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Abstract: Water, a renewable but limited resource, is vital for all living creatures. Increasing demand
makes the sustainability of water resources crucial. River flow management, one of the key drivers of
sustainability, will be vital to protect communities from the worst impacts on the environment. Mod-
elling and estimating river flow in the hydrological process is crucial in terms of effective planning,
management, and sustainable use of water resources. Therefore, in this study, a hybrid approach
integrating long short-term memory networks (LSTM) and particle swarm algorithm (PSO) was
proposed. For this purpose, three hydrological stations were utilized in the study along the Orontes
River basin, Karasu, Demirköprü, and Samandağ, respectively. The timespan of Demirköprü and
Karasu stations in the study was between 2010 and 2019. Samandağ station data were from 2009–2018.
The datasets consisted of daily flow values. In order to validate the performance of the model, the
first 80% of the data were used for training, and the remaining 20% were used for the testing of the
three FMSs. Statistical methods such as linear regression and the more classical model autoregres-
sive integrated moving average (ARIMA) were used during the comparison process to assess the
proposed method’s performance and demonstrate its superior predictive ability. The estimation
results of the models were evaluated with RMSE, MAE, MAPE, SD, and R2 statistical metrics. The
comparison of daily streamflow predictions results revealed that the PSO-LSTM model provided
promising accuracy results and presented higher performance compared with the benchmark and
linear regression models.

Keywords: water resources; streamflow; particle swarm optimization; long short-term memory;
time series

1. Introduction

Water plays a major role in the creation of everything we produce. There are no
substitutes, and while it is renewable, there is only a finite amount of it [1]. In spite of the
fact that it surrounds three-quarters of the Earth’s surface, the amount of freshwater is
quite insignificant. Whereas the total water in the world is about 1.4 million km3, 97.5% is
found as saltwater in the oceans and seas and only 2.5% as fresh water in rivers and lakes.
Additionally, some freshwater resources are located at the poles and underground, showing
a low amount of usable water. With the increasing population, economic developments and
climate change gradually increase the pressure on freshwater resources and competition in
accessing water resources. Therefore, this situation is expected to cause a global water crisis
in the near future. In order to prevent future disaster scenarios, it is necessary to design
an accurate planning and management strategy on water resources [2]. Water, which is
constantly in circulation in our ecosystem, is insufficient to meet the needs of the increasing
world population due to global warming and subsequent drought. Drought affects water
resources in two ways: directly and indirectly. The direct effect of drought on water
resources is via high temperature and low relative humidity, and increased evaporation
losses, especially in surface water resources; the indirect effect is through the increase in
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demand for both surface and underground water resources for agricultural irrigation to
meet the increasing water needs of plants. Growing demand increases the significance
of the sustainability of water resources. River flow management, one of the key drivers
of sustainability, will be vital to protecting communities from the worst impacts on the
environment [3].

Accurate planning is essential for protecting, developing, and using water resources.
The most critical step of these plans is to determine the current and future potential of the
water resource to be utilized. Furthermore, accurate and reliable daily flow forecasting
is required to define the potential of the water source for water resources management,
reservoir distribution, water resource allocation, hydroelectric power plant operation,
etc. [4]. However, the daily flow sequence typically exhibits nonlinear, nonstationary
dynamic properties and strong correlation with varying climatic conditions and human-
based environmental impact. Consequently, sufficient potential change processes become
entangled in common streamflow forecasting techniques. There are still certain challenges
in achieving high-precision prediction of streamflow, so further research, including a proper
method to estimate the flow rate, is needed [5].

There are two models mainly used in prediction: process-based and data-driven mod-
els. Process-based models are complex and time-consuming, considering the process of
developing and processing the data. Furthermore, there are many limiting factors in apply-
ing such models, which cause poor forecasting performance and uncertainty. In addition,
the application of these models is difficult due to the lack of sufficient data in many river
basins around the world [6,7]. Such models only predict the association between inputs
and outputs by nonlinear mapping rather than considering the structural state of the flow
process. Data-driven flow prediction models have become more popular in recent years
because of these drawbacks. The data-driven models can efficiently capture the nonlinear
or linear relationship between the hydrological processes. The benefit of these models is
in helping users within the organization to know how decisions are made. Data-driven
models can also identify the consequences of data collected, analyzed, managed, and
actions made accordingly. Thus, it is particularly useful in these situations, as details
on measurement-based estimates of hydrological parameters may be more challenging
to obtain. Many researchers criticize these approaches as “black boxes” since they have
nothing to do with fundamental physical processes. However, many studies successfully
revealed how experimental approaches could be utilized to gain insight into physical sys-
tem function [8,9]. Since the development of artificial intelligence (AI)-based data-driven
techniques, such models have gained ground among hydrologists in recent years owing to
their applicability in hydrological forecasting. AI includes various tools and techniques
that can be operated for optimization and logical regression, statistics, probability learn-
ing methods, and classification. The use of these artificial intelligence-based techniques
has gained vogue among hydrologists in recent years [10–12]. ANN models have been
successful in processes such as estimating river flows (flow, level, flow volume), making
flood warnings, operating reservoirs for flood control, determining the water potential
of the stream, hydroelectric production in dry periods, and planning transportation in
streams [13,14]. Moreover, ANNs have been used successfully in hydrology. In recent
studies, the best results have been obtained from ANN applications in the field of water
resources and hydrology (runoff forecasting, rainfall–runoff modelling, incoming runoff,
reservoir operation, dispersion in natural channels, and suspended sediment forecasting).
Models such as recurrent neural networks (RNNs), genetic programming (GP), support
vector machine (SVM), gated recurrent unit (GRU), and long short-term memory (LSTM)
are commonly used in forecasting studies [15–17]. Notwithstanding, the literature shows
the difficulty of choosing a single model or method with satisfactory performance, which is
directly related to the location and conditions of the studied area [18].

RNNs, deep learning algorithms, have been used to try to predict streamflow fore-
casting. Specifically, RNNs have strong learning capabilities to use time series. RNNs can
remember previous inputs to make decisions based on both previous input and current
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input. However, RNNs may have difficulties retaining information from previous layers.
This constraint is called the vanishing gradient problem, and its result is defined as the
short-term memory problem in RNNs. Nowadays, LSTM-based methods, which are based
on an advanced version of RNNs, are mostly studied. The LSTM unit remembers long or
short time periods. The key to this capability is that it uses no activation functions in its
recurring components [19,20].

Additionally, LSTM network performance occasionally offers unsatisfied outcomes
due to the random selection of initialization parameters. Therefore, hybrid modeling
studies are attracting progressively more attention in order to get better performance
outcomes [21]. Consequently, in this study, the random selection of initialization parameters
that significantly affect the analysis performance in the LSTM model was investigated by
creating a PSO–LSTM hybrid model using the particle swarm optimization (PSO) algorithm.
Recently, hybrid modeling studies merging ANNs with various optimizations have risen
in popularity to enhance performance in data analysis processes in hydrology and other
fields. Studies to develop methods for hybridization based on time series predictions have
been increasing rapidly in number.

Mohammadi et al. [22] recommended a novel hybrid approach for SSL estimation in
which multilayer perceptron (MLP) was hybridized with PSO and then integrated with a
differential evolution algorithm (DE); the model was called MLP-PSODE. The developed
MLP-PSODE model was found to be a parsimonious model that incorporates a lower
number of input parameters in its structure for SSL estimation. Gharabaghi et al. [23]
introduced a new hybrid algorithm, known as PSOGA, based on the advantage of two
evolutionary algorithms, PSO and genetic algorithms (GA). The results demonstrated that
the presented hybrid algorithm in the optimized design of ANFIS (PSOGA) has better
accuracy than that of individual algorithms. Meshram et al. [24] generated a hybrid model
by combining the feedforward neuron network (FNN) with the PSO model developed
with the gravity search algorithm (FNN-PSOGSA). The results showed that the prediction
accuracy of the hybrid model developed using rainfall values was successful. Motahari
and Mazandaranizadeh [25] utilized a PSO algorithm as a metaheuristic approach to
train an artificial neural network (ANN). The results revealed that applying the PSO-
ANN model can achieve an acceptable prediction of the runoff up to two days ahead.
Zounemat-Kermani et al. [26] developed integrative models, and the well-known particle
swarm optimization (PSO) and novel manta ray foraging optimization (MRFO) heuristic
algorithms are embedded in the models.

Yan et al. [27] built three new models hybridized with PSO for water quality time
series. The hybrid models were compared with the data-based models. It was seen that the
prediction accuracy of the hybrid model has an advantage in terms of time consumption.
Asadnia et al. [28] developed the hybrid ANN-PSO and compared this model with the
LN-MM model integrated into the ANN model. The hybrid model gave better results
than those of the comparison model. Dökme [29] used the PSO algorithm to reduce
the size of data by making feature selection in order to perform better data analysis from
datasets. The PSO-based method performed better than other models did in the study. Feng
et al. [30] proposed a novel enhanced LSTM model called LN-LSTM-PSO by integrating
layer normalization (LN), LSTM network, and PSO to improve prediction accuracy. LN
is able to accelerate the convergence speed of the LSTM network, and PSO substantially
increases model performance by automating the hyperparameter selection.

Adnan et al. [31] developed a hybrid model for monthly runoff prediction by integrat-
ing particle swarm optimization (PSO) and grey wolf optimization (GWO) with extreme
learning machine (ELM). The results revealed that the proposed model can achieve a suc-
cessful prediction. Kouk et al. [32] developed precipitation modeling with an integrated
PSO method. The results showed that the developed hybrid model could be successfully
applied to precipitation models. Sihag et al. [33] compared the ant algorithm integrated
with ANFIS and a model with integrated PSO. When the performance of the models
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was examined, it was observed that the hybridized model with PSO had higher accuracy
compared with the other model.

As noticed in the literature, many hybrid models can be applied to enhance the
prediction performance of the data. In addition, hybrid flow models created by integrating
various deep learning methods and machine learning methods through different techniques
emphasize enhancing the prediction accuracy. In addition, factors such as prediction
accuracy and training time of algorithms to be optimized to deep learning models such as
LSTM should be considered. Therefore, it is necessary to determine the optimum parameter
for artificial intelligence-based models and choose the appropriate optimization method
when determining the hybrid model.

The primary focus of this paper is as follows: (1) three flow measurement stations
were determined to validate the predictive capacity of the generated model; (2) the PSO
algorithm was integrated into LSTM to optimize the number of hidden layer nodes and
the learning rate, to achieve higher prediction accuracy, a shorter time in which to handle
complex calculations, and long-term correlation.

2. Materials and Methods
2.1. Study Region

Despite the fact that water scarcity, which is a physical phenomenon, is only a natural
phenomenon, it can cause devastating effects due to the vital dependence of society on
water resources. In order to minimize the damages of these destructive outcomes, it is
necessary for planning to determine the risky regions by using historical hydrological data
on a regional basis. The Orontes Basin, located in the south of Turkey and included in
the scope of transboundary waters, is essential in terms of the planning of this region due
to its geopolitical location. The total water potential for the Orontes basin is determined
as 2.64 billion m3/year. Accordingly, 0.27 billion m3/year of water potential derives
from Lebanon, about 1.09 billion m3/year from Syria, 0.18 billion m3/year from Afrin,
including the waters passing through Syria, and about 1.18 billion m3/year originates
from Turkey [34]. It is likewise noteworthy to evaluate the direct current estimations of
this basin, of which approximately 55% of the total water potential is from outside our
country. The Orontes River, showed in Figure 1, called Asi in Arabic, is located east of the
Lebanon Mountains. The river was formed by its slope over some time with the help of
Rasel-Ayn and Al-Labwah, which form the main sources. Subsequently, the rivers merge
in Syrian territory after crossing the Bekaa valley between the Lebanon and Anti-Lebanon
Mountains. Near the humus, it flows by heading first to the northeast and then to the north
under the impact of basalt currents. Additionally, the river initiates from the Gharb Plain
around Karkur and forms the Turkey–Syria border, starting near the Etun (Zambakiye)
village. Near Eşrefli village, it ultimately joins Turkish territory. After proceeding 10 km
north on the Amik Plain, the river bends to the southwest by drawing an arc and enters the
Mediterranean Sea near Samandağ [35,36].
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Figure 1. Location and topography of the lower Orontes River basin.

2.2. Datasets and Pre-Processing

In this study, three flow measurement stations that represent various hydrological
conditions of the Orontes River Basin were selected to validate the predictive capacity of
the generated model. They were chosen in accordance with the conditions of being on
various branches of the Orontes River basin shown in Figure 2. Daily flow measurement
stations (FMSs) were used to gather long-term, 10-year streamflow data.
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Figure 2. Study sites in the Orontes River basin.

Demirköprü FMS (D19A07) is where the Orontes River joins Turkish territory. Karasu
FMS (E19A05) is Karasu River, merging with the Orontes River. The Karasu FMS was
chosen considering the fact that it passes through the Amik Plain, where intensive agricul-
tural activities take place. Furthermore, the Karasu River merges with the Small Asi River
and empties into the sea from Samandağ. Samandağ FMS (D19A09), the point before the
Orontes River, spills into the sea. Samandağ station has been determined since it empties
into the sea from Samandağ after passing through both the city centers. In addition to
that, after merging with the Karasu River, these regions demonstrate intensive agricultural
activity. The locations of the stations on the Orontes River are presented with geographical
coordinates in Table 1. As shown in Figure 3, during the observation period, the mini-
mum and maximum rates of flow belonging to the three river stations were 1.78 m3/s and
30 m3/s, respectively.



Water 2022, 14, 490 7 of 21

Table 1. General information of FMSs located along the Orontes River.

FMS River FMS
Coordinates

Cathment
Area (km2)

Elevation
(m)

Observation(year)East North
(◦ ′ ”) (◦ ′ ”)

1907 Demirköprü 36 21 28.2 36 14 41 16.170 85 2010–2019
1905 Karasu 36 12 28.3 36 16 41.7 1.768 84 2010–2019
1909 Samandağ 35 59 20.6 36 04 01.9 23.205 11 2009–2018
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(c) Samandağ stations.

Taking the streamflow at Demirköprü FMS into account, while the lowest streamflow
was 2.09 m3/s in 2017, the highest streamflow was 30 m3/s in 2018. As for the daily
streamflow at the Karasu FMS, the lowest streamflow was 1.20 m3/s in 2016, whereas the
highest streamflow was 30 m3/s in 2010. In addition, at the Samandağ FMS, the lowest
streamflow was observed in 2017 at 1.78 m3/s, and the highest streamflow was found as
29.77 m3/s in 2016. Lastly, the highest streamflow was recorded for three stations in the
period of March–May.

In the hybrid model created, Python 3.9, one of the versions of the Python program-
ming language, with new components and optimization, was utilized. In the study, the
model benefited from Keras library and Deep library for training processes and prediction
processes. In the hybrid model where daily river flow data were analyzed, the LSTM
comprised 100 periods for LSTM and eight batch sizes for performance analysis during the
training process; while ADAM was the optimizer, MSE was the loss function. The dataset
was directly bonded to the flow values for each day, and the flow values were formed by
the daily flow, which was taken from EIEI (Electrical Works Survey Administration General
Directorate) and DSI (Hydraulic State Works). The original data accumulated from the flow
observation stations contained 10 years (3651 days) of operations for each station. Of the
total dataset, 80% of the data was obtained as the training set and the remaining 20% as the
test set. The data were trained to compare models, and then hybrid model performance
was analyzed for test data. In addition, the hybrid model indicated one dense layer and
two hidden layers.

In this study, the historical flow data of the stations were analyzed in order to estimate
the future river flows and evaluate the proposed models. For this reason, flow data that
have not been disrupted in a long time period were included so as to obtain accurate
estimation. It is significant that the taken flow data must be recorded completely and not be
cut. At this stage, short-term cuts in the flow data are acceptable. However, in many basin-
based studies, when meteorological data (precipitation, snow, temperature, evaporation,
etc.) and hydrological data (flow observation or flow measurement) are obtained from
institutions, the data from past dates might be missing or cut for various reasons, such
as climatic difficulties, transportation difficulties, or problems with the measuring device.
The formation of gaps in inflow data due to unfavorable climatic conditions or various
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reasons forms significant issues in terms of effective planning, design, and operation of
water resources. In addition, these conditions should be taken into account in determining
the flow values so that the structure and hydrological characteristics of the datasets are
not deteriorated.

In addition, as stated above, three hydrological stations, Demirköprü, Karasu, and
Samandağ, were selected to validate the PSO-LSTM model, which illustrates the various
climatic regions and hydrological conditions of the Orontes River. The Orontes River
Demirköprü station is located in the Hatay Watershed, one of the basins with a high flood
regime. The station is the first measurement station encountered after the Orontes River
joins the territory of Turkey. It holds the wide river valley in the upper reaches and is
located in the riverbed that extends to the transition zone where the canal turns into a plain.
In addition, since the mentioned station is near the borders of Turkey, it is least affected
by the interventions to the river waters in Turkey. Karasu Station is located at merging of
the Orontes River within the borders of Turkey; it is the last station extension and contains
a large part of the catchment area. Samandağ Station maintains the flow of the river to
the sea. By use of these features, D19A07, E19A05, and D19A09 stations were utilized to
assemble the datasets for this study. The time period of Demirköprü and Karasu stations in
the study was between 2010 and 2019. Samandağ station data were from 2009–2018. The
datasets consisted of daily flow values.

2.3. Methods
2.3.1. Long Short-Term Memory Network

Long short-term memory (LSTM) is an impressive RNN architecture, and the most
noteworthy feature of this advanced architecture is its ability to decode the disappearing
gradient situation or at least reduce the impact of the disappearing gradient issues on
training performance. Similar to RNN, nodes in an LSTM neural network receive the
latent states of the previous step. However, the node, which is a common LSTM unit,
contains a more advanced structure than it does in RNN, and this is the primary aspect that
provides long-term memory by reducing the vanishing gradient outcome [37]. Three major
components create the LSTM’s internal structure—forget undesirable information in the
current cell state through the forget gate, add further data to the current cell state through
the input gate, produce an output of the current cell state through the output gate—and
these serve specific operations on cell states [38]. These gates determine which data need to
be added or cleared. Cell State, Ct, can be thought of as the memory of a network. It ensures
that previous information is maintained. The gates determine the data to be transported,
as shown in Figure 4. In Equation (1), ft, which is the information from the previous cell,
ht, and the current information, Xt, are inserted into the sigmoid activation function. The
forget gate, ft, determines how much memory is preserved from the previous memory state,
Ct−1. Information with 0 is forgotten, and information with 1 continues to be carried by
Cell State. Another gate is the input gate, it, in Equation (2), providing the information to
write into the current memory state, Ct. It updates Cell State, Ct, and decides to update
the previous and current information according to the result of the sigmoid (σ) operation.
LSTM decides which information it will delete with the sigmoid function. Information with
0 is considered trivial, and information with 1 is deemed essential. In addition, the tanh
activation function, which compresses the data between −1 and 1, is used to regulate the
network. Then, the sigmoid and tanh function outputs are multiplied, and choose which
information will be updated. In Equations (3) and (4), The exit gate determines the input
of the next cell, ht + 1. It is also operated for guesswork. Then, the existing information on
the Cell State is passed through the tanh function. Finally, it determines what information
will be the input for the next cell, ht + 1, by multiplying the two outcomes. When the gate
operations for the current cell are completed, the Cell State that will proceed to the next
cell and the Hidden State, ht, information defined as the input information of the cell are
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decided. In Equations (5) and (6), relying on the current cell state, Ct, the output of LSTM
ht is determined by the output gate ot [39–41].

ft = σ
(

W f ,x × Xt + W f ,h × ht−1 + b f

)
(1)

it = σ(Wi,x × Xt + Wi,h × ht−1 + bi) (2)

ot = σ(Wo,x × Xt + Wo,h × ht−1 + bo) (3)

C̃t = tan h(Wc,x × Xt + Wc,h × ht−1 + bc) (4)

Ct = Ct−1 × ft + it × C̃t (5)

ht = ot × tan h(Ct) (6)
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2.3.2. Particle Swarm Optimization

Many global optimization techniques based on a nature-inspired analogy have been
generated over several decades. These techniques are beyond the intuition of inhabitants
and employ tools that can solve many of the limitations of derivative-based approaches.
One of these popular techniques, PSO, developed by Kennedy and Ebert, is a sociolog-
ically inspired population-based metaheuristic founded on the simulation of common
approaches such as evolutionary programming, ant colony, birds flock, and fish flock.
These algorithms have revealed their ability to solve challenging and complex optimization
situations in various fields. Compared to the genetic algorithm (GA) and other evolutionary
algorithms (EAs), PSO was utilized in this study due to its faster convergence rate and easy
implementation [42].

The PSO system is configured with random solutions and searches for the best solution
by updating each iteration. Each potential solution, called particle, is represented by a point
in the multidimensional solution space. As they are scanning for the optimal solution, the
particles pass into the solution space at a certain speed. Each particle adjusts its position
and velocity according to its own experience and the experience of its neighbors. Correctly,
each particle takes the path of the best solution. This solution is called personal best
representative, pbest. The system also preserves the globally optimal path of all swarms,
called gbest. The basic concept of PSO involves varying the velocity of each swarm towards
the pbest and gbest positions at each repetition [43]. The particle swarm continues iterating
through the process illustrated below until an optimal solution is uncovered. The flow
chart of the PSO algorithm is depicted in Figure 5.
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The PSO system incorporates a local search approach (during self-experimentation)
with global approaches (during the adjacent experience) during balancing investigation
and exploitation. The state of particles in the study field is explained by particle position,
Xi, and particle velocity, Vi.

v(t+1)
i = ωvt

i + c1r1
(

pi − xt
i
)
+ c2r2

(
pg − xt

i
)

(7)

x(t+1)
i = xt

i + v(t+1)
i (8)

The expression Vi = [Vi1, Vi2......Vin] is called the velocity for particle I, which specifies
the distance that this particle will travel from its initial position. The expression Xi = [Xi1,
Xi2 . . . Xin] specifies the position of particle i. The expression pbest is the previous best
position of the thread ‘i’. The expression gbest represents the best position among all herds
in the population. The r1 expression denotes evenly distributed random variables within
[0,1]. Expressions C1 and C2, called acceleration coefficients, are also greater than 0 and
they take each particle to the single best state and optimal particle location, respectively.

The first part of Equation (7), the expression Vi[t], refers to the particle’s previous
velocity, which is a memory of the previous extreme direction. This term can be considered
the momentum that prevents the particle from altering its direction drastically and that
impacts the current direction.

The second part, the expression C1 × r1 × (Pbest i[t] − Xi[t]), is called the cognitive
part and refers to the particle’s individual experience. This cognitive part resembles the
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individual memory of the better place for the particle. The consequence of this term is that
herds return to their best places, similar to the tendency for individuals to return to the
most satisfying situations or places in the past [44,45].

The last part, the expression C2 × r2 × (gbest i[t] − Xi[t]), clarifies the association
among particles, and it is called the social component. The term is analogous to a group
standard that individuals seek to achieve. The outcome of this term is that each particle is
attracted to the best position determined by its neighbor. The numbers named r1 and r2 are
indiscriminate in the range of [0,1].

2.3.3. Forecasting Based on PSO-LSTM (Proposed) Model

In the LSTM neural network, the initial values of the parameters critically influence
the network’s performance. In this study, the PSO algorithm was employed to optimize
two essential parameters of the LSTM network. These two parameters are the number of
hidden layer neurons and the learning rate. While constructing the proposed model, a
standard LSTM network prediction model was conducted as a priority. The test outcomes
were compared by training with random parameters ten times, and the most promising
results were documented as the benchmark model. Right after, several hyperparameters of
the LSTM model were optimized with PSO. The optimal outcomes of the PSO algorithm
were determined, then added to the LSTM network as a parameter, then the LSTM model
was retrained, and the outcomes were compared with the benchmark model. In addition,
the linear regression model was run to verify the accuracy of the results. Consequently, the
results with both models were compared.

First of all, the data were arranged for the training. Therefore, the dataset was divided
into training and test datasets by 80% and 20% for the process. Later, translation and
normalization techniques were applied so as to optimize the parameters in both datasets.
Then, they were converted into a suitable version for training. Afterwards, the LSTM
network was first trained with one dense and one LSTM layer. It proceeded as one dense
and two LSTM layers to achieve a more pleasing performance. The network structure
was accepted as more suitable, and the three-hidden-layer structure was utilized in the
following operations. By altering the number of neurons in the hidden layers, the network
was run 10 times, and the most acceptable results of the three-layer network were assumed
as references. Many attempts were made to determine the most appropriate bias value
for the model. As a result of the experiments, the bias value was determined as 0.5. The
mapping between PSO particles and LSTM parameters was then merged into this structure.
Thus, weight was 0.5, swarm size was 20 and the maximum number of iterations was 50,
C1, and C2 acceleration constants were in the range of (−2, 2), velocity was in the range
(−3, 3), and the number of particles was in the range (32, 256). For the calculation of pbest
and gbest values, the results from the PSO were employed as the learning rate. The number
of neurons in the proposed network and the R2 (coefficient of determination) were used
to determine the fitness values. In this paper, r1 is equal to 0.6, and r2 is equal to 0.3. The
network was utilized with the optimization results corresponding to the gbest, and the
results were recorded. After these procedures, the linear regression model was also utilized.
The graphs and results of the three models were compared. The flowchart of the hybrid
model is shown in Figure 6.
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3. Results
3.1. Performance Evaluation of Models

The hybrid, linear regression and ARIMA models are compared with the benchmark
model in this section of the study. One of the well-known and classical linear statistical
models for the estimation of time series is the ARIMA model. The ARIMA is a time series
estimation approach used to predict the future value of a variable using its past values.
The linear regression model was employed to examine the correlation among the data.
The linear regression method used the linear function to model the association between
dependent and independent variables in the dataset range and tested the linear correlation.
Since the regression approach models the dependent variable as a linear function of the
independent variables, it provides an interpretable explanation of how the input affects
the output [46]. The performance results of each flow measurement station are shown in
Figure 7. Five assessment indicators, which were among the common measures of statistical
distribution, were employed to study and compare the estimation results. These are RMSE,
MAE, MAPE, standard deviation (SD), and R2, specified in Table 2. Statistical measurement
results of the stations are explained in Table 2. The model’s performance consisted of
730 test data for all three stations. The performance of the hybrid model against other
models applied in the study was observed to be thriving when the measurement criteria
presented in Table 2 were examined. Furthermore, statistical measurements supported the
performance of the hybrid model.
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Table 2. Forecasting evaluation criteria (all values are in m3/s).

Station Model RMSE MAE MAPE SD R2

Karasu

PSO-
LSTM 0.8276 0.1401 14.0196 0.2611 0.9526

LSTM 1.2363 0.1530 15.3023 0.2942 0.8893
ARIMA 1.2886 0.0978 9.7838 0.1742 0.8798
Linear 1.3308 0.1948 19.4855 0.3390 0.8725

Regression

Demirköprü

PSO-
LSTM 0.9073 0.0728 7.2830 0.1545 0.9270

LSTM 1.2836 0.0714 7.1450 0.1563 0.8740
ARIMA 1.7860 0.2401 24.0195 0.3006 0.7281
Linear

1.3498 0.0892 8.9201 0.2129 0.8373Regression

Samandağ

PSO-
LSTM 1.2557 0.1025 10.2574 0.1541 0.9749

LSTM 2.3066 0.1270 12.7057 0.1865 0.9202
ARIMA 2.6255 0.1066 10.6665 0.1647 0.8890
Linear

2.6876 0.0951 9.5131 0.1902 0.8916Regression
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3.2. Comparative Analysis and Discussion

Plotting graphs were used to compare the proposed new PSO-LSTM model. A regres-
sion line was also identified in the plotting graphs. The regression line indicated in the
graphs was a standard fit line and significant for demonstrating model performance. In
this context, while determining the quality of a model, its size and whether it creates a
pattern were analyzed. The results of the test data were studied on these graphs. When
the plotting graphs of Karasu station, as shown in Figure 7a, are examined, PSO-LSTM
presented a very satisfactory performance with 0.95262 R2 value compared to LSTM, with
0.8893, ARIMA, with 0.8798, and linear regression, with 0.8725, models. According to the
criteria of the R2 at Demirköprü station, as shown in Figure 7b, PSO-LSTM outperformed
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LSTM (0.8740), ARIMA (0.7281), and linear regression (0.8373) models with a value of
0.9270. According to Samandağ station plotting graphs, PSO-LSTM was achieved with an
R2 value of 0.9749, compared to LSTM with 0.9202, ARIMA with 0.8890, and linear regres-
sion 0.8916. The Samandağ station, the last point where the Orontes River empties into
the Mediterranean, revealed a strong correlation of the estimated flow data with the daily
flow values consistent with its features such as accumulation and acting as a downstream
point. Additionally, when the comparison models were examined, it was revealed that the
LSTM models were more promising than the linear regression models in all three stations.
Analysis of the PSO-LSTM and LSTM methods confirmed the feasibility of the application
to flow estimation in the Orontes River basin, with all R2 coefficients of PSO-LSTM being
greater than (0.92) among three typical hydrological stations. From the analysis of the five
evaluation indices, the accuracy of the models was in the order of PSO-LSTM > LSTM >
linear regression >ARIMA. It showed that no additional data error was added to the hybrid
calculation. On the other hand, the proposed PSO-LSTM hybrid model was reliable and
exhibited higher accuracy in daily flow prediction.

Table 2 shows the values of the statistical measurements of the three hydrological
stations. At Karasu station, according to the MAE criterion, the LSTM model presented
a value of 0.1530 while the hybrid model had a value of 0.1401. The linear regression
model showed a value of 0.1948, and the ARIMA model showed a value of 0.0978. When
the RMSE criterion was examined, the hybrid, benchmark, linear regression, and ARIMA
results were 0.8276, 1.2363, 1.3308, and 1.2886, respectively. According to the standard
deviation criterion, these values were similarly 0.2611, 0.2942, 0.3390, and 0.1742. According
to the MAPE criterion, these values were 14.0196, 15.3023, 19.4855, and 9.7838. When the
evaluation criteria at Karasu station were examined, it was presented that the hybrid model
was successful among all evaluation criteria according to the comparison, linear regression,
and ARIMA models.

At the Demirköprü station, according to the MAE criteria, the LSTM model had a
value of 0.0714, whereas the hybrid model had a value of 0.0728. On the other hand,
the linear regression model had a value of 0.0892, and the ARIMA model had a value of
0.2401. When the RMSE criterion was examined, the hybrid, comparison, linear regression,
and ARIMA results were 0.9073, 1.2836, 1.3498, and 1.7860, respectively. According to
the standard deviation criterion, these values were 0.1545, 0.1563, 0.2129, and 0.3006,
respectively. According to the MAPE criterion, these values were 7.2830, 7.1450, 8.9201,
and 24.0195. When the evaluation criteria at Demirköprü station were analyzed, it was
detected that the comparison model was successful, despite a slight difference in the MAPE
and MAE evaluation criteria. Likewise, it was quite successful compared to the linear
regression. In the other three statistical measurements, the hybrid model was successful
compared to the comparison, linear regression, and ARIMA models.

At the last station, Samandağ, according to the MAE criterion, the LSTM model had a
value of 0.1270 while the hybrid model had a value of 0.1025. On the other hand, the linear
regression model had a value of 0.0951, and the ARIMA model had a value of 0.1066. When
the RMSE criterion was investigated, the results of hybrid, comparison, linear regression,
and ARIMA models were 1.2557, 2.3066, 2.6876, and 2.6255, respectively. According to
the standard deviation criterion, these values were −0.1541, 0.1865, 0.1902, and 0.1647,
respectively. According to the MAPE criterion, these values were 10.2574, 12.7057, 9.5131,
and 10.6665. When the evaluation criteria at the Demirköprü station were examined, the
hybrid and linear regression models provided similar results according to the MAPE and
MAE evaluation criteria. The benchmark model lagged behind the hybrid and linear
regression models in these criteria. In other evaluation criteria, the hybrid model was quite
successful compared to the benchmark and linear regression models. At the Demirköprü
station, the ARIMA model lagged behind other models in all evaluation criteria.

In addition, when all evaluation criteria for the three stations were examined, the
hybrid model provided significant improvements in percentage. In the general evaluation,
the values with the highest R2 and the lowest standard deviation were seen at the Samandağ
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station. Demirköprü station came to the fore in MAE and MAPE evaluations, and Karasu
station according to RMSE criteria. As mentioned before, the Karasu station is located
where the Orontes River merges, the river spills into the sea over the last point, Samandağ,
and the region where Demirköprü station is located is not exposed to pollutants originating
from Turkey when the Orontes River enters the borders of Turkey, and the precipitation
area capacities of the three stations reveal differences when compared with each other.

Streamflow in Karasu was generally in the range of 0–15 m3/s, and the best estimates
were in the range of 0–10 m3/s for all methods. Actual measurements in the range of
10–15 m3/s reach 10 m3/s according to the LSTM results. For other models, the prediction
success in this value range was similar; the method to produce results closest to the actual
values was PSO-LSTM. For the streamflow in the range of 15–30 m3/s, which includes
the highest and outliers, the estimation values of LSTM did not exceed 18 m3/s. While
linear regression predicted flows in the 15–20 m3/s range, the results were above the real
values and below the actual values in ARIMA. At this point, the PSO-LSTM hybrid model
exhibited its success and made accurate predictions in the 15–20 m3/s range. For values
above 20 m3/s, the hybrid model is in the closest value range to the trend line, and its
success at this point has greatly contributed to its superiority over other models.

Demirköprü measured current values showed intensity between 2–10 m3/s. In spite
of the fact that the estimated values were concentrated in this range, the ARIMA values
currents in the 2–3 m3/s value range to those in the 5–10 m3/s value range, and it dis-
tributed the currents in the 5–10 m3/s value range to the 5–25 m3/s value range. It caused
the accuracy of the model to be low among other models. Other models made predictions
in the same range for the measured values between 0 and 12 m3/s. Current values above
14 m3/s greatly influenced the success of the models. Likewise, the model with the least
deviations and errors was the hybrid model.

Samandağı current measurement values have the widest range. The striking point
here is that LSTM and linear regression models tend to cluster in the same value range, the
12–30 m3/s value range. Although ARIMA generally moves in the direction of the trend
line, the hybrid model gave much more accurate results as the intervals are far from the
hybrid model.

Figure 8 illustrates the standard deviation (SD) and correlation for benchmark (1),
proposed (2), linear regression (3), and ARIMA (4) models in Taylor diagram. The distance
from reference to the point (observed) measures the centered RMSE [47]. Thus, the reference
point with the correlation coefficient marks a perfect model equal to 1 (existence in full
agreement with the observations) and the same amplitude of variation when compared
with the observations [48]. At all three stations, the hybrid model results were closer to the
observation points compared to the other model results, confirming the better accuracy
of the optimized model. In spite the fact that the benchmark model performed more
sufficiently at Samandağ and Demirköprü stations than ARIMA and linear regression did,
the ARIMA model provided a significantly close results to the benchmark model at Karasu
station, but lagged behind linear regression.
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To show that the hybrid model used in this study has high accuracy in forecasting
river flows, we compared the estimation results of the literature using hybrid models to
predict time series.

Jabbari and Bae [49] evaluated the real-time bias correction of precipitation data,
and from a hydrometeorological point of view, an assessment of hydrological model
improvements in real-time flood forecasting for the Imjin River (South and North Korea)
was performed. The performance of the real-time flood forecast improved using the ANN
bias correction method. Jiandong et al. [50] developed a hybrid forecasting model. In the
study, the long short-term memory neural networks (LSTMs) and deep belief networks
based on particle swarm optimization (PSO-DBN) were utilized to construct sub-series
prediction models. The results showed that the proposed method in this paper was more
effective than the other existing methods were. Wang et al. [51] proposed a hybrid model-
based “feature decomposition-component prediction-result reconstruction” named VMD-
LSTM-PSO to cope with the nonlinear and nonstationary challenges that conventional
runoff forecasting models face and improve daily runoff prediction accuracy. Based on its
high predictive accuracy and stability, the novel model promised to be a preferred data-
driven tool for hydrological forecasting in practice. Chen et al. [52] utilized the three popular
DL models, which were deep neural network (DNN), temporal convolution neural network
(TCN), and long short-term memory neural network (LSTM). They were used to estimate
daily reference evapotranspiration (ETo). The results displayed that all proposed DL and
CML models outperformed radiation-based or humidity-based empirical equations beyond
the study areas in which they were trained. Di Nunno et al. [53] predicted spring flows by
applying nonlinear autoregressive with exogenous inputs (NARX) neural networks. The
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good results achieved recommend using the NARX network for spring discharge prediction
in other areas characterized by karst aquifers. Granata and Di Nunno [54] built three
recurrent neural network-based models to predict short-term actual evapotranspiration.
Two variants of each model were developed, changing the employed algorithm, selecting
between long short-term memory (LSTM) and nonlinear autoregressive network with
exogenous inputs (NARX). The results revealed that deep learning-based models could
provide very accurate predictions of actual evapotranspiration; however, the performance
of the models can be significantly impacted by local climatic circumstances. As can be seen,
the results obtained in many studies show that hybrid models created with PSO outperform
the comparative model and provide estimation precision.

Considering all these details, it was noticed that converting the results from the PSO
algorithm to LSTM parameters was critical. PSO has several limitations such as stability,
patterns of movements, convergence to a local optimum, and expected first hitting [55].
According to known features of PSO, it was thought that it would be correct to integrate
it into the model. The PSO algorithm was utilized to optimize the learning rate and the
number of hidden neurons, which were two essential parameters of the LSTM network.
As a result, it was seen that the improvement rates were quite high. However, the LSTM
neural network is complex and has other parameters affecting the prediction performance.
The models that will be formed by determining the parameters such as dropout, number
of iterations, and batch size other than just the two considered parameters with PSO, or
those that integrate the parameters into the proposed model using a different improvement
algorithm will guide future studies. In addition, it is thought that the study can be a
reference to hybrid methods in the development of methods that are diversifying with each
passing day with deep learning techniques and in the search for more suitable parameters
in these complex structures.

The hybrid model successfully estimated the daily flow rate in flow measurement sta-
tion data of three various hydrological conditions. In addition, the study demonstrated the
success of the hybrid model in predicting the optimal level of river flows when compared
with the benchmark and linear regression models.

To sum up, it can be seen from the results (Table 2 and Figure 6) that of the three overall
datasets, the PSO-LSTM achieved the best performance on three of the five evaluation
criteria. The estimation results of the PSO-LSTM were superior to those of the LSTM and
linear regression models in nearly all cases, except for the last two statistical measurement
methods, MAE and MAPE, for river flow datasets. In conclusion, the estimation results in-
dicated that the proposed PSO-LSTM algorithm achieves the best overall results compared
with the LSTM model and the regression model for river flow estimation issues.

4. Conclusions

In this study, a hybrid method in which PSO is integrated into LSTM is proposed to
estimate flow data. The performance of the proposed method has been tested on river flow
data from three different flow observation stations on the Orontes River. In spite of the
fact that it has been revealed in the studies that flow can be predicted successfully with
artificial neural network, which provides better results than does regression analysis, the
success of the method depends on the availability of healthy, reliable, and sufficient data.
The proposed new hybrid model was compared with the benchmark model and the linear
regression model. Even though the basic LSTM generally demonstrates a strong learning
ability for time series, it can occasionally present poor performance results owing to the
random selection of initialization parameters. In these cases, supporting the model with
optimization algorithms influences the performance considerably. In this study, one of the
reasons for choosing PSO as the optimization algorithm to search for the appropriate values
of the LSTM parameters is that, when compared to genetic algorithms, it performs with real
numbers and has some benefits such as not needing binary coding to make calculations.
Statistical evaluation criteria, which are among the basic statistical evaluation methods,
were used to measure the model’s performance [56]. The results obtained show that in
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the proposed PSO-LSTM approach, the estimation errors of the flow data are quite low
compared to the other models used in the study. Furthermore, when the R2 values are
considered, it is seen that the estimation accuracy is quite high for the proposed model
at the same rate, which shows that the improvement effect is significant. In addition, the
parameters of the PSO algorithm used in this study are among some of the factors that
need to be developed for future studies. For this reason, in new hybrid models to be made
with the PSO algorithm, a new algorithm will be presented by studying the factors that will
affect the model, such as particle number, particle size, particle spacing, learning factors,
stopping condition, rate of change, particle swarm size, speed, and the maximum number
of iterations. Combining the PSO algorithm with different optimization methods and
comparing the PSO algorithm with new algorithms will benefit future research. In addition,
new hybrid models to be created using metaheuristic techniques will also be beneficial in
future studies. It has been seen that the PSO-LSTM model provides promising results in
river flow predictions. However, the study has some limitations. In this study, only flow
data were operated as input. Flow time series are nonlinear, and many parameters such
as humidity, snowmelt, and temperature can form these time series. This study can be
reconstructed with different input parameters and prepare the ground for future studies.
Since the data are nonlinear, decomposition techniques can be included in the model. The
generated hybrid model was evaluated only for daily flow data. It can be evaluated for
shorter time intervals (hourly, 30 min, 15 min) in possible future studies. Other hydrological
variables can be applied in the field of hydrology to study of the proposed model. The
contribution of the PSO algorithm to the model designed when hybridized is promising.
However, the comparison model can be hybridized with other recently popular algorithms
(e.g., grey wolf algorithm), and the contribution of the two algorithms to the prediction
accuracy can be examined.
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Abbrevations
ANN artificial neural networks
DL deep learning
DSI Hydraulic State Works
EA evolutionary algorithms

EIEI
Electrical Works Survey Administration
General Directorate

FMS flow measurement stations
GP genetic programming
LSTM long short-term memory
MAE mean absolute error
MAPE mean absolute percentage error
MSE mean square error
PSO particle swarm optimization
RMSE root mean square error
RNN recurrent neural networks
SD standard deviation
SVM support vector machine
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37. Şırlancı, M. Malicious Code Detection: Run Trace Analysis by LSTM. Master’s Thesis, Middle East Technical University, Ankara,
Turkey, 2021.

38. Holland, J.H. Adaptation in Natural and Artificial Systems; University of Michigan Press: Ann Arbor, MI, USA, 1975; p. 183.
39. Chollet, A. Deep Learning with Pyhton, 1st ed.; Manning Publications: Shelter Islands, NY, USA, 2018; pp. 198–202.
40. Liu, L.; Zou, S.; Yao, Y.; Wang, Z. Forecasting Global Ionospheric TEC Using Deep Learning Approach. Space Weather 2020, 18,

e2020SW002501. [CrossRef]
41. Yıldız, I. Forecasting of Global Vertical Total Electron Content Based on Trigonometric B-Spline with Long Short-Term Memory.

Master’s Thesis, Hacettepe University, Ankara, Turkey, 2021.
42. Kennedy, J.; Eberhart, R.C. A Discrete Binary Version of the Particle Swarm Algorithm. In Proceedings of the 1997 IEEE

International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation, Orlando, FL, USA,
12–15 October 1997.

43. Medina, A.J.R.; Pulido, G.T.; Torres, J.G.R. A Comparative Study of Neighborhood Topologies for Particle Swarm Optimizers. In
Proceedings of the International Joint Conference on Computational Intelligence, Funchal, Portugal, 5–7 October 2009.

44. Khalaf, T.Z. Hybrid PSO-ANN and PSO Models Based Approach for Estimation of Costs and Duration of Construction Projects.
Master’s Thesis, Kastamonu University, Kastamonu, Turkey, 2020.

45. Tunchan, C. Particle Swarm Optimization Approach to Portfolio Optimization. Nonlinear Anal. Real World 2009, 10, 2396–2406.
46. He, Q.Q.; Wu, C.; Si, Y.W. LSTM with particle Swam optimization for sales forecasting. Elect. Comm. Res. 2022, 51, 101118.

[CrossRef]
47. Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys Res. 2001, 106, 7183–7192.

[CrossRef]
48. Heo, K.Y.; Ha, K.J.; Yun, K.S.; Lee, S.S.; Kim, H.J.; Wang, B. Methods for uncertainty assessment of climate models and model

predictions over East Asia. Int. J. Climatol. 2014, 34, 377–390. [CrossRef]
49. Jabbari, A.; Bae, D.-H. Application of Artificial Neural Networks for Accuracy Enhancements of Real-Time Flood Forecasting in

the Imjin Basin. Water 2018, 10, 1626. [CrossRef]
50. Duan, J.; Wang, P.; Ma, W.; Fang, S.; Hou, Z. A novel hybrid model based on nonlinear weighted combination for short-term

wind power forecasting. Int. J. Electr. Power Energy Syst. 2022, 134, 107452. [CrossRef]
51. Wang, Z.Y.; Qiu, J.; Li, F.F. Hybrid Models Combining EMD/EEMD and ARIMA for Long-Term Streamflow Forecasting. Water

2018, 10, 853. [CrossRef]
52. Chen, Z.; Zhu, Z.; Jiang, H.; Sun, S. Estimating Daily Reference Evapotranspiration Based on Limited Meteorological Data Using

Deep Learning and Classical Machine Learning Methods. J. Hydrol. 2020, 591, 125286. [CrossRef]
53. Di Nunno, F.; Granata, F.; Gargano, R.; de Marinis, G. Prediction of spring flows using nonlinear autoregressive exogenous

(NARX) neural network models. Environ. Monit Assess. 2021, 193, 350. [CrossRef]
54. Granata, F.; Di Nunno, F. Fabio. Forecasting evapotranspiration in different climates using ensembles of recurrent neural networks.

Agric. Water Manag. 2021, 255, 107040. [CrossRef]
55. Bonyadi, M.R.; Michalewicz, Z. Particle swarm optimization for single objective continuous space problems: A review. Evol.

Comput. 2016, 8, 1–54. [CrossRef] [PubMed]
56. Kilinc, H.C.; Haznedar, B. A Hybrid Model for Streamflow Forecasting in the Basin of Euphrates. Water 2022, 14, 80. [CrossRef]

http://doi.org/10.1061/(ASCE)HE.1943-5584.0000927
http://doi.org/10.1061/(ASCE)HE.1943-5584.0002035
http://doi.org/10.1016/j.knosys.2021.107379
http://doi.org/10.1007/BF03326118
http://doi.org/10.1007/s00500-019-03847-1
http://doi.org/10.1016/j.limno.2020.125811
http://doi.org/10.1029/2020SW002501
http://doi.org/10.1016/j.elerap.2022.101118
http://doi.org/10.1029/2000JD900719
http://doi.org/10.1002/joc.3692
http://doi.org/10.3390/w10111626
http://doi.org/10.1016/j.ijepes.2021.107452
http://doi.org/10.3390/w10070853
http://doi.org/10.1016/j.jhydrol.2020.125286
http://doi.org/10.1007/s10661-021-09135-6
http://doi.org/10.1016/j.agwat.2021.107040
http://doi.org/10.1162/EVCO_r_00180
http://www.ncbi.nlm.nih.gov/pubmed/26953883
http://doi.org/10.3390/w14010080

	Introduction 
	Materials and Methods 
	Study Region 
	Datasets and Pre-Processing 
	Methods 
	Long Short-Term Memory Network 
	Particle Swarm Optimization 
	Forecasting Based on PSO-LSTM (Proposed) Model 


	Results 
	Performance Evaluation of Models 
	Comparative Analysis and Discussion 

	Conclusions 
	References

