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Abstract: The development of an efficient and accurate hydrological forecasting model is essential
for water management and flood control. In this study, the ensemble model was applied to predict
the daily discharge; it not only could enhance the algorithm and improve the learning accuracy, but it
was also the most effective representative model among various combinations of learning parameters.
Using the survey data of Xingshan station in Xiangxi River, China, the suitability of the model was
proven. The performance of the ensemble model was compared with the multiple linear regression
model and the artificial neural network models. Furthermore, the length of the training samples
and the peak value predictions were analyzed. The results showed that, firstly, the best effect of the
discharge simulation model appeared in the ensemble model, while the simulation accuracy of the
multiple linear regression model was lower than that of the artificial neural network model in some
cases. Secondly, the prediction effect of the ensemble model for discharge was better than that of
the single model to some extent, whereby the maximum absolute value of relative error was 8.11%
using the ensemble model. A comprehensive analysis showed that the ensemble model was optimal.
Furthermore, the ensemble model performed outstandingly in terms of hydrological forecasting.
The ensemble model also provided theoretical support for hydrological forecasting and could be
considered as an alternative to multiple linear regression models and artificial neural networks.

Keywords: hydrological forecasting; ensemble model; multiple linear regression; artificial neural
network

1. Introduction

Rainfall–runoff (R–R) modeling plays a very important role in managing the activities
of water resources such as flood control and reservoir operation [1,2]. However, the R–R
system is extremely complex since it is influenced by weather, topography, underlying
surface, and land usage [3,4], all of which have many kinds of temporal and spatial
uncertainties [5]. Thus, creating and developing effective forecasting tools with high
prediction accuracy is becoming urgent because of these complexities and uncertainties.

These forecasting tools can typically be divided into two main types: physical and
data-driven models. Previously, many data-driven models were developed for mapping the
R–R relations such as spatial autocorrelation (SAC) model [6], data-driven [7], linear regres-
sion [8], and artificial neural network models [9]. On the basis of the traditional hydraulic
simulation model HEC-RAS, Kuriqi and Ardiclioglu [10] studied the hydraulic condition
of the Loire. Kuriqi et al. [11] investigated the seepage process of Albania in different
scenarios using numerical modeling. Compared with physical models, data-driven models
can directly establish a mathematical relationship between the input and output data with
a relatively simpler structure in operation. However, these models can hardly explicitly
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describe the physical mechanism of hydrological processes. In addition, the accuracy of
data-driven models still needs to be improved further according to different watersheds.

In recent years, as an important technology in data-driven models, the data-mining
technique has been used in hydraulics and hydrology. Najafzadeh and Niazmardi [12]
proposed a support vector regression model and applied it to biochemical oxygen demand
(BOD) and chemical oxygen demand (COD) estimation in water. Najafzadeh et al. [13]
predicted the water quality index in Karun River, Iran, using four common data-driven
models. Moreover, a single data-driven model may not achieve the required prediction
accuracy. Ensemble models have been proven to be effective forecast tools, whereby
various results of multiple weaker models are integrated with certain rules to obtain a
better forecast [14,15]. The ensemble model was introduced and applied to R–R modeling
in [16–18], and its performance was generally better than each individual model in terms
of simulation accuracy and generalization ability [19]. The regression tree ensemble (RTE),
also referred to as a forest or simply an ensemble, is a tried-and-true technique for reducing
the error of single machine-learned models. By learning multiple models over different
subsamples of data and taking a majority vote at prediction time, the risk of overfitting
a single model to all the data is mitigated. Popular ensemble models include Bayes
modal averaging (BMA), bagging, boosting, and random forest [20–22]. The advantages
of RTE include (1) the building or development of a binary tree through the selection of
a splitting variable and recursively splitting of the data into two exclusive branches or
nodes, (2) pruning to reduce the size of the tree until the optimum tree size is achieved, and
(3) assigning a predictive value at each terminal branch.

Therefore, the objective of this study was to apply an RTE model to R–R modeling of
Xiangxi River, China. To be specific, the RTE was developed on the basis of 3 year hydro-
climatic data at Xingshan station in Xiangxi River. To calibrate and verify the parameters
of the developed models, different combinations of factors affecting runoff were tested.
Furthermore, this paper discusses the balance between structure and performance of the
RTE model. Furthermore, the optimal effectiveness of RTE is demonstrated through a com-
parison of the results with multiple linear regression and artificial neural networks. This
study also provides an improved hydrological forecasting model for water management
and flood control.

2. Materials and Methods

To ensure the clarity of the methodology in this paper, a flowchart is shown in Figure 1.
Using the collected data of daily rainfall and water level, multiple linear regression models
and artificial neural networks were compared with the RTE with respect to hydrological
forecasting. The performance of the models in terms of effect factors, daily runoff, and peak
runoff was evaluated in order to demonstrate the superiority of the RTE.
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2.1. Regression Tree Ensemble (RTE)

The ensemble model involves melding results from many weak learners into one
high-quality ensemble predictor [23]. As a very successful predictive modeling approach,
different variants of tree ensembles have been explored and used extensively (such as
bagging and random forests). The subsections below outline the advantages of using
tree-based methods and tree ensembles, as well as present the obstacles that need to be
overcome for their successful application to hydrological prediction [24].

In analysis, a decision tree can be used to visually and explicitly represent decisions
and decision making. In data mining, a decision tree describes data but not decisions. On
the contrary, the resulting classification tree can be used as input for decision making. The
goal of decision tree learning is to create a model that predicts the value of a target variable
on the basis of several input variables.

Each interior node corresponds to one of the input variables, whereas edges represent
each of the possible values of that input variable. Each leaf represents a value of the target
variable given the values of the input variables represented by the path from the root to the
leaf. Each element of the domain of the classification is called a class. A decision tree or a
classification tree is a tree in which each internal (non-leaf) node is labeled with an input
feature. The arcs coming from a node labeled with a feature are labeled with each of the
possible values of the feature. Each leaf of the tree is labeled with a class or a probability
distribution over the classes.

Regularization is a process of choosing fewer weak learners for an ensemble in a
way that does not diminish predictive performance, which can regularize regression en-
sembles and regularize a discriminant analysis classifier in a non-ensemble context. The
regularization method finds an optimal set of learner weights with minimum αt.

N

∑
n=1

wng

((
T

∑
t=1

αtht(xn)

)
, yn

)
+ λ

T

∑
t=1
|αt|, (1)

where λ is the lasso parameter, and ht is a weak learner in the ensemble trained on N
observations with predictors xn, responses yn, and weights wn. The squared error of
Equation (1) is presented below.

g( f , y) = ( f − y)2. (2)

The ensemble is regularized on the same (xn,yn,wn) data used for training; thus,

N

∑
n=1

wng

((
T

∑
t=1

αtht(xn)

)
, yn

)
. (3)

Equation (3) is the ensemble re-substitution error. The error is measured by the
mean squared error (MSE). The main procedure for R–R modeling using the RTE was
as follows: firstly, prepare the response data and input the predictor data in a matrix;
the data resolution used in this study was daily according to the collected data samples.
Secondly, set the number of ensemble members after choosing an applicable ensemble
method, and then prepare the weak learners. Lastly, a suitable ensemble can be obtained.
For different combinations of input variable parameters (i.e., evaporation and flow several
days in advance were taken out as independent variables), the optimum fitting results were
selected as predictors. Fitting of 2 year calibration data and 3 year validation data were
required. The response data were the two runoff datasets measured. In this model, the set
parameter of a randomly selected tree was 100, and the default tree selection was used.

2.2. Multiple Linear Regression (MLR) Model

Regression analysis is one of the earliest applications and most widely used methods
in long-term hydrological forecasting [25]. This method is the most common and basic one
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in the statistical analysis of climate hydrological current [26]. In a hydrological system, a
variable is often influenced by many other factors [3]. Therefore, the impact of multiple
predictors must be taken into consideration in forecasting objects, as it is insufficient to use
only one predictor for long-term hydrological forecasting. Accordingly, multiple regression
analysis can be applied as an appropriate tool to solve these problems. Regression analysis is
also a statistical method to study the causal relationship between two or more variables [27],
which is useful for quantitative analysis and forecasting techniques.

Define Y as the response variable (i.e., discharge) and X1, X2, . . . , Xp as the ensem-
ble of predictor variables [28], where p indicates their number (i.e., daily rainfall, daily
evaporation, daily maximum temperature, daily minimum temperature, and daily dis-
charge). The relationship between Y and X1, X2, . . . , Xp can be represented by the following
regression formula:

Y = β0 + β1X1 + · · · · · ·+ βpXp + ε, (4)

where ε is the random error, which is the representative of the approximate difference,
and β is the regression coefficient (constant). The function f (X1, X2, . . . , Xp) describes
both Y and X1, X2, . . . , Xp and the relationship between different datasets. The matrix of
Equation (4) is expressed as

Y =


y1
y2
...

yn

, X =


1 x11 . . . xp1
1 x12 . . . xp2
...

...
...

1 x1n xpn

, β =


β1
β2
...

βp

, ξ =


ε1
ε2
...

εn

 (5)

Analysis of variance (ANOVA) was used to characterize Equation (4). The null hy-
pothesis was βj = 0, where j = 1, 2, . . . , p. The alternative hypothesis was that βj 6= 0.

F =
SSr/p

SSe/(n− p− 1)
∼ F(p, n− p− 1), (6)

SSr =
n
∑

i=1
(ŷi −

−
y)2,

SSe =
n
∑

i=1
(yi − ŷi)

2
(7)

where SSr is the residual sum of squares, and SSe is the explained sum of squares. The
equations obey the F distribution of freedom degree (p, n − p − 1).

2.3. Artificial Neural Network (ANN) Model

An ANN is a special computational model whose development was inspired by
some biological features including run elements (neurons), as well as training and recall
algorithms [29,30]. In almost all situations, an ANN is a self-adaptive system whose
structure can be changed to optimize parameters in the learning phase.

Many studies have achieved system identification and modeling using neural network
models [31]. The output of the model has two parts: the weighted sum of inputs and
the introduction of different bias terms delivered to the level of activation by means of a
transfer function.

The unit makes arrangements for a feedforward neural network with a hierarchical
feed forward topology [32]. Such networks consist of input, hidden, and output layers.
The input layer contains all input factors such as the daily rainfall, daily evaporation,
daily maximum temperature, daily minimum temperature, and daily discharge. There can
be several hidden layers featuring different types of neurons. Therefore, the number of
hidden layers and neurons, representing the network structure, can be adjusted to improve
network performance [33]. The decision on the number of neurons used in the hidden layer
usually depends on the arithmetical mean of the number of inputs and outputs, while the
arithmetic mean value of the input and output usually determines their use in decision
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making. In the back propagation (BP) network used herein, the number of nodes in the
input layer was 5 and that in the output layer was 1. Generally, the optimal number of
layers in a network is 3 or 4. In this study, a three-layer network structure was used as
the network model, and five factors were selected as input layer neurons. The five input
variables were used to establish the training sample of the neural network prediction model.

2.4. Performance Indices

The performance of the prediction model was evaluated using four valuation criteria:
Judge coefficient (R2) [34], Nash efficiency coefficient (NE) [35], the root-mean-square error
(RMSE) [36], and the mean absolute percentage error (MAPE) [37]. The indices can be
calculated as follows:

R2 =


n
∑

i=1
(Q0

i −Q0
)(Qm

i −Qm
)√

(Q0
i −Q0

)(Qm
i −Qm

)

, (8)

NE = 1−

n
∑

i=1
(Q0

i −Qm
i )

2

n
∑

i=1
(Q0

i −Q0
)

2 , (9)

RMSE =

√
1
n

n

∑
i=1

(Q0
i −Qm

i )
2, (10)

MAPE =
1
n

n

∑
i=1

∣∣∣∣∣Q0
i −Qm

i
Q0

i

∣∣∣∣∣× 100, (11)

where Q0
i is the observed discharge at moment i, Qm

i is the predicted discharge at moment

i, Q0 is the average discharge of the observed values, and Qm is the average discharge of
the predicted values. R2 indicates the correlation quality of between the predicted values
and observed values. NE is often used to evaluate the predictive ability of a hydrological
model. R2 and NE values closer to 1 denote a more accurate model. The root-mean-square
error evaluates the residuals between the predicted and observed values. MAPE is the
weighted average of the absolute error. Smaller RMSE and MAPE values denote a more
accurate model.

3. Case Study
3.1. Study Area

In this study, Xiangxi River in Xingshan County was selected as the target area
(Figure 2). Xiangxi River is the first middling tributary of the Chang Jiang River near
the Three Gorges Dam. After the Three Gorges Reservoir was constructed, some reservoir
bays were built, with Xiangxi Bay being a typical representative. Xingshan County covers
an area of 2327 km2; it is located in the western Hubei Province of China and near the
Yangtze River. Its climate is subtropical continental monsoon, with an annual average tem-
perature of 15.3 ◦C, annual average solar radiation of 99,000 card/cm2, annual precipitation
of 900–1200 mm, and average annual precipitation of 134 mm per day. Furthermore, rain is
abundant in Xingshan in the summer, with 41% of the total precipitation. To guarantee the
accuracy of the calculations and validate the model, this paper collected meteorological
and hydrological data from Xingshan Station (110◦25′–111◦06′ E, 31◦04′–31◦34′ N). The
dataset contained the information of daily rainfall and water level for the period of 3 years
(1991 to 1993), of which 2 years (from 1991 to 1992, 731 data) were used for calibration and
1 year (1993, 365 data) was used for validation (Table 1).
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Table 1. Parameters in Xiangxi catchment.

Statistical
Parameters

Daily
Precipitation Daily Evaporation Daily Discharge Daily

High Temperature
Daily

Low Temperature

1991–1992 1993 1991–1992 1993 1991–1992 1993 1991–1992 1993 1991–1992 1993

Maximum 119.9 81.8 12 12 684 525 41.6 40.1 27.3 26.7
Minimum 0 0 0 0 7.99 8.75 0.6 2.7 −6.9 −2.8
Average 2.484 2.793 3.591 3.021 33.129 39.144 22.785 21.951 12.545 12.351
Standard
deviation 7.903 7.801 2.617 2.362 57.747 48.490 9.076 8.919 7.645 7.585

3.2. Hydrological Forecasting for Xiangxi River Watershed

The RTE, MLR, and ANN were developed using a combination of factors including
daily rainfall, daily evaporation, daily maximum temperature, daily minimum temperature,
and daily discharge. Five representative combinations of factors were employed to evaluate
their effects on the RTE, MLR, and ANN models. These models for future runoff forecasting
were based on hydrological data using different factors and different days in advance.
In the process of prediction, the optimal number of days in advance was determined at
first for each factor. Then, to ensure the accuracy of the simulation results, five different
combinations of factors were constructed. Accordingly, these models could be described
using the following formulas:

Qt1 = model(Pt−4, Et−4, Ht−4, Lt−4, Ft−4), (12)

Qt2 = model(Pt−1, Et−4, Et−8, Lt−8, Ft−1, Ft−2), (13)

Qt3 = model(Pt−1, Ft−1, Ft−2, Ft−10), (14)
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Qt4 = model(Ft−1, Ft−2, Ft−9, Ft−10), (15)

Qt5 = model(Pt−1, Pt−8), (16)

where Qt is the daily average flow rate on the prediction day, t is the timepoint representing
the day of interest, t − i (i = 1–10) represents the different days of each factor in advance,
P is precipitation, E is evaporation, H is the daily maximum temperature, L is the daily
minimum temperature, and F is the discharge. The performance of different combinations
of factors can be seen in Table 2.

Table 2. Performance of different combinations of parameters.

Days in
Advance

Daily
Precipitation

Daily
Evaporation

Daily Max
Temperature

Daily Min
Temperature

Daily
Discharge

1 0.6363 0.4617 0.6136 0.7239 0.8179
2 0.4023 0.6429 0.6355 0.6972 0.7031
3 0.4334 0.6551 0.6702 0.6459 0.6417
4 0.4120 0.7099 0.6572 0.6520 0.6654
5 0.3833 0.6929 0.5896 0.6261 0.6378
6 0.2968 0.6156 0.6430 0.7014 0.6069
7 0.4349 0.5853 0.6143 0.6652 0.6348
8 0.5257 0.7120 0.6215 0.7838 0.6557
9 0.4513 0.6944 0.5908 0.6674 0.6716
10 0.2847 0.5730 0.6954 0.6659 0.6994

4. Results Analysis
4.1. Comparison of Models

The RTE was applied for R–R modeling. The candidate factors (X) were 1 day in
advance, 2 days in advance, 4 days in advance, etc. Specifically, the rainfall, evaporation,
and discharge several days in advance were taken as the independent variables. Fitting
results were obtained using this program with a training set and prediction set, before
choosing the best one as the predictive factor. Therefore, the first 2 years of data were used
for calibration and the third year data were used for validation. For this model, an ensemble
of 100 trees was randomly chosen using the default tree options. Specifying a regression
tree using surrogate splits allows improving the predictive accuracy in the presence of
NaN values. Finally, the regression tree ensemble was trained using the function and
100 learning cycles.

In this study, the ensemble model was compared with MLR and ANN models trained
with different combinations of statistical parameters and multistep forecasting applications
with different rainfall–runoff characteristics. As shown in Table 3, the model calibration
and verification showed that the simulated and observed values were correlated, thus
improving the R2 coefficient and RMSE. The comparison of all three models in modeling
future discharge revealed that the ensemble model provided a better fit. According to
Table 3, the following conclusions can be drawn:

(1) The prediction accuracy and generalization ability were significantly improved com-
pared to the single model and the network in an ideal state, indicating that the
ensemble model established for discharge forecasting is feasible and effective. The
ensemble model integrated the advantages of each single model, effectively avoiding
the errors of the single model being too large and having unstable defects. It had
the characteristics of high-precision forecasting, strong generalization ability, and
error smoothening.

(2) According to the predicted results from the comparison of each single model, the
prediction accuracy of the ANN model was better than that of the MLR model.
However, according to the fitting results of the training samples, the fitting effect of
the MLR model was equivalent to that of the ANN model. Furthermore, according
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to the forecast values of the test samples, the generalization ability of both the MLR
model and the ANN model was poor.

(3) As a whole, as a single model, the absolute value of the average relative error of
prediction was less than 15% for both the MLR and the ANN model, and the absolute
value of the maximum relative error was less than 29.55%, which can meet the preci-
sion requirement of discharge forecasting to some extent. However, their accuracy
was inferior to that of the RTE.

Table 3. Performance in predicting daily discharge for Xiangxi catchment.

Models
Calibration Verification

Z R2 NE RMSE Z R2 NE RMSE

Five factors
RTE 0.6293 0.5562 0.5963 42.30 0.6028 0.3650 0.3450 40.76
MLR 0.5893 0.5210 0.4580 48.90 0.5536 0.2463 0.2891 41.25
ANN 0.5900 0.5223 0.4230 46.65 0.5645 0.2866 0.2923 41.02

Four factors
RTE 0.7273 0.6752 0.6725 32.96 0.6146 0.3777 0.3624 38.36
MLR 0.6608 0.4367 0.4325 43.40 0.5272 0.2780 0.2576 41.32
ANN 0.6721 0.5036 0.4420 40.27 0.5341 0.2853 0.2840 41.11

Two factors
RTE 0.7096 0.5031 0.5035 40.75 0.5429 0.2948 0.2894 40.83
MLR 0.6560 0.4303 0.4303 43.65 0.5229 0.2734 0.2704 41.45
ANN 0.6691 0.4829 0.4351 40.30 0.5070 0.2571 0.2500 41.91

Daily
precipitation

RTE 0.6106 0.3728 0.3724 45.80 0.5569 0.3102 0.2931 40.38
MLR 0.5273 0.2780 0.2780 49.14 0.5590 0.3125 0.2983 43.32
ANN 0.5368 0.2974 0.2891 46.29 0.5260 0.2767 0.2860 41.35

Daily
discharge

RTE 0.6936 0.4811 0.4807 41.65 0.5709 0.3259 0.3343 39.92
MLR 0.6263 0.3922 0.3299 45.08 0.5710 0.3261 0.3213 39.92
ANN 0.6201 0.4065 0.3091 45.28 0.5716 0.3269 0.2967 39.90

4.2. Comparison of Daily Runoff

In this study, the applications of RTE, MLR, and ANN models revealed different
characteristics in hydrological forecasting. Compared with MLR, ANN was more suitable
for rain-based hydrological forecasts. Neural networks can provide high accuracy, which
is consistent with the conclusions of most results reported in the literature [38]. In this
study, the results using four factors in the second group were the best among all factor
combinations, as further discussed below.

Figure 3 provides a verification and comparison of the three prediction models, where
the red lines represent the measured values. As shown in the figure, the tendency of the
ensemble model in predicting the results followed the real data trends, and the error was
minimum. The average absolute value of the relative error of discharge forecasting was
5.67% using the ensemble model for the Xingshan hydrological station of Xiangxi River.
The maximum absolute value of relative error was 8.11%. The trend of the ensemble model
validation prediction results was similar to the actual data, and the prediction results were
more stable. On the other hand, the trend of the MLR and ANN prediction results deviated
in some places, while the daily forecast of MLR was better than that of ANN. However,
when the timescale was changed to months or years, the prediction advantage of MLR was
not obvious. In terms of performance indices, the ensemble model had higher accuracy in
the case of daily discharge data prediction.
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4.3. Comparison of Peak Runoff

Figure 4 provides a comparison of the measured values and the predicted values of
maximum peak using the three models. The serial numbers represent the order in which
peaks occurred. The red symbols represent the 10 maximum peaks of measured values,
revealing a similar peak trend prediction to the three models; however, it is clear that the
black symbols representing the peak of the ensemble model had the best corresponding
relationship. The ensemble model could achieve performance that is comparable to MLR
and ANN, improving the precision and generalization ability of discharge forecasting.

The plot reveals that the prediction results of the ensemble model were more accurate.
Because of the complexity of the Xiangxi River system and the uncertainty of variation,
the prediction effect of the regression forecasting method based on statistical theory was
not ideal in this area, although it could reflect the change trend of the data sequence.
However, the fluctuations in the data were often too large, causing errors in the regression
prediction model at extreme points. Therefore, the application of the regression method to
predict discharge needs to be studied further. Due to the ANN’s inherent defects of slow
convergence rate and ease of falling into a local minimum, it is largely restricted in discharge
forecasting applications. Thus, improving prediction accuracy and generalization ability
has important practical significance and application value for hydrological prediction.
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5. Conclusions

A regression tree ensemble was applied to daily discharge forecasting. Xiangxi River
was used to demonstrate the applicability of the ensemble model through a comparison
with MLR and artificial neural network (ANN) models. The results showed the viability
of this model in obtaining comparable performance with a shorter training time. Other
problems such as BP models with different input times, ensemble model capacity, training
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sample length, and long-term peak prediction were also analyzed. We can conclude that
the performance is sensitive to the number of inputs and length of the training data.

This paper introduced the application of an ensemble model to hydrological forecast-
ing and compared various prediction schemes with MLR and ANN models. Considering
that the MLR computing time is highly sensitive to the number of inputs, numerous and
precise data should be gathered for simulations using MLR [39]. In this study, the result
showed that the MLR daily forecast was better than that of the ANN due to the large
amount of data collected. However, compared with the ANN, the MLR lost its advan-
tage for monthly and annual forecasting. The results of this study are consistent with the
literature [40,41]. The ensemble model showed the features of high accuracy, strong gener-
alization ability, and stable error change, making full use of the comprehensive advantages
of each model. In the discharge forecasting of Xiangxi River, the results showed that the
maximum absolute value of relative error was 8.11% when using the ensemble model.
Similar to the findings by Kim et al. [42], the streamflow prediction results of this study also
showed that the ensemble model had a higher forecasting accuracy than individual models.
Thus, the ensemble model represents an alternative with high accuracy for researchers
and engineers engaged in hydrologic forecasting. In the future, further parameterization
can be introduced to improve the model’s performance [43]. Moreover, the performance
of the ensemble model can be investigated in river basins of different scale, as well as for
multistep prediction.
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