.5 153.9 220.3

99.9% Extremely wet 109.9 179.6 212.0 283.7

5.2.3. Mapping of Curve Number to Antecedent Soil Moisture Conditions

Several researchers have revealed the limitations of the NRCS-CN method with respect
to soil processes and proposed further parameterization to better represent the initial soil
moisture conditions [3,5,32]. Today, there are numerus continuous simulation variants
of the original event-based scheme that allow explicitly representing the variability of
rainfall and antecedent soil moisture conditions, mainly via soil moisture accounting
procedures [33–36].

Instead of a soil moisture accounting scheme, the proposed approach employs a
continuous classification of antecedent soil moisture conditions, by mapping the reference
CN across sub-basins to the 60 day accumulated rainfall (hereafter symbolized H), which
is by definition a stochastic process. In particular, initially, we apply Equation (3) to
obtain the adjusted values for dry and wet AMCs. Under the premise that CNI , CNI I , and
CNI I I correspond to non-exceedance probabilities p = 0.50, 0.10, and 0.90, respectively, we
establish the following probabilistic expression:

CN = CN0 + ϕ p(H), (4)
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where CN0 denotes a theoretically lowest value of the curve number under extremely dry
conditions ( p→ 0) , ϕ is a rate parameter, and p(H) is the non-exceedance probability
of 60 day rainfall. The two unknown quantities, CN0 and ϕ, are empirically determined
through regression, as shown in the example of Figure 5a. The variation of CN against
antecedent soil moisture conditions, as expressed in terms of the probabilistic term p(H),
indicates an asymptotic behavior of the curve number parameter with respect to past
rainfall, which has also been confirmed by several researchers [37]. In this vein, for
each reference CNI I , a theoretically upper value, CN∞, needs to be assigned, driven by
a hypothetically maximum potential antecedent 60 day rainfall, H∞, that corresponds to
fully saturated soil conditions and whose non-exceedance probability tends to one ( p→ 1).
After preliminary investigations, we set H∞ = 800 mm, which is about two times the mean
annual rainfall at Hellinikon station (357.9 mm) and over the broader Athenian region,
in general.
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Figure 5. Example of adjusting reference CNI I = 60: (a) mapping to non-exceedance probability
of 60 day rainfall through the probabilistic function (4); (b) mapping to 60 day rainfall through the
generalized formula in Equation (5).

The nonlinear dependence of CN against H through Equation (5) is well approximated
by the following formula:

CN = CN0.01 +

(
1−

(
1−

(
H − H0.01

H∞ − H0.01

)a)b
)

(CN∞ − CN0.01), (5)

where CN0.01 and H0.01 are the curve number and accumulated rainfall for very dry con-
ditions, CN∞ and H∞ are referred to as the asymptotic curve number and asymptotic
accumulated rainfall, respectively, and a and b are shape parameters. H∞ is manually set to
800 mm, thus indicating an accumulated 60 day rainfall value with negligible probability
of exceedance, CN0.01 is estimated by applying Equation (4) for each specific reference
curve number, and CN∞ is also manually adjusted to CNI I . The two shape parameters are
empirically derived as a = 0.50 and b = 3.11, by fitting Equation (5) to a sample of data
generated for various reference values of CNI I and associated probabilities. A graphical
demonstration of the adjusting procedure, for reference CNI I = 60, is shown in Figure 5b.

In the absence of observed data, and in order to evaluate our approach at least from
an expert’s judgment perspective, we employ a hypothetical lumped configuration of the
NRCS-CN method in fully continuous mode, for alternative CN I I values (60, 70, 75, and
80). The model is driven with the observed daily rainfall data at Hellinikon station, as
well as the 60 day aggregated rainfall data, which is representative of the antecedent soil
moisture conditions. The flood runoff is extracted on a daily basis through Equation (1),
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where the maximum potential retention, S, is estimated by mapping CN to the 60 day
rainfall, through the generalized formula in Equation (5). In Figure 6, we contrast the
simulated daily runoff by the standard NRCS-CN approach with CN I I = 60, and by the
modified model with varying CN around the same reference value. As expected, the
second approach ensures a larger fluctuation of runoff, which is induced by the variability
of antecedent soil moisture conditions, as reflected in the accumulated 60 day rainfall before
each event. Apparently, it also provides larger peaks, which are associated with wet soil
conditions, thus resulting in a quite larger average runoff, i.e., 35.0 mm on a mean annual
basis, in contrast to the conventional approach that generates only 18.6 mm (as already
mentioned, the mean annual rainfall is 357.9 mm). From our experience, the first value
is more reasonable, since it ensures an average runoff coefficient close to 10%, which is
consistent with the hydroclimatic regime of the broader area of Attica. In Table 3, we also
provide a comparison of the two datasets, in terms of marginal statistics of non-zero data.

For further justification, the results are also compared with the simulated data ob-
tained by the continuous simulation scheme by Mishra and Singh [38]. In order to ensure
consistency, the above model is also applied by considering the 60 day accumulated rainfall
in the estimation of moisture component, and by setting λ = 0.05 for the estimation of initial
abstraction losses. As shown in Figure 7, the two methods provide close estimations of
daily flood runoff, while our approach is considered more realistic, given that the variability
of CN is adjusted to the local rainfall regime, through the probabilistic Equation (4).
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Table 3. Statistical comparison of nonzero runoff data through the NRCS-CN approach for CNI I = 60,
by considering constant and varying (adjusted to 60 day rainfall) CN.

Constant CN Varying CN

Average (mm) 1.43 3.30
Standard deviation (mm) 3.90 5.43
Coefficient of skewness 7.15 4.81

5.2.4. Pseudo-Continuous Implementation of NRCS-CN Method in the Study Area

While the proposed variation of the NRCS-CN method is fully compatible with the
continuous simulation paradigm, its direct implementation would be computationally inef-
ficient (as the underlying model is driven with synthetic data) and, eventually, nonessential,
since our focus is on extreme storm events. In this respect, we employ a pseudo-continuous
(i.e., scenario-based) procedure, where, for each of the 10 return periods of interest, with
correspondence to the 24 h rainfall, the model receives 5 × 20 = 100 (i.e., 20 realizations for
five CLs) equally probable scenarios of storm profiles and spatially distributed CN values
over the sub-basins. To calculate the latter, we generate 1000 (10 × 100) random rainfall
values, from the distribution of 60 day accumulated rainfall. Next, for each sub-basin, using
as a guide the reference CN, we utilize Equation (5), thus running the NRCS-CN method
with 1000 randomly generated maximum potential retention values.

An essential requirement of the aforementioned procedure is the statistical decoupling
of the 60 day accumulated rainfall from the extreme daily rainfall. Our analyses with
historical rainfall data, i.e., annual daily maxima vs. antecedent 60 day values, indicate that
the two variables are practically uncorrelated (r = 0.08). The proven lack of dependence
allows for employing the scenario-based approach, instead of fully continuous simulation.

5.3. Embedding the Concept of Varying Time of Concentration within Flood Routing Procedures
5.3.1. Rationale

According to widespread flood modeling practices for ungauged basins, the time of
concentration, tc, is a characteristic property of the drainage area of interest (e.g., river
basin), usually defined as the longest travel time of the surface runoff from the hydraulically
most remote point of the area to its outlet. It is a typical input parameter of a wide range of
rainfall–runoff models. In our framework, the time of concentration is used for determining
the input time parameters within the routing of flood runoff over sub-basins through
the unit hydrograph theory, as well as their propagation along the hydrographic network,
through an original velocity-based approach. Due to the complexity of the underlying phys-
ical phenomena, in everyday engineering practice, tc is provided by empirical formulas that
estimate the catchment’s response time as function of its geomorphological characteristics.

However, theoretical proof and empirical evidence imply that tc is not a constant
property, but varies significantly with flow [8]. Apparently, as runoff increases, the flow
velocity across the river network and its tributaries also increases, which results in a faster
response of the basin. For instance, Grimaldi et al. [39] analyzed a large number of flood
hydrographs, concluding that tc ranged by even one order of magnitude across events
of different intensity. To account for the dependence of the response time of the basin
against runoff, we employed the following semi-empirical formula, which arises from the
kinematic wave theory, considering that tc is inversely proportional to rainfall:

tc(T) = t∗c
√

h(5)/h(T), (6)

where h(5) is the 24 h rainfall depth for the standard return period of T = 5 years, t∗c
is the associated time of concentration, and h(T) is the rainfall depth for any other re-
turn period, T. Equation (6), expressed in terms of rainfall intensity, was introduced by
Efstratiadis et al. [40] and then applied in several flood studies in Greece, among others in
the context of the implementation of the EU Floods Directive [41,42]. A key assumption
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of the method is that the so-called reference time of concentration, t∗c (here estimated by
the Giandotti formula) is only valid for medium frequency flood events, whereas, for low-
frequency ones, which are the focus of hydrological design and flood hazard assessment
studies, it has to be reduced (or increased, in the case of small, high-frequency events).

In the study area, we generally apply a 5 year rainfall value h(5) = 62.7 mm, which is
obtained from the statistical analysis of the observed rainfall maxima, while the quantity
h(T) changes according to the return period, as well as the confidence interval of the distri-
bution function of daily rainfall. In this respect, within the routing procedures involving
the estimation of input parameters on the basis of time of concentration, we employ a
twofold approach. First, we estimate the associated reference time of concentration, t∗c , and
then multiply it with an adjustment factor, by means of ratio

√
h(5)/h(T). These factors,

which depend on the local statistical regime of the extreme rainfall, are summarized in
Table 4. As shown, for rainfall scenarios for which the 24 h rainfall is smaller than 62.7 mm,
the actual time of concentration increases up to 25%, while, for large events, it decreases
up to 60%. In this manner, the uncertainty of meteorological drivers is mapped to time of
concentration, which is a key input of the routing procedures over sub-basins and along
the hydrographic network.

Table 4. Adjustment factors to reference time of concentration.

Return Period, T
(Years)

Rainfall Quantile, q

10% 25% 50% 75% 90%

2 1.25 1.23 1.21 1.18 1.16
5 1.04 1.02 1.00 0.98 0.95
10 0.95 0.92 0.89 0.87 0.84
25 0.85 0.82 0.79 0.75 0.72
50 0.80 0.76 0.72 0.68 0.64

100 0.75 0.71 0.66 0.61 0.57
200 0.71 0.66 0.61 0.56 0.51
500 0.66 0.61 0.55 0.49 0.44
750 0.64 0.59 0.53 0.47 0.41

1000 0.63 0.58 0.51 0.45 0.39

5.3.2. Flood Runoff Routing over Sub-Basins

The 1000 scenarios of excess rainfall events over sub-basins are propagated to their
outlet junctions through the unit hydrograph method, which is the most common time–area
transformation approach within event-based modeling. In the absence of observed flood
data, we take advantage of synthetic unit hydrographs (SUHs), from the set of alternative
schemes provided by the Natural Resources Conservation Service [43]. In particular, we
apply the so-called Standard PRF 484 for rural sub-basins and PRF 300 for urban ones,
which is more elongated and, thus, smoother (PRF is an abbreviation for peak rate factor).
Both are given in dimensionless terms, by means of ratios of time to time to peak, and flow
to peak flow. Their shape and scale characteristics (time to peak, base time, peak flow)
are functions of rainfall duration (scale) and lag time, which is estimated as a constant
percentage (60%) of the time of concentration. By definition, the rainfall scale is equal to
the time interval of simulation (2 min), which is a generic input of the overall modeling
procedure. On the other hand, tc is changing in space (i.e., across sub-basins) and across
input rainfall events of different return period and confidence interval, by adjusting the
associated reference (i.e., Giandotti-based) time of concentration, t∗c , of each sub-basin.

5.3.3. Flood Routing across the Stream Network

In the context of hydrological analysis, the routing of the flood hydrographs arriving at
the outlet of sub-basins along the stream network is represented by conceptual hydrological
schemes. Our emphasis is on a realistic representation of the inflows arriving upstream of
the lower course of Trachones, which is of high interest as a flood-prone area. We remind
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that, in the context of hazard assessment analysis, the lower stream network is modeled
under a much more detailed frame, i.e., hydrodynamic simulation.

The routing is implemented by applying the linear kinematic wave (or simpler, lag-
time) method for steep (>1%) channel slopes and the wave-diffusion Muskingum method
for mild ones. Their common input is a characteristic time parameter, K, which represents,
in an abstract context, the average travel time between the upstream and downstream
junctions as the associated reach element. On the other hand, the estimation of parameter K
across the stream network is based on a pseudo-hydraulic kinematic approach, introduced
by Michailidi et al. [8] and further developed by Risva et al. [44].

Let tc and tu be the time of concentration of the entire catchment and the most upstream
sub-basin, respectively. The two quantities are initially determined for the reference return
period of T = 5 years and the 50% quantile, equal to 2.30 and 0.66 h, respectively. For
any other return period and input rainfall quantile, they are adjusted by applying the
multiplying factors of Table 4. Their difference, tc − tu, indicates the travel time across the
hydraulically most remote flow path, i.e., from the outlet junction of the most upstream
sub-basin to the outlet junction of the stream network, consisting of N individual reaches.
Considering that the travel time of each reach, i, is the ratio of length, Li, to a characteristic
average velocity, Vi, we get

tc − tu =
L1

V1
+

L2

V2
+ . . . +

LN
VN

. (7)

The velocity value is empirically assigned to each reach, by considering steady uniform
flow conditions and the Manning’s formula, i.e.,

Vi =
1
ni

R2/3
i J1/2

i , (8)

where ni is Manning’s roughness coefficient, Ri is the hydraulic radius, and Ji is the
bed slope. Inputs of each reach are the slope, which is a geometric attribute, and the
roughness coefficient, which varies according to channel material, bed conditions, existence
of sediments, riparian vegetation, etc. In order to drastically facilitate computations, the
hydraulic radius, theoretically defined as the ratio of the wetted perimeter to cross-sectional
area and, thus, dependent on geometry and the water depth (and thus the flow), is handled
as a global parameter of the stream network. Under this premise, we set R2/3

i = c, and we
combine Equations (7) and (8) to get

c =
1

tc − tu

(
n1 L1

J1/2
1

+
n2 L2

J1/2
2

+ . . . +
nN LN

J1/2
N

)
=

β

tc − tu
. (9)

Therefore, c is inversely proportional to the time difference tc − tu, which changes
across different rainfall scenarios, and proportional to the term in parenthesis, symbolized
β. The latter is constant, since it only contains geometrical (length, slope) and hydraulic
(roughness) quantities of reaches lying along the longest flow path.

After determining c for each rainfall scenario, we estimate the mean velocity at each
reach element of the stream network and the corresponding travel time, Li/Vi, which is
considered representative of the time parameter, Ki, of the associated flood routing scheme
(lag-time or Muskingum). This assumption ensures integrity, since the total travel time
across the main flow path is consistent with the time of concentration of the catchment, and
it also allows for a proper representation of the spatial heterogeneity of key properties of
the stream network that affect its hydraulic behavior.
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6. Hydrodynamic Simulation
6.1. Overview

The outputs of rainfall–runoff modeling, in terms of 1000 sets of flood hydrographs that
arrive from the upstream network and the lateral sub-basins, are assigned as point inflows
to a hydrodynamic simulation procedure of the lower course of Trachones drainage network
(here, we use the term “hydrodynamic” instead of most common term “hydraulic”, which
is more appropriate for describing empirical or experimental approaches). The choice of an
appropriate model for the above task represents a compromise between modeling accuracy
and computational efficiency. In this respect, the modeler must have keen knowledge of the
underlying physics, as well as its relevant importance. In the context of fluvial flooding, in
the majority of cases, the main channel can be well described by a one-dimensional model.
However, the floodplain, especially in urban areas where there are many flow obstacles
(e.g., buildings), a two-dimensional model should be employed. In the present study, we
opted for HEC-RAS to perform the hydrodynamic simulations, as it offers the ability to
couple the 1D and 2D models. However, it is remarked that the proposed framework is not
constrained by the choice of the relevant hydrodynamic software. Any solver that combines
the above features can be utilized, based on the modeler’s experience and informed by the
specific application.

6.2. Modeling Procedure and Assumptions

The hydrodynamic simulation is initially implemented by running all scenarios under
one-dimensional analysis with 5 m spatial resolution, in order to detect which of them result
in adverse conditions, thus needing further investigation by activating the 2D analysis
option, while also applying a 5 × 5 m computational mesh. The classification is based on
simulated profiles of water line, energy line, and flow velocity along the model domain, for
different return periods and confidence levels.

In general, the water profiles are derived through the calculation of the free surface
water stage at each cross-section, by utilizing a finite difference solver. For the closed parts
of the network, where the water reaches the upper part of the conduit, the flow becomes
pressurized; thus, the water stage is in fact the pressure head. Due to this dual nature of
the water profile line (i.e., switch between free surface and pressure line), the term “water
line” is used for convenience. In this vein, the energy line is obtained by adding the water
line and velocity profiles.

Although the numerical scheme of the 1D analysis is implicit and, thus, uncondition-
ally stable, a proper selection should be made in order to achieve a converging numerical
solution, which is independent of the timestep. After preliminary investigations, we chose
to generally apply a timestep of 60 s, and we tested finer resolutions (30, 15, and 5 s)
whenever the simulation was finished unsuccessfully. Since the slopes along the streams
are quite significant and the flow velocities are high, the so-called local partial inertial
technique was used for improving the stability of the numerical solution, by setting a
Froude number threshold equal to 0.30. On the other hand, the 2D analysis was based on
the diffusion wave equation set, with a constant timestep of 5 s.

Regarding the common modeling assumptions of the two approaches (1D and 2D),
for the Manning coefficient parametrization, the computational domain was classified
into specific friction zones. In particular, for the 1D model, we considered three cases, i.e.,
cross-sections constructed by concrete, cross-sections constructed by gabions, and natural
terrain, for which we applied 0.016, 0.025, and 0.030 s/m1/3, respectively. With regard
to the 2D analysis, the classification was based on land-use information and comprised
18 classes, ranging from 0.025 to 0.300 s/m1/3. The last value, which is exceptionally large,
was applied to represent the obstructions caused by buildings.

Lastly, we considered three types of weirs, i.e., inline structures for reach confluences,
lateral structures spilling outside of the system, and inline structures for emulating water
drops, for which we applied discharge coefficients 5.0, 0.5, and 1.4 m1/2/s.
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6.3. Coupling of 1D/2D Simulation Models

The coupling of the one-dimensional model (channels, trained sections, etc.) with
the floodplains was achieved through a series of lateral weirs, placed on the highest point
of the overbank. This technique provides an elegant way to assess which scenarios are
selected from the full 1D simulations through the assessment of the overflowing volumes
over the lateral weirs. A screenshot from the HEC-RAS software environment depicting
the aforementioned 1D/2D connection is shown in Figure 8. It should be noted that the 1D
model does not serve solely as an indicator for the critical scenarios. It is an integral part of
the framework, as it provides statistical description of relevant variables along the drainage
network/river chainage, which can be used to quantify local hazard and resilience. For
example, an important outcome of 1D analysis is the probability of overflow, which is
estimated as the percentage of scenarios for which the water flows outside of the system
boundaries, as defined by the lateral weirs. Lastly, given a specific metric and its respective
threshold, the critical scenarios can be identified and simulated through the coupled 1D/2D
model. An overall flow chart of automating the multiple 1D/2D coupled model runs is
depicted in Figure 9.
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7. Statistical Processing of Simulation Outputs and Flood Hazard Mapping
7.1. Uncertainty Estimation of Flood Quantities

Typical engineering practices only provide a single estimation of flood quantities of
interest per exceedance probability, which is in turn explicitly determined by the return
period of the (unique) input storm event. In contrast, the outcomes of the proposed
stochastic simulation framework can only be interpreted in statistical terms, which also
allows for estimating the uncertainty of each quantity of interest for each return period. In
general, from the sample of 100 simulated values per return period, we empirically estimate
five quantiles of interest (10%, 25%, 50%, 75%, and 90%). This allows detecting the median
value of each output variable, while simultaneously quantifying its uncertainty, by means
of empirical confidence intervals. In fact, while the median may be considered as the most
representative value for flood design purposes, engineers and stakeholders have the choice
of assigning larger and, thus, more conservative design values, expressing an acceptable
level of safety that also accounts for uncertainties. This option provides a powerful tool
to communities and state agencies for mitigating flood hazard and communicating their
design choices.

For instance, in Figure 10, we demonstrate the statistical analysis of the 1000 simulated
peak flow values (10 × 100) at the outlet of Trachones stream, which is a key outcome of
the rainfall–runoff analysis. As expected, the uncertainty around the median estimation of
the peak flow at the outlet increases substantially, as the return period of the 24 h rainfall
increases. The same behavior is observed in all simulated quantities, including the 24 h
rainfall, the temporal distribution of partial rainfall depths and, thus, hyetograph scenarios,
and the uncertainty of antecedent soil moisture conditions, as quantified in terms of the
CN parameter (which is in turn a function of randomly varying 60 day rainfall).
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7.2. Preliminary Hazard Assessment in Terms of Probability of Overflow

An approximative yet intelligible flood hazard metric, resulting from 1D hydrody-
namic simulations, is the probability of overflowing across the drainage network, the spatial
representation of which is conceptually described through the 24 lateral weirs. This was
empirically estimated for each structure and each return period, by counting the number
of spilling cases and dividing by the total number of flood scenarios examined per return
period, i.e., 100. We highlight that, in the context of 1D simulation, the concept of spilling
has a qualitative nature, because the term overflow for the closed parts of the streams translates
into a maximum value of the pressure line intersecting the terrain. As the return period
increases, an increasing number of overflow scenarios are encountered; thus, the flood
hazard also increases. On the other hand, for T = 2, 5 and 10 years, the empirically derived
overflow probabilities across the entire network are either zero or negligible.

In order to provide a macroscopic visual interpretation of flood hazard and its spatial
distribution over the study area, we defined six probability classes based on engineering
judgment, i.e., up to 1% (at most one overflow case over 100 scenarios), 1–20%, 21–40%,
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41–60%, 61–80%, and 81–100%, and mapped them across the model domain, for the 10
return periods of interest. This allows easily detecting the system’s components that are
systematically prone to flood events of specific frequency (defined in terms of return period
of input rainfall), thus requiring further investigation and, potentially, reinforced design.
For instance, as shown in Figure 11, for the return period of 200 years, which exceeds
the typical engineering design standards of 50 to 100 years, specific parts of the drainage
network may be under significant hazard, while other ones exhibit low or negligible hazard.
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7.3. Ranking of Overflow Scenarios

The probability of overflow is a useful yet not fully representative hazard metric, since
it cannot account for the magnitude of spilling. In an attempt to provide a more compre-
hensive screening of the 1D hydrodynamic analysis outcomes, the overflow scenarios per
return period are further classified by accounting for their relative importance. In this
respect, for each scenario i (i = 1, . . . 100) and return period, T, we introduce the following
ranking metric:

ri,T =
NL

∑
s=1

Qs
i,T

max
[

Qs
i,T

] , (10)

where Qs
i,T is the largest of simulated overflow discharge values over the lateral weir s, NL

is the total number of lateral weirs (i.e., NL = 24), and max
[

Qs
i,T

]
refers to the globally

maximum overflow value over the entire model domain.
Equation (10) allows quantifying, at least in a preliminary context, the potential

flood hazard caused by overflows that take place across the drainage network (more
accurately, the lateral weirs). For instance, a unit value indicates that one weir exhibits the
largest overflow, or that two weirs exhibit half of their maximum overflow. This metric
is also used to classify the scenarios per return period in hazard terms and recognize the
most significant ones. It is worth mentioning that, since the overflow components are
expressed in dimensionless terms, it is possible to make comparisons among scenarios that
correspond to different return periods. Consequently, we can assign a specific threshold,
r∗, to detect scenarios that are plausible to be particularly hazardous, i.e., by examining
whether ri,T > r∗. In this study, we applied the ranking approach in order to select specific
scenarios across different return periods for a more detailed analysis through the coupled
1D/2D analysis module of HEC-RAS.
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7.4. Spatial Mapping of Flood Hazard over the Study Area

Contrary to the deterministic visualization of flood hazard, in which only a single
map for each variable based on the design storm can be produced, the proposed analysis
procedure offers the opportunity to statistically assess the results. In turn, this allows for
an improved and significantly more informed (in terms of communicating the uncertainty)
decision-making strategy.

Despite the clear advantages of the stochastic approach, reducing the plethora of
simulated data to a meaningful statistic, it also comes with challenges, since the presentation
of the flood metrics must ensure that (i) the end reader will not be overwhelmed by
the amount of information, and (ii) the outcome will not be reduced to such extent that
significant information will be lost. The latter case is the most frequent one and results in the
miscommunication of uncertainty, which can in turn affect decision making on design and
policy levels. This is a delicate balance, and the strategy should be the result of stakeholder
engagement and consultation. This fact makes this step partially case-study-dependent.

In the present study, we opted to present two metrics to quantify the flood hazard,
provided that a flood depth above 0.10 m corresponds to the nominal curb height. The
first one is the probability of at least one rainfall event occurring during the project lifetime
(equal to 50 years) that will cause exceedance of overland flow depth of 0.1 m, under
a given confidence limit. This is depicted in Figures 12 and 13, for CL = 10% and 50%,
respectively. Under this depth, the roads may act as conduits, by taking advantage of their
limited yet not negligible conveyance and storage capacity. If they are not incapacitated
by some external force, they convey the flood waters to the nearest recipient, in positions
where it is able to convey the extra volume without additional damage. The threshold of
0.10 m is introduced to the metric in order to ensure that the resulting hazard is indeed
significant and, thus, the actual hazard is not overestimated.

The second metric is the probability of exceedance of the overland flow depth of
0.1 m (curb height), for a rainfall event with a given return period. This is depicted for a
return period of 50 vs. 100 years in Figure 14. Results for two additional return periods
are provided in Appendix A. This metric is particularly useful as a stress test for existing
or proposed designs of lined rivers, which typically assume boundary conditions with a
return period of 50 or 100 years.
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8. Conclusions

In the present study, we presented a novel stochastic flood simulation framework
aimed addressing the principal shortcomings of common engineering practices while
retaining computational efficiency.

The core of the stochastic analysis was the recently introduced R-package anySim, for
the representation of the rainfall regime over the study area and across multiple temporal
scales, i.e., from the storm event scale (15 min) up to much larger scales of rainfall dynamics
(i.e., annual). The model was initially applied for the generation of 10,000 years of synthetic
daily rainfall (also aggregated at the 60 day scale), used as basis for the deployment of a
statistical model for the annual daily maxima. Eventually, we employed the disaggregation
module of anySim to generate 100 synthetic hyetographs of 15 min resolution, which capture
the 10 return periods of the maximum daily rainfall (100 events per return period).

The 10 × 100 = 1000 storm events and randomly generated system states were inputs
to a semi-distributed event-based hydrological simulation procedure, implemented in
the Hydrologic Modeling System (HEC-HMS) environment. As explained in Section 5,
important aspects of the typical modeling procedure were adapted or improved, towards
(a) expressing the inherent uncertainty of CN induced by the randomly varying initial
soil moisture conditions in stochastic means, also accounting for its asymptotic behavior,
and (b) associating the response time of all runoff propagation mechanisms, i.e., across
sub-basins, through the unit hydrograph theory, and the stream network, through the novel
velocity-based approach for flood routing, against the intensity of each particular storm
event. This allowed “transferring” the uncertainty of the driving meteorological processes,
by means of daily and 60 day accumulated rainfall, to all aforementioned components of
the overall rainfall–runoff transformation.

The stochastic outputs of rainfall–runoff simulation, i.e., 1000 flood hydrographs
produced across the upstream network and the lateral sub-basins, were subsequently
assigned as point inflows (boundary conditions) to a hydrodynamic simulation model of
the lower drainage network (river/stream). The simulations were employed in two phases,
utilizing the River Analysis System (HEC-RAS) package. Initially, we ran all scenarios in
a one-dimensional (1D) analysis context, in order to represent their essential hydraulic
behavior, particularly for detecting which flood scenarios result in failure. The failure mode
was determined as the output of flow under pressure across the closed parts of the drainage
system and the overflow of the main cross-section in the open parts of the drainage network.
The failed scenarios were subsequently classified according to an empirical hazard metric,
and only the most important ones were further analyzed by enabling the coupled 1D/2D
simulation mode of HEC-RAS. The latter allowed representing the spatial extent of the
most significant flood events, and eventually providing flood hazard maps, which is an
essential background for risk-aware analyses and designs.

The overall framework embodies multiple innovations with respect to (i) handling
significant components within process representation as stochastic variables, (ii) employing
a modular structure that allows utilizing interchangeably freeware or open-source tools and
models within each subcomponent of the modeling cascade, and (iii) integrating familiar
concepts for flood engineers into a hazard-informed approach that can be communicated
with stakeholders. Moreover, the resulting hazard maps can be easily combined with
exposure information expressed in monetary terms. Thus, this methodology can serve as a
tool to estimate flood risk and assist in the decision level and asset management.
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