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Abstract: Water shortage and quality are major issues in many places, particularly arid and semi-
arid regions such as Makkah Al-Mukarramah province, Saudi Arabia. The current work was con-
ducted to examine the geochemical mechanisms influencing the chemistry of groundwater and
assess groundwater resources through several water quality indices (WQIs), GIS methods, and
the partial least squares regression model (PLSR). For that, 59 groundwater wells were tested
for different physical and chemical parameters using conventional analytical procedures. The
results showed that the average content of ions was as follows: Na+ > Ca2+ > Mg 2+ > K+ and
Cl− > SO4

2− > HCO3
2− > NO3

− > CO3
−. Under the stress of evaporation and saltwater intrusion as-

sociated with the reverse ion exchange process, the predominant hydrochemical facies were Ca-HCO3,
Na-Cl, mixed Ca-Mg-Cl-SO4, and Na-Ca-HCO3. The drinking water quality index (DWQI) has in-
dicated that only 5% of the wells were categorized under good to excellent for drinking while the
majority (95%) were poor to unsuitable for drinking, and required appropriate treatment. Further-
more, the irrigation water quality index (IWQI) has indicated that 45.5% of the wells were classified
under high to severe restriction for agriculture, and can be utilized only for high salt tolerant plants.
The majority (54.5%) were deemed moderate to no restriction for irrigation, with no toxicity concern
for most plants. Agriculture indicators such as total dissolved solids (TDS), potential salinity (PS),
sodium absorption ratio (SAR), and residual sodium carbonate (RSC) had mean values of 2572.30,
33.32, 4.84, and −21.14, respectively. However, the quality of the groundwater in the study area
improves with increased rainfall and thus recharging the Quaternary aquifer. The PLSR models,
which are based on physicochemical characteristics, have been shown to be the most efficient as
alternative techniques for determining the six WQIs. For instance, the PLSR models of all IWQs had
determination coefficients values of R2 ranging between 0.848 and 0.999 in the Cal., and between
0.848 and 0.999 in the Val. datasets, and had model accuracy varying from 0.824 to 0.999 in the Cal.,
and from 0.817 to 0.989 in the Val. datasets. In conclusion, the combination of physicochemical
parameters, WQIs, and multivariate modeling with statistical analysis and GIS tools is a successful
and adaptable methodology that provides a comprehensive picture of groundwater quality and
governing mechanisms.

Keywords: multivariate modeling; physicochemical parameters; water quality indices; hydrochemi-
cal facies; GIS techniques
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1. Introduction

Groundwater is a life-sustaining and crucial resource of the planet [1] (Busico et al.,
2020). Water crises and quality are major concerns in many countries, especially arid and
semi-arid regions where water shortages are common, and little attention has generally
been given to assessing water quality [2,3]. Arid and semi-arid regions suffer from multiple
critical issues such as scarcity of water resources and extensive exploitation of groundwater
for different uses [4]. These problems will certainly cause a decline in water tables and the
degradation of groundwater quality. Therefore, Wadi Fatimah basin was selected for this
study. It is a large basin in Makkah province with an area of about 4869 km2 [5], and is
considered the main source of water supply for many cities and villages.

Aquifers are especially vulnerable to the effects of uncontrolled extraction and in-
sufficient land use, putting groundwater quality at danger [6–8]. The quality of water at
these resources needs proper attention, especially since pure water is essential for drinking,
agriculture, and residential use [9]. Groundwater monitoring is critical to meeting grow-
ing water needs in respect of availability and quality, and it must be implemented [10].
Recently, a substantial and expanding body of research examined water resources with a
focus on evaluating and understanding hydrochemical properties and groundwater quality
by utilizing a variety of effective approaches. Water quality indicators (WQIs), geographic
information system (GIS) techniques, statistical methodologies, and multivariate modeling
are examples of such strategies [11]. The physicochemical properties of water may be
utilized to fully comprehend and identify elements influencing groundwater quality as
well as to give vital information for water management. Water characteristic, which is
established on physicochemical criteria, gives current information on water facies, various
geochemical controlling mechanisms, and water classes [12–14]. Water chemistry and
geochemical characteristics provide a good basis for examining trends, describing partic-
ular sustainability issues, and transferring knowledge on sources of water, geochemical
dynamics, quality of water, and water susceptibility for drinking and irrigation [15,16].

The geochemical characteristics of groundwater are essentially governed by recharg-
ing, aquifer metrics, contact time, and specific geochemical mechanisms such as dissolution,
mineral solubility, and ion exchange processes [17–20]. Therefore, water quality manage-
ment should be decided by a complete groundwater quality evaluation with respect to
physicochemical features and variables influencing water quality [21–24]. Consequently,
derivative approaches for defining the key geochemical factors that govern water quality
and analyzing the mixing process between fresh and saline water, such as Piper trilinear
diagram, Chadah diagram, Gibbs diagram, and hydrochemical facies evolution diagram
(HFE), are appropriate and commonly applied [25,26].

Furthermore, multivariate analyses such as cluster analysis (CA) and principal compo-
nent analysis (PCA) are effective techniques for identifying key physicochemical character-
istics and the interrelationships between these parameters in order to comprehend the major
variables driving the distribution of physicochemical metrics in water [27–29]. In addition,
finding associations between multiple physicochemical variables may be regarded as a
unique step forward towards groundwater quality management using statistical correlation
analysis, which has been demonstrated to be a highly suitable approach.

The WQIs are derived from a big data collection containing different water quality
metrics from various places. Several WQIs were developed to serve as indicators for
assessing water availability in both potable supply and agricultural usage [30–33]. The
basic goal of WQIs is to convert large numbers of complicated datasets into quantitative
water quality data, contributing to a better understanding of water quality [34]. The
drinking water quality index (DWQI) may be developed as a reliable tool described as a
value that represents the combined impact of many water quality variables [35]. Therefore,
DWQI is calculated by analyzing the cumulative impact of man-made and natural activities
based on certain factors in the hydro-geometric properties of the groundwater sample.

Based on experience and judgment, irrigation water quality indices (IWQIs) such as
TDS, potential PS, SAR, and RSC can meet the criteria for appropriate controls and further
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evaluating water validity for agricultural purposes [36–38]. For example, the IWQI is a
significant and distinct model of these indices utilized in water quality evaluation and
agricultural production optimization [39,40].

Based on a variety of physicochemical parameters, statistical approaches, WQIs,
geographic information system (GIS) techniques, and multivariate modeling are em-
ployed [30,41–43]. Utilization of physicochemical parameters, WQIs, and multivariate
modelling with statistical analysis and GIS tools is a successful and practical strategy that
provides a complete picture of water quality and governing mechanisms.

Determination of DWQI and IWQI requires a long sequence of calculations to convert
multiple numbers from the physicochemical elements data into a single value that reveals
the validity of water quality level for drinking and irrigation usage. In order to overcome
this problem, PLSR approaches were applied in this work. The PLSR method can be
used to select the most effective parameters for calculating the DWQI and IWQI. This, in
turn, leads to a reduction in the number of elements utilized in the chemical analysis to
determine WQIs as well as a reduction in cost. The PLSR approach is a popular way to
describe a linear relationship between independent and dependent parameters [44]. PLSR
can reduce many collinear components to a few non-correlated latent variables, decreasing
duplicate data and minimizing overfitting or underfitting [45,46]. Based on the advantages
of these methods, the WQIs can be simultaneously computed from numerous big data
using these approaches.

For that, the goals of this research were to (i) identify hydrochemical facies and
geochemical processes using physicochemical metrics; (ii) investigate the geochemical
controlling factors influencing the chemistry of water using imitative techniques; (iii) eval-
uate the appropriateness of groundwater for drinking and irrigation with respect to WQIs;
and (iv) evaluate the performance of PLSR models based on investigated physicochemical
parameters in forecasting the six WQIs, namely DWQI, IWQI, TDS, SAR, PS, and RSC.

2. Research Materials and Methods
2.1. Area of Study and Description

Makkah Al-Mukarramah province is considered as one of the most important regions
in the KSA because of its religious and historical standing, and the large number of residents
and tourists who come visiting. The administrative territory of the Makkah region is
bordered in the west by the Red Sea, in the east by Riyadh, in the north by Al-Madinah
Al-Munawarah, and in the south by the provinces of Al Bahaand Asir, with an area of
about 141,216 km2 (Figure 1b). Topographically, Makkah region is characterized by a great
diversity in altitude between 0 m and 2984 m above sea level (amsl), while the lithological
units that dominate this area belong to pre-Cambrian to Quaternary age (Figure 2).

The Precambrian rocks are mainly late-Proterozoic basaltic to rhyolitic volcanic,
volcano-clastic, and epi-clastic rocks of the basic island-arc type that have been repeatedly
distorted and metamorphosed by intrusion rocks of various ages and mixtures. Below a
layer of horizontally basaltic lava and Quaternary sediments, the Tertiary stratigraphic se-
quence is apparent. It is primarily made up of clastic rocks that are dominated by sandstone,
shale, mudstone, oolitic ironstone, and conglomerates. The average annual precipitation in
this region varies between 50 mm/year and 400 mm/year with some shifts in dry and wet
years. The amount of rain falling on this area represents the main source for recharging
the groundwater aquifers. Accordingly, this district contains many Wadies (44 catchments)
extending to the north and east, which are characterized by surface and groundwater
resources [47]. Therefore, scientific research and projects must be directed to this strategic
region in order to sustain its water resources and achieve the Kingdom’s “Vision 2030”.
The present study focuses on Wadi Fatimah basin, which spans a broad area of the south
and east part of the Jeddah governorate and extends from NE to SW with about 4869-km2

area. It is located between the longitudes 39◦15′ and 40◦30′ E and latitudes 21◦16′ and
22◦15′ N (Figure 1c). The Quaternary aquifer is the primary source of groundwater for
different uses in this Wadi. This aquifer is primarily made up of conglomerates, sandstone,
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and mudstone (Wadi fill deposits) that range in thickness from 10 to 60 m based on the
data of drilled wells in the area. The igneous metamorphic rocks that make up the bedrock
of this aquifer are highly fractured and weather-cracked, making them the perfect host
for groundwater preservation. The depth of groundwater varies from 1.2 to 50.1 m from
the ground surface, with an average value of 16.7 m according to the field measurements
from 64 drilled wells. Based on this data, a water-level distribution map was constructed
to show the flow of groundwater along the Wadi. As shown in Figure 3, the groundwater
flow was from the east to west direction towards the Red Sea.
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2.2. Samples Collection and Analytical Procedures

During the year of 2021, 59 samples of groundwater were obtained from the Quater-
nary aquifer in Wadi Fatimah basin, Makkah Al-Mukarramah province, KSA, for estimating
water quality for both drinking and irrigation. Portable Magellan GPS 315 was used to de-
tect the water samples position and identify UTM coordinates of the study area (Figure 1c).
The water samples were stored at 4 ◦C until they were taken to the laboratory for physico-
chemical analysis examination. Thirty different physicochemical parameters were detected
by standard analytical methods [48]. A portable conductivity multi-parameter apparatus



Water 2022, 14, 483 6 of 23

was used to measure temperature, pH, EC, and TDS at the site (Hanna HI 9033), cali-
brated with standard solutions. Mg2+ and Ca2+ concentrations were determined by the
EDTA titrimetric technique using ethylenediaminetetraacetic acid, whereas K+ and Na+

concentrations were determined using a flame photometer (ELEX 6361, Eppendorf AG,
Hamburg, Germany). The total hardness (TH) was determined using Eriochrome Black-T
(C20H12N3O7SNa) and ammonium chloride (NH4Cl) indicators against EDTA solution.
Titration with silver nitrate (AgNO3) and potassium chromate (K2CrO4) indicator was used
to measure Cl− concentrations. The titrimetric technique, including a standard solution
of sulphuric acid (H2SO4) and methyl orange indicator, was used to detect HCO3

−, and
CO3

2− concentrations. Titration with silver nitrate was used to measure Cl− concentrations,
and the titrimetric technique was used to detect HCO3

− and CO3
2− concentrations. The

concentrations of SO4
2− and NO3

− were measured using the spectrophotometer instru-
ment based on visible ultraviolet (UV) spectrum (DR/2040- Loveland, CO, USA). Several
quality assurance techniques were performed during the examination of the water samples.
In view of quality control, validation of the analytical procedures was carried out by proper
calibration of instruments and checking their precision and linearity. Charge balance errors
(CBE) were calculated after the field measurements were double-checked in the lab, and
samples were tested in triplicate, with the average value given. The principle of neutral-
ity states that the summation of cations should be equal to the summation of anions in
meq/L−1. The error in anion–cation balance is evaluated using Equation (1) [49]. Therefore,
the CBE of all the analyzed samples were found within the recommended limit ± 5%.

CBE =
∑ Cations−∑ Anions
∑ Cations + ∑ Anions

× 100 (1)

Additionally, the analytical procedure’s quality assurance was double-checked using
Certified Reference Material (CRM) and blank method analysis.

2.3. Indexing Method
2.3.1. Water Quality Indices (WQIs)

The appropriateness of groundwater for both drinking and irrigation was assessed
using the cited WQIs, which included DWQI, IWQI, TDS, PS, SAR, and RSC values (Table 1).
An existing mathematical approach was used to turn the numerical impact of particular
values and units of numerous water quality metrics into a single number [50,51], which is
used to define the quality of water.

Table 1. Arithmetic rating method for calculation of drinking water quality index (DWQI).

Physicochemical
Parameters Unit WHO (2017)

Si
Unit Weight wi

Ci
Si
×100 Wi×(Ci

Si
×100)

pH - 8.5 0.415 86.000 35.729
TDS mg/L 500 0.007 105.996 0.748
EC µs/cm 1500 0.002 70.600 0.166
TH mg/L 500 0.007 60.944 0.430
K+ mg/L 12 0.294 65.210 19.190

Na+ mg/L 200 0.017 33.388 0.589
Mg2− mg/L 50 0.070 34.735 2.453
Ca2+ mg/L 75 0.047 124.540 5.864
Cl− mg/L 250 0.014 43.076 0.608

SO4
2− mg/L 250 0.014 71.666 1.012

HCO3
2− mg/L 120 0.029 76.250 2.243

CO3
− mg/L 350 0.0100 3.428 0.0345

NO3
− mg/L 50 0.070 88.775 6.270

∑ (Si) ∑ (wi) = 1 ∑n
i=1 Wi × (Ci

Si
× 100)
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2.3.2. Drinking Water Quality Index (DWQI)

The DWQI values were calculated using the average concentrations of determinants
of 30 parameters in Table 1 at each sample location according to Brown et al. [52]. For
quality evaluation, the findings of laboratory analyses for all the samples collected were
considered. The physicochemical criteria have been weighted according to their relative
importance to overall water quality. The WQI depicts the complete water quality of each
water component depending on a variety of water quality variables and their application
in the environment according to Equation (2):

DWQI = ∑n
i=1 Wi × (

Ci

Si
× 100) (2)

Wi represents each parameter’s weight unit, and 13 physicochemical parameters were
employed. The computed the concentration (Ci) value and standard (Si) for each water
parameter according to the following Equation (3):

Wi =
wi

∑ wi
(3)

wi for each parameter is computed using the recommended standards [53] by Equation (4):

wi = K/Si (4)

where K denotes the constant of proportionality, which is calculated by using Equation (5):

K =
1

∑ Si
(5)

To calculate the DWQI, each groundwater parameter (wi) is given a weight, and the
relative weight is calculated (Wi). Therefore, Wi values were assigned for all physicochemi-
cal parameters in Table 1, while wi was calculated using Equation (4). The computed values
of the standards, unit weights (wi), and arithmetic weights (Wi) for the water parameters
are illustrated in Table 1.

2.3.3. Irrigation Water Quality Index (IWQI)

The IWQI was estimated using water quality metrics such as EC, SAR, Na+, Cl−, and
HCO3

2− [54–56], according to the following Equation (6):

IWQI = ∑n
i=1 QiWi (6)

Depending on each value of physicochemical parameter, the aggregation weights (Wi)
and value of water quality parameter (Qi) were calculated using the criteria established by
Ayers and Westcot [57] according to Equation (7):

Qi = Qmax −


[(

Xij − Xinf
)
×Qimap

]
Xamp

 (7)

where Qmax is the greatest Qi value for each class, Xij is the observed value of each physico-
chemical parameter, and Xinf is the class’s lower limit value. Qimap and Xamp denote the
class amplitude and class amplitude to which the parameter belongs, respectively.

Finally, the Wi values were normalized, and their final total equaled one using the
following Equation (8):

Wi =
∑k

j=1 FjAij

∑k
j=1 ∑n

i=1 FjAij
(8)
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where Wi and F are the comparative weights of the IWQI physicochemical characteristics,
and component i is a constant value; The parameter i that can be described by factor j is
denoted by Aij. The number of physicochemical parameters used in the IWQI ranges from
1 to n, while the number of factors chosen in the IWQI ranges from 1 to k.

2.3.4. Total Dissolves Solids (TDS)

The TDS is an important parameter to express the status of contaminants present in
the groundwater, estimated in mg/L [57], according to Equation (9):

TDS = (Ca2+ + Mg2+ + Na+ + K+ + Cl− + SO4
2− + HCO3

2− + CO3
− + NO3

−) (9)

2.3.5. Potential Salinity (PS)

The PS is another irrigation quality index that was estimated in milliequivalents per
liter [58] according to Equation (10):

PS = Cl− + (SO4
2−/2) (10)

2.3.6. Sodium Adsorption Ratio (SAR)

The SAR is an important irrigation quality index, which also evaluates the contents of
cations expressed in milliequivalents per liter [59] according to Equation (11):

SAR = (
Na+√(

Ca2+ + Mg2+
)

/2
)× 100 (11)

2.3.7. Residual Sodium Carbonate (RSC)

The RSC is another index to assess the suitability of water for irrigation, which is
expressed as Equation (12) [60,61].

RSC = (HCO3
2− + CO3

−) − (Ca2+ + Mg2+) (12)

2.4. Partial Least-Square Regression (PLSR) and Multiple Linear Regression (MLR)

In this work, PLSR models were used to evaluate the WQIS, DWQI, IWQI, TDS,
SAR, PS, and RSC. PLSR models of six WQIs were constructed using version 10.2 of the
unscramble X program (CAMO Software AS, Oslo, Norway). The PLSR model used
physicochemical parameters in Table 1 as the input parameter (independent parameters) to
predict the DWQI as output parameters (dependent v parameters). The PLSR model also
used chemical parameters in Table 1 as the input parameter (independent parameters) to
predict the IWQI, TDS, SAR, PS, and RSC as output parameters (dependent parameters).
The input variables were linked to the output variables using PLSR and leave-one-out cross-
validation (LOOCV). In PLSR analysis, selecting the correct number of latent variables (LVs)
to represent the calibration data without overfitting or underfitting is critical. Random
10-fold cross-validation was carried out on the datasets to improve the robustness of
the results.

Four criteria were used to evaluate the PLSR’s performance in predicting the six WQIs
for calibration (Cal.) and validation (Val.) models.

(1) R2 coefficient;

R2 = 1− ∑n
i=1(WQIsoi −WQIsfi)

2

∑n
i=1(PIsoi)

2 (13)

(2) root mean square error (RMSE);
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RMSE =

√
∑n

i=1(WQIsoi −WQIsfi)
2

n
(14)

(3) mean absolute deviation (MAD);

MAD =
∑n

i=1|WQIsoi −WQIsfi|
n

(15)

(4) Accuracy (ACC) of the models

Acc = 1− abs (mean
WQIsfi−WQIsoi

WQIsoi
) (16)

e measured value is WQIsoi, the number of data points is n, and the predicted value is
WQIsfi. The best models were chosen for their low RMSE and MAD, as well as their high
R2 and Acc.

2.5. Data Analysis and Graphical Approach

SPSS version 22 was used to construct a statistical analysis (range, mean, standard de-
viation) of the physical and chemical characteristics (SPSS Inc., Chicago, IL, USA). Different
models for hydrochemical facies evolution, such as the Piper, Chadah, Gibbs, and hydro-
chemical facies evolution diagrams [62–65], have been proposed utilizing Geochemist’s
Software package 12.0 to determine water types, geochemistry mechanisms, and major
water chemical control factors. To generate zoning maps for water quality indicators as-
sessed in the present study, GIS version 10.0 was utilized. The DWQI and IWQI maps were
constructed by combining datasets for physicochemical metrics because of geo-statistical
data analysis, which included the use of inverse distance weighted (IDW) kriging. This
method is a component enhancement for the spatial analytical technique in GIS. In addition,
the CA and PCA were created by dividing a set of variables by their maximum values
using PAST software (V. 4.0) in order to understand the relationships and variance between
the physicochemical determinants.

3. Results and Discussion
3.1. Physicochemical Parameters

Physical and chemical metrics are useful benchmarks to understand the status of
water geochemistry and associated regulatory processes, and therefore play a crucial role
in the evolution of water quality. Table 2 contains statistical descriptions of the physical
and chemical characteristics in the analyzed groundwater points (min., max., mean, and
standard deviation).

Table 2. Statistical description of several physical and chemical parameters in the collected ground-
water wells.

Makkah Al-Mukarramah Province, KSA (n = 59)

T ◦C pH EC TDS TH K+ Na+ Mg2+ Ca2+ Cl− SO42− HCO32− CO3− NO3−

Min 30.00 6.99 553.00 226.90 44.10 0.99 43.64 4.11 10.91 70.53 30.00 12.20 0.00 0.01
Max 32.00 8.39 25,000.00 18,518.30 6025.50 79.03 4602.75 575.27 1995.80 7271.03 5180.27 274.50 24.00 475.44
Mean 30.60 7.74 4217.20 2572.30 1188.90 13.87 441.93 90.56 327.25 926.22 692.35 146.18 7.01 57.27

SD 0.75 0.33 4595.60 3247.10 1209.10 13.35 729.02 108.44 333.83 1450.50 788.69 51.56 8.19 84.55

All physical and chemical parameters are stated in mg/L excluding temperature (T ◦C), pH and EC (µs/cm).

The data analysis of physicochemical characteristics for groundwater samples obtained
showed that pH values varied between 6.99 and 8.39 by a mean of 7.74, which indicated
that the groundwater was slightly alkaline. Groundwater temperatures ranged from 30.00
to 32.00 ◦C, depending on the depths to water surface in wells (Figure 3). The EC readings
ranged from 553 to 25,000 µs/cm, with an average value of 4217.20 µs/cm. TDS levels var-
ied from 226.90 to 18,518.30 mg/L, with a mean value of 2572.3 mg/L, which reflected brack-
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ish groundwater type. The ionic content of K+, Na2+, Mg+2, Ca+2, Cl−, SO4
2−, HCO3

2−,
CO3

− and NO3
− displayed mean values of 13.87, 441.93, 90.56, 327.25, 926.22, 692.35, 146.18,

7.01 and 57.27 mg/L, respectively (Table 2). Therefore, the average values of ions presented
sequences of Na2+ > Ca+2 > Mg+2 > K+, and Cl− > SO4

2− > HCO3
2− > NO3

− > CO3
−, re-

spectively. These values indicated that Na2+ was the dominant cation and Cl− was the
dominant anion in the collected water samples.

3.2. Geochemical Facies and Controlling Mechanisms

Hydrochemical data were evaluated using imitative techniques to better understand
the numerous geochemical processes that regulate groundwater quality. For identifying the
geochemical facies and types of groundwater in the study area, Piper’s trilinear diagram
was used to determine the prevailing cations and anions in meq/L of the collected samples
(Figure 4a). The chemical properties of the examined groundwater samples revealed that
the hydrochemical facies were Ca-HCO3, Na-Cl, mixed Ca-Mg-Cl-SO4, and Na-Ca-HCO3.
Chadah’s arrangement is also used to determine the hydrochemical mechanisms and
groundwater types (Figure 4b). The groundwater samples were scattered in fields 2 and 3,
which demonstrated a reverse ion exchange process as a result of cation exchange process
in the groundwater system and mixing with saline water, especially downstream of Wadi
Fatimah. As a result, Ca2+ in the groundwater was replaced by Na+ in the aquifer, which
reflected a decrease in Ca2+ concentration and increase in Na+ concentration, indicating
that groundwater in the study area was affected by the cation exchange process.
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The effects of the weathering process and aquifer matrix considerably alter the chem-
ical composition of groundwater. The Gibbs diagram is frequently applied to create the
link between the water component and the aquifer matrix [64] (Gibbs, 1970). The key
regulating processes that determine groundwater geochemistry are identified by Gibb’s
diagram through displaying TDS vs. (Na + K)/(Na + K + Ca) and Cl/(Cl + HCO3). As
shown in a plotting of chemical data on the Gibbs diagram, groundwater samples were
spread in the evaporation, weathering, and rock–water interaction fields (Figure 5a), which
are significant processes regulating groundwater chemistry and quality. HFE plot findings
demonstrated dissolving of evaporite from salt marches in aquifer materials, which are high
in sulphate and chloride (Figure 5b) content. The majority of samples representing mixed
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water (Ca-Mg-HCO3 and Na-Cl) revealed high calcium and sodium content, as a result of
clays in the Quaternary aquifer, and the volcaniclastic sequence of the Fatimah Basin was
found to be rich in Na+ [66] and the groundwater in Ca2+. Obviously, most groundwater
samples scattered in the intrusion area indicated that intrusion is a significant process in
the formation of dissolved solutes for groundwater samples. Moreover, evaporation is the
most significant mechanism for groundwater and soil salinization in areas with shallow
groundwater depth as well as high evaporation rate [67]. Brines from evaporate minerals
dissolve in the recharge zone in closed basins, enhancing the salinity of the groundwater
over time. In closed basins, salinity levels increase from the inflow area to the outflow area
as a result of over-pumping and a negative water balance, converting the hydrochemical
facies from Ca-HCO3 to Na-Cl [68]. The chemical composition changes are mostly induced
via groundwater flow direction and reactions [69].
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3.3. Water Quality Indices

Table 3 showed the statistical analysis and categorization of several WQIs in this study,
which included DWQI, IWQI, TDS, PS, SAR, and RSC. In addition, GIS-Zoning maps for
each index were used to display and examine the quality of water in the investigated area
for potable and agricultural purposes (Figures 6–8).
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Table 3. Statistical analyses and classification of the different water quality indices (WQIs).

Water Quality
Indices (WQIs)

Sample Range Range Water Category Number of
Samples (%)Min. Max. Mean SD

Drinking water
quality (DWQI)

23.29 545.53 118.68 88.28 0–25 Excellent 1 (2%)
26–50 Good 2 (3%)
51–75 Poor 10 (17%)
76–100 Very poor 19 (32%)
>100 Unsuitable 27 (46%)

Irrigation water
quality index

(IWQI)

19.42 95.93 64.07 20.42 85–100 No restriction 15 (25.5%)
70–85 Low restriction 12 (20.5%)
55–70 Moderate restriction 5 (8.5%)
40–55 High restriction 22 (37%)
0–40 Serve restriction 5 (8.5%)

Total dissolved
solids (TDS)

226.90 18,518.32 2572.30 3247.14 <700 No restriction 12 (20%)
700–3000 Slight to moderate restriction 33 (56%)

>3000 Serve restriction 14 (24%)

Potential salinity
(PS)

3.03 258.96 33.32 48.17 <3 Excellent to good 0 (0.0%)
3 to 5 Good to Injurious 8 (14%)

>5 Injurious to Unsatisfactory 51(86%)

Sodium adsorption
ratio (SAR)

1.109 31.00 4.84 4.86 2–10 Excellent 54 (92%)
10–18 Good 3 (5%)
18–26 Doubtful or Fairly poor 1 (1.5%)
>26 Unsuitable 1 (1.5%)

Residual Sodium
Carbonate (RSC)

−118.91 −0.40 −21.14 24.33 <1.25 Safe 59 (100%)
1.25–2.5 Marginal 0 (0.0%)

>2.5 Unsuitable 0 (0.0%)

All WQIs are estimated in meq/L except DWQI, IWQI and TDS in mg/L. Min.: Minimum, Max.: Maximum, SD:
Standard deviation.
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3.3.1. Drinking Water Quality Index (DWQI)

The DWQI model was applied to determine groundwater quality, which is classified
based on the purity level of routinely detected water quality parameters according to
Equation (1). The DWQI was developed to measure the acceptability of groundwater for
drinking. The computed value of DWQI in the obtained groundwater samples is shown
in Table 4, ranging from 23.29 to 545.53, with an average of around 118.68. According
to DWQI categorization (Table 3), approximately 2% of groundwater was categorized as
excellent, 3% as good, 17% as poor, 32% as extremely poor, and 46% as unfit for drinking.
The DWQI distribution map (Figure 6) indicates that most of the groundwater samples
cannot be utilized for safe drinking due to evaporation, rock–water interaction, and reverse
ion exchange process in the north-eastern parts as well as saltwater intrusion downstream
of Wadi Fatimah toward the Red Sea.

Table 4. Results of calibration (R2
cal, RMSEC, MADc, and Accc), and ten-fold cross-validation (R2

val,
RMSEv, MADv, and Accv): PLSR models of the relationships between several physicochemical
parameters and drinking water quality index (DWQI), irrigation water quality index (IWQI), total
dissolved solids, potential salinity (PS), sodium absorption ratio (SAR), and residual sodium carbonate
(RSC). ***: p < 0.001.

Water Quality
Indices

LVs
Calibration Validation

R2
cal RMSEc MADc ACCc R2

val RMSEv MADv ACCv

PLSR

DWQI 9 0.992 *** 7.356 6.323 0.991 0.987 *** 10.030 7.686 0.989
IWQI 4 0.905 *** 10.516 5.781 0.999 0.848 *** 13.680 6.331 0.984
TDS 2 0.999 *** 58.920 21.147 0.981 0.999 *** 71.985 26.538 0.980
PS 1 0.989 *** 0.982 0.279 0.998 0.999 *** 1.494 0.273 0.985

SAR 2 0.919 *** 1.370 0.811 0.824 0.861 *** 1.838 0.814 0.817
RSC 2 0.999 *** 0.762 0.427 0.962 0.998 *** 0.874 0.448 0.924
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3.3.2. Irrigation Water Quality Index (IWQI)

The IWQI was recognized as one of the most essential methods for urban planners
to analyze irrigated water quality since it provided a clear categorization of water quality
based on its effect on soil and plants [70]. According to the results of IWQI classification
(Table 3 and Figure 7), about 8.5% of the examined groundwater samples fall in the severe
restriction range, which may be utilized to irrigate high salt sensitivity crops. While 37%
of the wells studied fall in the high restriction category, which can be utilized to irrigate
moderate to high salinity tolerance crops in loose soil with no compacted layers and a
specific frequency of irrigation (EC > 2000 S/cm and SAR > 7), approximately 8.5% of
the tested wells fall in moderate limitation, which may be utilized to irrigate moderate
salinity tolerance crops and are suggested for medium to high permeable soils with respect
to leaching processes. Furthermore, 20.5% of the samples fall in the low restriction group,
which suggests preventing salinity tolerance crops with respect to irrigated soil character-
istics, permeability, and soil sodicity hazards. Lastly, 25.5% of wells were detected with
no limitation range and may be used for most soils with potentially low harmful effects
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of salinity and sodicity on most crops [57]. Figure 7 showed the spatial distribution of
different water quality types for irrigation with respect to IWQI, where the quality of the
groundwater for agriculture decreased greatly from the northeast to southwest toward the
Red Sea with the same groundwater flow direction.

3.3.3. Total Dissolved Solids (TDS)

TDS is commonly used to determine the salinity of groundwater wells, which in this
case ranged from 226.90 to 18,518.32 with an average of 2572.30. Table 3 and Figure 8a show
the categorization of collected groundwater wells according to salinity levels. TDS values
indicated that about 20% of the groundwater wells have salinity levels less than 700 mg/L,
which ensures no restriction for irrigation; approximately 56% have salinity levels ranging
from 700 to 3000 mg/L, which mandates slight to moderate restriction for agriculture; and
the remaining 24% have a salinity level of more than 3000 mg/L, making it unsuitable
and highly restrictive for irrigation [71–73], as presented in Table 3. Figure 8a showed the
spatial distribution of groundwater quality for agriculture with respect to salinity hazard
in the investigated area. As a result, the use of groundwater for irrigation becomes more
restricted downstream of Wadi Fatimah.

3.3.4. Potential Salinity (PS)

The PS, computed as the totality of Cl− and half of SO4
2−, is also an essential metric

for measuring the appropriateness of groundwater for irrigation. The values of PS varied
from 3.03 to 258.96 with an average of 33.32 (Table 3). Approximately 14% of the total
samples were categorized as good to injurious, while 86% of total samples were categorized
as injurious to unsatisfactory for agriculture. Figure 8b showed spatial distribution of
groundwater quality for agriculture with respect to PS, where high PS was observed in
most parts of the investigated area (Figure 8b).

3.3.5. Sodium Absorption Ratio (SAR)

SAR is a ratio of the primary alkaline and earth alkaline cations available in water
to crops. It is a useful measurement for evaluating the acceptability of irrigated water
depending on sodium risk [74,75], and is more strongly connected to the exchangeable
sodium percentages of the soil [76]. The use of high-sodium water for agriculture may
enhance the interchange of sodium levels in the soil, reducing soil permeability and soil
structure [77]. Soil treatment may be required in agriculture, where the water has a high
SAR value to minimize long-term soil deterioration because the Ca2+ and Mg2+ in the soil
may be displaced by sodium in the water. It may also result in decreased soil penetration
and permeability to water, which may be hazardous for crop productivity. The water
quality categorization for irrigation according to SAR (Table 3) indicated that the SAR value
ranged from 1.109 to 31.0 with an average of 4.84. Table 3 showed that around 92% of the
wells were found in the range of excellent category and about 5% in the range of good
category, thereby suitable for irrigation purposes with no alkali hazard to the crops. The
rest of the samples, about 3%, ranged from fairly poor to unsuitable for irrigation. The SAR
spatial distribution map (Figure 8c) shows that groundwater quality for irrigation decreases
gradually from the northeast to southwest direction toward the Red Sea, compatible with
the direction of groundwater flow in the area.

3.3.6. Residual Sodium Carbonate (RSC)

Alkalinity concentration of water is a significant factor in evaluating its appropri-
ateness for irrigation [78]. The term ‘Residual Sodium Carbonate’ (RSC) is used when
alkalinity contents exceed alkaline earth metals (Ca2+ and Mg2+) and shows the harmful
influence of alkalinity on irrigation water quality [79,80]. The RSC of groundwater wells
varied from −118.91 to −0.40 with an average of −21.14 (Table 3). Results showed that
all samples had RSC values of less than 1.25, indicating minimal alkalinity hazard and
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the ability to be utilized safely for agriculture with no development of alkalinity hazard
(Figure 8d).

3.4. Multivariate Statistical Analysis

The CA and PCA were used in multivariate statistical analysis to detect the sources
accountable for changes in the quality of water resource by combining primary variables
into a new set of variables. CA results for major physical and chemical parameters indicated
three kinds of clustering (Figure 9a), with EC and TDS in the same cluster (Cluster 1); Na+,
SO4

2−, and Cl− in another cluster (Cluster II); and pH, K+, Ca2+, Mg2+, HCO3
2−, CO3

2−,
and NO3

− in a different cluster (Cluster III). According to the CA of major physicochemical
parameters, groundwater in the study area was categorized into Na+, Ca2+, Mg2+, and
K+ as dominant cations, and Cl−, SO4

2−, and HCO3
2− as dominant anions respectively

(Figure 9a). According to the CA results, the high content of Na+ and Ca2+ suggested
rock–water interaction that revealed the release of Ca2+ by the weathering of silicate
minerals, while the high concentration of Cl− and SO4

2− revealed clay interaction with
aquifer matrix and saltwater intrusion. The distribution of physicochemical parameters
in the groundwater resources revealed the second and final stages of water evolution,
which reflects deterioration in groundwater quality in the investigated area as a result of
evaporation process, saltwater intrusion, weathering process, and rock–water interaction.
These results are in agreement with the water facies presented by Piper plotting due to the
effects of evaporation, weathering, and rock–water interactions stated in the Gibbs and
Chadha diagrams.
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According to the PCA results for physicochemical features of major ions in the ground-
water samples obtained, large positive loadings of Na+, Ca 2+, Mg2+, K+, Cl−, SO4

2−,
and NO3

− prevailed over PC1 in explaining 62.775% of total variance while PC1 ex-
plained 14.679% of the total variance that prevailed by loading of pH, HCO3

2−, and CO3
2−

(Figure 9b). The majority of cations and anions were clustered together in positive-loading
combinations except for total alkalinity (HCO3

2− and CO3
2−), which indicated that the

variables have a substantial association. According to PCA results, the presence of nine
principal components demonstrated the influence of significant ions on groundwater
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quality in the studied region. Therefore, PC1 presented maximum loading of Na+, Ca2+,
Cl−, and SO4

2−, while PC2 presented maximum loading of pH, HCO3
2−, and CO3

2−.
These findings could be attributable to evaporation, weathering, saltwater intrusion, and
rock–water interaction. Most groundwater samples in the investigated area were highly
contaminated with NO3

−, as shown by the high positive loading of NO3
− in PC1, which

revealed agriculture runoff and the effects of the study region being surrounded by urban
sewage flowing through the estuary. Therefore, combining physicochemical characteristics
in the PCA for groundwater quality assessment is a helpful and adaptable method with
remarkable potential and unique insights.

3.5. Using Partial Least Square Regression to Predict WQIs for Drinking and Irrigation

PLSR (Partial Least Square Regression) is a reliable method for modeling complex non-
linear interactions, especially when the relationships between variables are ambiguous. In
this investigation, PLSR models were utilized to forecast DWQI based on physicochemical
parameters and five irrigation indices (IWQI, TDS, SAR, PS and RSC) based on chemical
parameters as illustrated in Table 2. The classical mathematical methods mentioned in this
study can be used to produce approximate predictions of the DWQI and five IWQIs of the
water samples [52,57–60,81]. In this work, PLSR was investigated as an alternative method
for predicting WQIs, considering that it is quick, uncomplicated, and does not require
many steps to calculate especially the DWQI and IWQI. In addition, PLSR can be used to
select the most effective parameters for calculating DWQI and IWQI. This, in turn, leads to
reducing the number of elements that were used in the chemical analysis to calculate WQIs
and, finally, decreasing the overall cost. The number and influence of input factors have a
big impact on the exact forecast, but all data must be available and cost-effective. Based on
many response variables, the PLSR predicts a single model [45,82,83].

Figures 10 and 11 illustrate the relationships of DWQI and five IWQIs between ob-
served and predicted values in a 1:1 scatter plot using PLSR for the Cal. and Val. models.
PLSR presented accurate prediction models for WQIs in Cal. and Val. For example, the
PLSR models of all IWQs had determination coefficient values of R2 ranging from 0.905
to 0.999 in the Cal., and ranging between 0.848 and 0.999 in the Val. datasets (Table 4),
and had model accuracy ranging from 0.824 to 0.999 in the Cal., and ranging from 0.817
to 0.989 in the Val. dataset. The RMSE values for DWQI, IWQI, TDS, SAR, PS, and RSC
were 7.356, 10.516, 58.920, 0.982, 1.370, and 0.762 in the Cal. dataset, respectively, and were
10.030, 13.680, 71.985, 1.494, 1.838, and 0.87 in the Val. dataset, respectively. The PCs were
designated to support the calibration data without over-fitting for the PLSR models of
six WQIS, and it ranged from 1 to 9 (Table 4). Similar to this study’s prediction of WQIs,
Gad et al. [45] discovered that PLSR could be utilized to estimate the DWQI and three
surface water pollution indices in the Northern Nile Delta. Elsayed et al. [84] found that
the multivariate method of Principal Component Regression (PCR) and machine learning
of Support Vector Machine Regression SVMR revealed accurate estimation and produced
robust models for forecasting the WQIs in both (Cal.) and (Val.), and they had R2 values
varying from 0.48 to 0.99 in the Northern Nile Delta, Egypt. Abowaly et al. [44] recently
discovered that the PLSR and multiple linear regression (MLR) models performed the best
in predicting the PLI of the soil based on data for the four examined elements, with R2

0.92–0.94 across the three layers. In general, the PLSR models produced strong and reliable
estimates of different indices, with the highest R2 and highest slope values near 1.00 as well
as the lowest RMSE values in both models.
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4. Conclusions

This study examined the suitability of groundwater in Wadi Fatimah, Saudi Ara-
bia, for drinking and irrigation purposes. Physicochemical characteristics, water quality
indices, multivariate modeling as well as GIS techniques were coupled to investigate hy-
drogeochemical characteristics of the Quaternary groundwater aquifer and corresponding
geochemical facies and controlling factors. The analytical results of major ions exhibited
the trends of Na2+ > Ca+2 > Mg+2 > K+, and Cl− > SO4

2− > HCO3
2− > NO3

− > CO3
−,

respectively. These trends revealed that the hydrochemical facies were Ca-HCO3, Na-Cl,
mixed Ca-Mg-Cl-SO4, and Na-Ca-HCO3. According to the geochemical properties of
groundwater, evaporation and saltwater intrusion were the predominant factors control-
ling the quality of groundwater in the region. DWQI values indicated that the majority
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of inventoried wells, about 95%, varied between poor to unsuitable class for drinking,
requiring proper treatment before use and a water management strategy. IWQI values
indicated that about 45.5 % of the samples varied between high to severe restriction class
for irrigation use, which can be utilized for the agriculture of high saline sensitivity crops,
while 54.5% of samples varied from moderate to no restriction for irrigation. Agriculture
indices like total dissolved solids (TDS), potential salinity (PS), sodium absorption ratio
(SAR), and residual sodium carbonate (RSC) showed the mean values of 2572.30, 33.32,
4.84, and −21.14, respectively. However, the quality of the groundwater in the study area
improves with increased rainfall and thus recharging the Quaternary aquifer.

By calibrating and validating the data sets, the PLSR models were implemented well
in estimating the DWQI, IWQI, TDS, SAR, PS, and RSC, with the highest R2, lowest RMSE
and MAD values, and highest slope values. For the PLSR models of six WQIs, there were
no apparent overfitting or underfitting between measuring, calibrating, and validating
datasets. So, a comprehensive picture of water quality and governing mechanisms can
be obtained by integrating physicochemical data, WQIs, multivariate modeling, and GIS
tools. Therefore, the use of different techniques and indicators that cross-validate was
recommended for assessing water quality for general and specific utilization.
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