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Abstract: Water resources management (WRM) is a global strategic issue. Effectively evaluating WRM
performance and analyzing its influencing factors have strong practical significance for improving
regional WRM performance. Data envelopment analysis (DEA) is one of the most popular models
to measure the efficiency of decision-making units (DMUs). Taking regional WRM performance as
efficiency DMUs, this paper proposes the indicator system to quantify WRM performance from the
perspectives of resource endowments, economic and technological development, and ecosystem
protection. The WRM performance of 31 provincial administrative regions in mainland China from
2013 to 2019 are measured, and the temporal and spatial changes are explored using the window DEA
model and the Malmquist index model. Finally, the Tobit model is used to quantitatively analyze
the affecting factors. The results indicate that: (1) in 2015 and 2019, WRM performance of Sichuan,
Shaanxi, Xinjiang, Inner Mongolia, and Guangxi were slightly higher than that in other years, and
the areas with more room for WRM performance improvements were areas with abundant water
resources; (2) from 2013 to 2019, China’s overall WRM performance showed a slow rise, and there
were obvious fluctuations in 2018; (3) the improvement in WRM performance was primarily the
result of an improvement to comprehensive technical efficiency changes (EC), whereas technological
progress changes (TC) have largely restricted China’s WRM performance; (4) the main influencing
factors of WRM performance in China were as follows: industrial development level, water resources
utilization rate, and urban sewage discharge per capita.

Keywords: water resource management performance; window DEA model; Malmquist index model;
Tobit model; influencing factors; China

1. Introduction

Under the realistic background of uneven temporal and spatial distributions, pollu-
tion, and overexploitation of water resources systems, the effective management of water
resources is an urgent need [1]. The world will face a 40% gap between projected demand
and the supply of available water resources by 2030 [2–4]. Obviously, the scarcity of water
resources in the future highlights the importance of water resources management (WRM) in
the economically vigorous region, which is highly industrialized and densely populated [5].
In order to strengthen water security in the context of increasing water demand and short-
ages [6–8], regional governments need to improve their WRM performance. Human factors,
such as the capital investment in management and the manager’s overall planning ability
and risk awareness, have a great influence on WRM [9]. The influencing degree of these
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factors on WRM is of great uncertainty. Thus, scientifically evaluating WRM performance
and analyzing the influencing factors was always the pursuit of government personnel and
scientific researchers.

In the past few decades, a wealth of discussions on WRM issues were planted [10–12].
In the exploration of WRM paths and models, European Union (UN) countries implement
the Integrated water resources management model (IWRM) set by the EU [13,14]. In the
IWRM system, rivers combined with other natural basins are managed in a unified and
hierarchical manner to ensure their integrity [15–17]. Some countries, such as Singapore,
adopted a unified management model that can more effectively implement the WRM
policies to ensure their effectiveness [9]. In China, as well as in the United States, the
regional WRM model was applied. The central government formulated WRM planning
policies and guidelines [18], then the provinces, states, cities, and counties implemented
these policies systematically.

Some countries tried to improve their WRM model consisting of political, social, envi-
ronmental, and economic conditions, while some jointly implement a shared WRM model
through a community. After the promulgation and implementation of the water framework
directives (WFD) [19], good results were achieved in the field of water resources protection
in the EU and they also enjoyed a high reputation internationally. In order to evaluate the
performance of each WRM model and seek the optimal way to improve it, many scholars
have conducted in-depth research on the WRM evaluation [20]. It is believed that the factors
affecting WRM performance mainly include several aspects: the input of water resources,
the development of the regional economy, the protection of the ecological environment, and
the development of science and technology [21]. Thus some researchers try to use social,
economic, environmental, and institutional standards to evaluate watershed or regional
WRM performance at different scales [22,23]. Due to the great influence of human factors
in the process of WRM, the evaluation of WRM performance can hardly be a simple linear
presentation [20]. At the same time, the traditional evaluation methods find it difficult to
reflect the system [24], as each factor in WRM influences each other. The system dynamics
model (SD) can simulate WRM performance under different scenarios, and the optimization
model can obtain the optimal path of WRM under different constraints [25,26]. A large
amount of research involving environmental impact evaluation, including WRM, adopted
SD [27]. SD modeling provides an overall view of complex dynamics, feedback processes,
and interdependencies for the decision-making of WRM [28,29].

However, most of the evaluation methods need to assume a certain amount of parame-
ters, which is difficult to realize a non-parametric quantitative evaluation of the evaluation
object [30]. Compared with the methods mentioned above, the DEA model has the ad-
vantage of adopting non-parametric calculations [31]. The DEA model cannot perform
dynamic analysis of data, the Malmquist index model is a method for processing time
series data, and the two are usually combined to compensate for the limitations of the DEA
model. Therefore, the authors integrate the DEA model and Malmquist index model to
evaluate the WRM performance of 31 provincial administrative regions in China. Since
WRM performance is affected by many factors, improvement and effective suggestions
cannot be addressed when evaluation is conducted alone. At the same time, there are few
research results on the spatial difference and influencing factors of WRM performance
evaluation in the national area [32–34]. This paper uses the Tobit model to systematically
analyze influencing factors on the basis of WRM performance evaluation. China has a
vast area, and there are obvious differences in the number of regional water resources.
Therefore, this paper conducts a regional assessment of China’s WRM performance based
on geographic location.

For the reasons above, the current study focuses on the following aspects: (1) to define
the connotation of WRM from multiple perspectives and establish an indicator system
accordingly; (2) to introduce a practical evaluating method of management combining
the window DEA model with the Malmquist index model into the evaluation of WRM
performance; (3) to calculate the temporal and spatial changes in the WRM performance of
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31 provincial administrative regions in China from 2013 to 2019; (4) to identify the main
influencing factors of WRM in China with the Tobit model.

2. Literature Review

Data envelopment analysis (DEA) is widely used to evaluate the relative efficiency of
different industries. Witte et al. [35] claimed that the DEA model is flexible because it does not
require any assumption regarding the functional relationship between inputs and outputs. Ad-
ditionally, it is widely utilized for its incentive-efficient properties. Omrani et al. [36] proposed
an RCDEA model to measure the efficiency scores of 28 hospitals in the northwestern region of
Iran. Rodrigues et al. [37] used the DEA model in conjunction with data mining techniques such
as K-media and principal component analysis, evaluating the technical efficiency of the private
school sector in Brazil. Similarly, Chen et al. [38] tried to utilize an extended two-stage network
DEA approach for measuring the operating efficiency of 52 Chinese universities. The results
show that one-third of universities in China are efficient and the others are inefficient, and the
operating efficiency of “non-985” universities is significantly higher than that of “985” univer-
sities. Singh et al. [39] applied the DEA model to optimize the resource use efficiency (RUE)
of wheat farms in northwestern India. The result shows that the DEA model helps to reduce
the energy input of 1953.4 MJ ha−1 (~7.2%) and saved 70.5% fertilizer-K and 34.8% electricity.
Michali et al. [40] adopted the DEA model to evaluate the environmental efficiency of railways
in Europe considering environmental factors and found that asset efficient countries are also
service efficient. Using the global innovation index (GII), published jointly by Cornell University
and WIPO in 2020 in terms of innovation inputs and outputs, Aytekin et al. [41] performed
DEA and EATWIOS techniques to benchmark the innovation efficiency of EU member and
candidate countries.

2.1. Research on Window DEA (W-DEA) Model Application

The premise of the DEA model is to assume the homogeneity of the sample objects.
While meeting the requirement of homogeneity, the number of sample objects will inevitably
be reduced. The W-DEA model can solve the problem of small sample size and is more
flexible. The W-DEA analysis method was first proposed by Charnes et al. [42] who used
the method of moving each decision-making unit to examine the decision-making unit
(DMU). W-DEA regards different periods of a DMU as different DMUs. In this way, for a
particular DMU, it could be compared with others sequentially or with others in the same
period. Halkos et al. [43] used power plant level data for two inputs and three undesirable
outputs by employing the W-DEA model to measure environmental efficiency in 50 states
of the USA. The result shows a stable N-shape relationship between regional economic and
environmental growth efficiency in the case of total and global pollutants but an inverted
N-shape in the case of provincial pollutants. Vlontzos et al. [44] undertook a study to assess
greenhouse gas (GHG) emissions efficiency and identify efficiency change of EU countries’
primary sectors by applying the W-DEA model, quantifying positive or negative impact on
a national basis, and then providing hints for counteractive actions. Sefeedpari et al. [45]
set the W-DEA model with energy use as input and milk production as output using data
from 25 provinces during the last 22 years (1994–2016) in Iran. They compared the model
with the slack-based model (SBM) in a dynamic environment by window analysis.

2.2. DEA Application on WRM

Although the DEA model is widely used to evaluate energy efficiency, the research on
its application in WRM is limited. From the perspective of research objects, the application
of the DEA model is mostly focused on studying the utilization efficiency of water resources.
Scholars have evaluated the utilization efficiency of water resources by applying the DEA
model [46]. For example, agricultural water utilization efficiency [39,47,48], industrial
water utilization efficiency [49,50], urban water utilization efficiency [51], and ecological
efficiency of water resources [52].
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However, the literature available in various regions of the world has contributed to
a new body of knowledge focusing mainly on the following topics. Most studies have
adopted the DEA model to evaluate the utilization efficiency of water resources. Rare
research has regarded regional WRM performance as an efficient DMU and applied the
DEA model to the evaluation of WRM performance. Therefore, the novelties of this paper
are: Firstly, the connotation of WRM from multiple perspectives is defined. An index system
for WRM performance evaluation is established from four aspects, namely, regional water
resource endowments, local economic development, ecosystem protection, and regional
technology development. Then, regional WRM performance could be viewed as a DMU
whose efficiency can be measured by the DEA model. Secondly, this study combines the
W-DEA model with the Malmquist index model to achieve a dynamic evaluation of regional
WRM performance. Additionally, the Tobit model is used to estimate the determinants of
technical efficiency for WRM performance, which is not applied in the existing literature.
In addition, the analysis of reasons for the inefficient regions of WRM is the most important
input to form the policies and identify effective strategies to make them efficient.

3. Study Area and Data Sources
3.1. Overview of the Study Area

China is one of the world’s poorest countries in terms of water resource reserves
availability per capita (2300 m3), which is only 1/4 of the world average. In addition to the
shortage, the temporal and spatial distributions of China’s water resources are extremely
uneven (Figure 1). China is located on the western coast of the Pacific Ocean, with a vast
territory, complex topography, and significant continental monsoon climate. From the
southeast coast to the northwest inland China, precipitation decreases successively. In
many places, especially the northern coastal areas, the increasingly serious water prob-
lem has become a “bottleneck”, restricting the sustainable development of China’s social
economy [53].

Based on the characteristics of geographic location, physical geography, and human ge-
ography, China is typically divided into seven regions: Northeast, Eastern China, Northern
China, Central China, Southern China, Southwest, and Northwest [54] (Table 1). Figure 1
presents the average annual precipitation amount of China’s seven regions, showing that
it varies significantly. The overall improvement of WRM in different areas is of great
significance to maintain regional stability and sustainable development.

Table 1. Division of China’s 31 provincial administrative regions.

Region Provincial Areas

Northeast Heilongjiang, Jilin, Liaoning
Eastern China Shanghai, Jiangsu, Zhejiang, Fujian, Shandong, Jiangxi, Anhui

Northern China Beijing, Tianjin, Shanxi, Hebei, Inner Mongolia
Central China Henan, Hubei, Hunan

Southern China Guangxi, Guangdong, and Hainan
Southwest Chongqing, Sichuan, Guizhou, Yunan, Xizang
Northwest Shaanxi, Gansu, Qinghai, Ningxia, Xinjiang

3.2. Data Sources

To ensure the realization of primary goals of water resource development, utilization,
conservation, and protection in accordance with the “Water Law of the People’s Republic
of China”, the “Decisions of the Central Committee of the Communist Party of China
and the State Council on Accelerating Water Conservancy Reform and Development” and
“Opinions of the State Council on Implementing the Most Strict Water Resources Manage-
ment System” were promulgated in 2011 and 2012, respectively (http://www.stats.gov.cn/
(accessed on 17 January 2022)). In 2013, China officially launched the assessment work for
the implementation of the national “strictest water resources management system.” [55]
Therefore, 2013 was chosen as the year to begin this research. The 31 provincial administra-

http://www.stats.gov.cn/
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tive regions of China were viewed as the research area. Data from the “China Statistical
Yearbook” [56], the “China Water Resources Bulletin” [57], the “China Environment Year-
book” [58], the “Statistical Yearbook” of various provinces, and the relevant data from
China’s National Bureau of Statistics were compiled to obtain the original data.

For the input–output index data used in the window DEA model, the “Per capita
water consumption” was collected from the water resources bulletin of each province. The
“percentage of water management personnel” was derived from the ratio of the number of
employees in the water conservancy industry and the number of employees in non-private
organizations collected from the “China Statistical Yearbook”, showing the difference
in WRM human resource input in different regions. “Water-saving irrigation rate” was
determined by the ratio of water-saving irrigation area to the regional irrigated area. The
data was collected from the “China Rural Statistical Yearbook”, except for one missing
aspect in 2013. The data of “effective irrigation area” in 2013 from the “China Water
Conservancy Yearbook” was used instead of the data for “irrigated area”. Since the urban
sewage discharge data of various provincial administrative regions in 2019 was not yet
released, in order to ensure data consistency in the time series, the TREND function was
used to fit the data of regional urban sewage discharge in 2019.
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4. Research Methods and Indicators
4.1. Indicator Selection

This research attempts to select an evaluation index system that can better reflect WRM
performance. The authors standardized the selection range of indicators through a series of
methods. Additionally, the indicators were chosen based on the principles of the scientific,
representative, complete, and operable data. The selection basis of indicators are as follows:
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(1) Based on related theories. WRM is the use of administrative, legal, economic, techno-
logical, and educational means by the water administrative department. The content
of WRM involves developing water conservancy and preventing water disasters, coor-
dinating the relationship between social-economic development and water resources
utilization, dealing with conflicts in water users, supervising unreasonable actions
that endanger water sources, and formulating water supply systems and reservoir
projects [3]. Therefore, based on the basic theories of WRM combined with the charac-
teristics of the elements of the humanistic system involved in the management process,
the indicators were chosen from four aspects: (i) regional water resources endow-
ments, (ii) local economic development, (iii) ecosystem protection, and (iv) regional
technological development.

(2) According to relevant literature. Based on the above four aspects, the large-scale
research conducted by scholars on the situation in various regions was summarized
to help better understand the connotation of WRM. Bibliometrics and its visualization
tools were used as a quantitative method to investigate the important literature, hot
topics, and research frontiers of WRM since 1980. VOSviewer was chosen to search the
Web of Science database of the Institute for Scientific Information using the keyword
“water resource management”. A total of 237,489 documents were retrieved, and the
operation time was 16 March 2021.

(3) According to the research hotspots in the field of WRM, the following operations
were conducted: (i) Keywords having nothing to do with research substance, such
as “framework”, “ratio”, “decade”, and “case study”, were eliminated. (ii) Some
keywords with similar connotations were combined as one. For example, the authors
kept the keyword “wastewater” instead of “wastewater treatment” and “waste”, for
they all indicate research on wastewater. (iii) According to the clustering situation
analyzed by VOSviewer, the categories of keywords in the field were combined with
the definition of the connotations of WRM [59–61] analyzed above. In this study, it
was concluded that the clustering results of WRM should be divided into four parts
for discussion (Table 2).

(4) Based on practical research. Aiming at checking the WRM evaluation indicator system,
the authors consulted professors from the School of Water Conservancy Science and
Engineering in Zhengzhou University and the North China University of Water
Conservancy and Electric Power. Finally, according to the actual situation regarding
China’s WRM process, the indicators were selected, as shown in Table 2.

Table 2. The content and evaluation indicator system of WRM.

Type/Parts of WRM Index Name

Water resource endowments
Per capita water consumption

Water resources development and utilization rate (%)

Economic development

Per capita total investment in place
Water consumption per ten thousand yuan of industrial added value

GDP per capita
Industrial development level (the output value of the secondary

industry accounts for the proportion of regional GDP)
Population density (the ratio of the total population of the area at the

end of the year to the area of the area)
Ecosystem protection Per capita urban sewage discharge

Technology development

Percentage of water management personnel
Unilateral water GDP output
Water-saving irrigation rate

Water penetration rate

4.2. Research Methods
4.2.1. The Window DEA Model

Data envelopment analysis (DEA) is a non-parametric technical efficiency analysis
method based on the relative comparison between the evaluated objects [62]. Since DEA
bears the characteristics of a wide application range and relatively simple principle, it has
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special advantages, especially when analyzing multiple input and output indicators. DEA
can evaluate the relative efficiency of a group of decision making units (DMU) through a
specific mathematical programming model.

DEA is commonly used to evaluate the natural resource allocation efficiency [63].
When evaluating the performance of multiple regions in a long-term series, the ordinary
DEA model would not be suitable due to the different production frontiers in the different
years. In the ordinary DEA model, the entire panel data is directly measured. However,
the panel data is decomposed into cross-sectional data for static calculations, which leads
to efficiency results measured by the ordinary DEA model alone that are not comparable
between years [64]. Window DEA model can solve the above problems. In this study, it is
used to dynamically evaluate the efficiency values of 31 provincial administrative regions
in China from 2013 to 2019.

The basic principle of the window DEA model is to regard the same DMU in different
years as multiple DMUs and then calculate the efficiency values of different decision
units [47]. Using a window DEA model, the need for dynamic comparison and analysis of
the time series of each DMU is met. The same cross-sectional data is repeatedly involved in
the calculation, which can fully tap the value of the data and reflect performance. Combined
with the research of Halkos et al. [65], the optimal window width was determined to be
3a, that is, to participate in the calculation of DMU every three years. The time series
length of this research was seven. Therefore, each DMU was established as Window1
(2013–2015), Window2 (2014–2016), Window3 (2015–2017), Window4 (2016–2018), and
Window5 (2017–2019), and a total of 93 DMUs in the 31 provincial administrative regions
under each window were calculated.

4.2.2. The Malmquist Index Model

In this study, the window DEA model can measure the technical efficiency of WRM,
but it cannot represent the change of total factor productivity of WRM. Therefore, the
Malmquist index model is used to explore the change of total factor productivity of WRM.
The Malmquist index model was first proposed by the Swedish economist Sten Malmquist
in 1953 [66], and later Caves et al. [67] applied this idea to production analysis. Nowadays,
the decomposition method of the Malmquist index model in academic circles is different.
This study adopts the decomposition method proposed by Fare et al. [68]. In addition,
the WRM performance of each region in every period is measured. Changes in the WRM
performance are also investigated. Compared with period t, the reasons for changes in the
production efficiency in period t + 1 could be decomposed into comprehensive technical
efficiency changes (EC) and technical progress changes (TC), and EC could be decomposed
into pure technical efficiency changes (PEC) and the scale efficiency changes (SEC), namely:

MIt,t+1 =

[
Dt(xt+1,yt+1)

Dt(xt ,yt)

Dt+1(xt+1,yt+1)
Dt+1(xt ,yt)

] 1
2

=
Dt+1(xt+1,yt+1)

Dt(xt ,yt)

[
Dt(xt ,yt)

Dt+1(xt ,yt)

Dt(xt+1,yt+1)
Dt+1(xt+1,yt+1)

] 1
2

= ECt,t+1 × TCt,t+1 = PECt,t+1 × SECt,t+1 × TCt,t+1

(1)

where, xt, xt+1 represent the input indicator vectors for periods t and t+1 respectively; yt,
yt+1 represent the output indicator vectors for periods t and t+1 respectively. MI is the
total factor productivity index, representing the change of total factor productivity; Dt

is the efficiency value of DMU in t period; MI can be decomposed into EC and TC. EC
can be further decomposed into PEC and SEC. MIt,t+1 > 1 means that the DMU’s water
resources total factor productivity during the t+1 period is higher than that in the t period;
ECt,t+1 > 1 indicates that the DMU was better than that during the period t+1. The period
was nearer to the production frontier, which meant that the comprehensive technical
efficiency changes were improved. TCt,t+1 > 1 means that the production frontier of



Water 2022, 14, 574 8 of 20

period t+1 had changed compared with period t, which represents an improvement in the
management performance.

4.2.3. The Tobit Model

Since the value of WRM performance is between 0 and 1, the management performance
value (the reciprocal of the efficiency value minus 1, i.e., 1/WRM-1) is the left-bound cut
data from 0 to infinity. If the parameters are estimated using the ordinary least squares
method, they will be biased and inconsistent. To solve this problem, Tobin [69] first
proposed the Tobit model, which is also known as the truncated regression model. An
important feature of the model is that the explained variables are truncated data; that
is, the explained variables are greater or less than a certain value. Therefore, in order to
more comprehensively analyze the factors affecting WRM performance, the values of WRM
performance measured by the window DEA model are set as the dependent variables. The
economic, political, and other regional factors are set as the independent variables of the
Tobit model. This model explores the influencing degree of different factors on WRM.

The general form of the Tobit model is as follows:

yi = xβ + εi ci < xβ + εi < ci (2)

if there is no lower cut-off point, set ci = −∞; and if there is no higher cut-off point,

set ci = +∞.
During the actual process of WRM, there are many factors that affect WRM perfor-

mance. According to the connotation of WRM discussed in Section 3.1, this study selects
six factors in four general parts of WRM to analyze the affecting factors of WRM (Table 3).
The economic development of China’s provincial administrative regions differs greatly
from each other. The famous research called “Hu Huanyong Line” [70] summarized the
great differences of China’s economic development between the eastern coastal areas and
that in western inland areas. This paper uses GDP per capita to represent local economic de-
velopment. Additionally, the industrial structure, representing the local economic growth
pattern, can have a certain impact on WRM. In this study, the output value of secondary
industry accounts for the proportion of regional GDP used to represent the industrial
structure. The third kind is the factor expressed in terms of per capita urban sewage
discharge, representing local ecosystem protection. With the acceleration of China’s ur-
banization process, the local carrying capacity of water resources also changed. Generally
speaking, the pressure on water resources in areas with high population densities will also
be greater. Therefore, the population density and the water resource development and
utilization rate are used to express the level of regional factors on WRM impacts. The final
type is local water-saving technology development expressed in terms of the water-saving
irrigation rate.

Therefore, in this study, the Tobit regression model shows:

WRM = β0 + β1 ln GDPP + β2 ln IDL + β3 ln EM + β4 ln PD1 + β5 ln PD2 + β6 ln SWRL + ξit (3)

Among them, WRM is the WRM performance, GDPP is GDP per capita; IDL is the level
of industrial development; EM is per capita urban sewage discharge; PD1 is population
density; PD2 is water resources development and utilization rate; SWRL is water-saving
irrigation rate; ξit is a random disturbance; β0 is a constant, βn (n = 1, 2, . . . 6) are the
parameters to be evaluated. To solve the dimension problem between the variables, the
logarithm of each variable is taken.
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Table 3. Definition of the variables of the WRM performance and influencing factors.

Statistical Variables Variable Items Symbol Definition References

Explained variable Water resources management level WRM Dynamic WRM performance /

Explanatory variables

Economic scale GDPP GDP per capita [71]

Industrial structure IDL

Industrial development level (the
output value of the secondary industry
accounts for the proportion of regional

GDP)

[72]

Environmental management capabilities EM Per capita urban sewage discharge (ten
thousand cubic meters) [73]

Regional factors PD1
Population density (the ratio of the

total population of the area at the end
of the year to the area of the area)

[74]

PD2 Water resources development and
utilization rate (%) [75]

Smart water management capabilities SWRL
Water-saving irrigation rate

(water-saving irrigation area/farmland
area)

[76]

5. Results and Discussion
5.1. Analysis of the Spatio-Temporal Evolution of the WRM Performance

The indicators used in this study are all selected from the above four parts of WRM.
When applying the DEA model, the rationality of selecting the input–output indicators
directly affects the accuracy of performance measurement results. Therefore, it is particu-
larly important to construct a set of comprehensive and effective input–output indicators.
In this study, the primary idea of quantitative evaluation of WRM performance is that the
lower the resource consumption, the greater the output value and the higher the WRM
performance. Under the guidance of this ideology, based on the principles of scientific,
availability, and representativeness of the data, eight indicators are chosen (Table 4). In the
indicator system of WRM performance evaluation: per capita water consumption reflects
natural resource input; per capita urban sewage discharge reflects environmental carrying
inputs; per capita total investment in place reflects government capital investment; percent-
age of water management personnel reflects human resource input. Unilateral water GDP
output reflects the economic benefits of water use; water-saving irrigation rate reflects the
agricultural benefits of water use; water consumption per 10,000 yuan of industrial added
value reflects the industrial benefits of water use; water penetration rate reflects the living
benefits of water use.

Table 4. Input–output indicator system of the WRM performance.

Type Index Name Description

Input indicators

Per capita water consumption Reflect natural resource input
Per capita urban sewage discharge Reflect environmental carrying inputs
Per capita total investment in place Reflect government capital investment

Percentage of water management personnel Reflect human resource input

Output indicators

Unilateral water GDP output Reflect the economic benefits of water use
Water-saving irrigation rate Reflect the agricultural benefits of water use

Water consumption per ten thousand yuan of
industrial added value Reflect the industrial benefits of water use

Water penetration rate Reflect the living benefits of water use

As was discussed in Section 4.2.1, the paper takes 3 years as the window width to
analyze five windows. Software DEA-Solver-Pro13.1 is used to calculate the index of the
WRM performance of 93 DMUs under each window. Figure 2 show the WRM performance
of 31 provinces from 2013 to 2019.
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According to the calculation results of the DEA model, the temporal and spatial
evolution of the WRM performance of China’s provincial administrative regions from 2013
to 2019 presented the following characteristics.

Firstly, the authors analyzed it diachronically. Figure 2 show that the overall WRM
performance of each region generally stayed still before 2017. Except for the five provinces
of Qinghai, Tibet, Hubei, Hainan and Chongqing, other regions showed an increase in
2016 and the following two years. Ningxia showed a fluctuation in 2014 and 2015. Though
the WRM performance of each region fluctuated to different degrees in 2019, the overall
performance showed an improvement. It is difficult to judge the optimization of the
temporary and adjusting factor allocation due to the turbulence in the factor market based
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on one year’s data, but it is certain that China’s WRM performance is substantially close
to the optimal allocation in 2019. The WRM performance of Tibet, Chongqing, and Inner
Mongolia improved the most during 2018–2019, increasing greater than 25%.

Second, WRM performance was shown to be spatially different (Figure 3). The red
poly-line in Figure 3 shows the national 7 year average of WRM performance. The national
7 year average of WRM performance remained above 0.8. The WRM performance of Central
China was nearest to the national 7 year average performance and their trend of change
was also roughly the same. In contrast, the WRM performance of the three provinces in the
Northeast region showed an upward trend for seven years and greatly improved to greater
than 0.5 in 2018 and 2019. However, the overall performance of the region was below the
national average for WRM performance. Compared with the substantial increase in the
Northeast, WRM performance in Southern China was relatively stable, fluctuating near 0.8,
which is also lower than the national average performance. WRM performance in Eastern
China, Northern China, and Southwest China fluctuated between 0.7 and 0.8, exceeding
the national average performance, and the fluctuation trend was the same. Among them,
the provinces in South China and North China are more economically developed, with
better market mechanisms and relatively fierce market competition; therefore, the resource
input has already shifted to an intensive type.
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It is worth noting that the total water resources of the five provinces in the Northwest
(Shaanxi, Gansu, Qinghai, Ningxia, and Xinjiang) are low. Per capita, in 2019, the water
resources of the region were only 3756 m3/person, much lower than the national average
of 6487 m3/person. Moreover, the economic development performance in the Northwest
was also relatively low. In 2019, the per capita GDP was 43,278 yuan, lower than the
national average of 57,619 yuan. However, due to its input of a high percentage of water
management personnel and per capita total investment in place, the WRM performance of
the Northwest region was higher than the national average. The WRM performance of the
five provinces in Northern China fluctuated near 0.9, ranking them first among the seven
major regions of the country. (Figure 3)

Third, in order to distinguish the relative WRM performance of each region, the WRM
performance in China was divided into four levels within the range of 0–1 according to
the distribution characteristics of the calculated results of the WRM performance index.
Figure 4 show the spatial distribution characteristics of WRM performance in China’s
31 provincial administrative regions from 2013 to 2019. From the perspective of individual
provinces, Fujian, Beijing, Shandong, Hebei, and Henan are the areas with the top five WRM
performances. Since Tianjin, Beijing, Shanghai, Henan, and Ningxia were all water-scarce
regions in terms of per capita resources, the per capita water resources of these five regions
were ranked as the bottom five in the country in 2019. Compared with Beijing, Tianjin,
Fujian, and other regions, the per capita water resources of Tibet and Qinghai are greater
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than 15,000 m3, which is much higher than the national average, ranking the first and the
second in the nation. Though the water resource utilization rate of Xinjiang in 2019 was
only 69.4%, its utilization intensity ranked the top in the country, and its capital, labor
allocation ratio, and technological development were relatively high. As a result, the WRM
performance of Xinjiang is high. The WRM performance of Hainan, Jilin, Ningxia, and
Heilongjiang rank the lowest in China. During the research period, the average WRM
performance of the above four provincial administrative regions was less than 0.66. Water
resource investments, environment, capital, labor, and other inputs in these areas all have
room for improvement. The added value of water consumption and high urban sewage
discharge should become a key control point for the optimal allocation of water resources
and technology for those regions with poor WRM performance in the future.

5.2. Productivity Analysis Based on the Malmquist Index Model

Based on the input–output variable panel data of the 31 provincial administrative
regions in China from 2013 to 2019, Software DEAP2.1 was used to calculate the Malmquist
productivity index for each region. Figure 5 show the total factor productivity index and
its decomposition results for different years, respectively.

Judging from the overall average WRM performance in China’s 31 provincial adminis-
trative regions during the seven years from 2013 to 2019, the total factor productivity for
WRM shows a downward trend first and then an upward trend. Among them, the total
factor productivity of the overall WRM in most of the 31 provincial administrative regions
declined year by year before 2016, and the most obvious rate of decline was in the year 2014
and 2015. Since 2016, the total factor productivity of the overall WRM began to increase year
by year. This is greatly because the Chinese government increased their control of sewage
discharge and implemented strict water pollution prevention and control policies [37]. In
addition, some local governments, especially those in economically developed regions,
increased investment in environmental protection. Additionally, many legal terms and
management rules and regulations were released during these years in China, showing
that the prerequisite for economic development in various regions was not to destroy the
ecological environment [77,78]. In this context, from 2017 to 2019, there were different
degrees of growth in WRM. Among them, the degrees of growth in 2017 were the highest,
reaching 9.9%.

From the results of EC, EC was greater than 1 in 2014, 2017, and 2019, indicating that
EC had a positive effect on driving total factor productivity in these years. Among them, the
EC value was the largest in 2017, reaching 1.047, and in 2017; therefore, the positive effect
of EC on MI was the most obvious. The multi-year average of 1.003 for EC was greater than
1. Therefore, EC can be seen as the main reason for the increase in total factor productivity
of water management over multiple years. Further decomposition of EC reveals that the
multi-year average value of SEC was greater than 1. Compared with PEC, SEC contributed
more to the overall total factor productivity of water resources management in 31 provinces
and regions in China, indicating that China has made great progress in water resources
management restructuring and management model optimization in recent years. From the
results of TC, its multi-year average value of 0.977 was less than 1. Therefore, TC limited
the overall improvement of total factor productivity of water resources management in the
31 provinces and regions of China. This shows that some provinces and regions need to
increase their investment in scientific research regarding water resources management to
promote the production frontier and effectively promote the transformation of advanced
technology into productivity.

In economically developed areas, due to their technological progress, advanced man-
agement models are constantly updated, and the WRM performance is constantly improved.
In relatively undeveloped areas, it is necessary to continuously optimize the WRM model,
strengthen technological innovation, and promote technological progress.
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5.3. Analysis of the WRM Performance Influencing Factors

The indicators of the Tobit model include explanatory variables and explained vari-
ables. This research takes the WRM performance data shown in Figure 2 as explained
variables. Therefore, based on the discussion of the basis of indicator selection in Section 3.1,
indicators that can reflect the factors affecting WRM performance are also selected from the
four aspects (see Table 3). Table 5 show the Tobit regression results.

Table 5. The Tobit regression results of factors affecting China’s WRM performance.

The Variable Correlation Coefficient Standard Deviation Z Statistics Probability

GDPP 0.104 0.034 3.06 0.003 ***
IDL −0.265 0.029 −9.17 0 ***
EM 0.045 0.007 6.46 0 ***
PD1 −0.030 0.007 −4.06 0 ***
PD2 0.070 0.015 4.77 0 ***

SWRL 0.096 0.333 0.29 0.773
Note: *** mean significance at the levels of 1%.

Most empirical studies show that provinces with higher levels of economic develop-
ment will invest a lot of money in WRM activities [79]. However, China’s economic growth
has always been manifested as extensive economic growth that produces a large number of
pollutants. Rapid economic development has also led to an increase in water demand and
serious water pollution [80]. In addition, restoration projects have experienced a certain
lag period. Therefore, it can be seen from Table 5 that the economic scale of this study is
negatively correlated with WRM performance at the level of 1%.

In terms of the industrial structure, the impact coefficient of the output value of the
secondary industry, accounting for the proportion of regional GDP on WRM performance,
is −0.265. In addition, an increase in the proportion from secondary industries reduced
WRM performance. This is because the secondary industry is dominated by industry, and a
large amount of sewage and wastewater is generated during the production process. This
result demonstrates that under the current production methods and resource environment
in China’s provincial administrative regions, the greater the proportion of secondary
industries, the less conducive to improvements in regional WRM. Therefore, in the future, all
regions need to improve their own industrial structure in accordance with local conditions.
By restricting the construction of industrial enterprises that consume large amounts of
water (such as traditional manufacturing industries), provinces with more developed
industries, such as Jiangsu, Shandong, and Henan, can make the development of industry
and commerce a priority.
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The influence coefficient of per capita urban sewage discharge on China’s WRM
performance is 0.045, and it passes the significance test at the 1% level. This indicates that
the per capita sewage discharge has a more obvious positive effect on the WRM capacity.
Aiming at protecting the environment and promoting sustainable economic and social
development, the Chinese government has attached great importance to the management
of urban sewage discharge in recent years. The “Water Pollution Prevention and Control
Law of the People’s Republic of China” was revised and implemented twice in 2018, and
the “Regulations on Urban Drainage and Sewage Treatment” was promulgated in 2013.
According to China Statistical Yearbook, the sewage treatment capacity of all the provinces
in China reached 90% in 2019, indicating that an improvement in the sewage treatment
capacity will improve regional water resource management capabilities [56].

The influence coefficient of population density on WRM performance in China’s
provincial administrative regions was negative −0.030. Generally speaking, population
density has a two-way effect on environmental resource performance [56]. However, an
increase in the population density in various regions of China reduced the ability of WRM.
This is because the increase in population density will increase domestic water consumption.
In addition, the impact has passed the 1% level of the significance test. Hence, the impact
of population density on China’s WRM performance requires urgent attention.

The coefficient influence of water resources development and utilization rate on
China’s WRM performance was −0.070, and it passed the 1% level of the significance test.
This indicates that the degree of water resource development and utilization has largely
restrained WRM performance. The spatial distribution of water resources in China is
extremely uneven, and the ratio of water resources in the south to the north is approximately
4:1. Although the Chinese government has implemented cross-basin water transfer projects,
such as the South-to-North Water Diversion, it has not yet fundamentally solved the
problem of water scarcity in Northern and Western China. According to statistics, the
utilization rate of water resources development in China has exceeded 50% over the
years [39]. Among them, the utilization rate of the Haihe River and the Yellow River basins
has reached more than 70%, far exceeding the internationally recognized safest water
resources development level of 40% [40]. Therefore, the utilization rate of water resources
in China has largely restricted improvements in regional WRM performance.

The water-saving irrigation rate can reflect the performance of regional intelligent
water management capabilities [19], which was positively correlated with the performance
of WRM. This may be because increasing the water-saving irrigation area was conducive to
strengthening the intensive use of water resources by crop planting. However, the water-
saving irrigation rate did not show a significant impact on water management capabilities.
One of the reasons is that China is a largely agricultural country, and agricultural water
accounts for more than half of the total water consumption. However, there is still a big gap
in the level of agricultural water-saving irrigation between China and developed countries.
On the other hand, the rapid development of urbanization in the short term also risks
increasing the pressure on water resources. Therefore, although the water-saving irrigation
rate can increase regional water resources, the impact level on resource management
is limited.

Based on the panel data of 31 provincial administrative regions in China from 2013
to 2019, the following conclusions are obtained: (1) In terms of a temporal perspective,
China’s overall WRM performance displayed a slow rise from 2013 to 2019. According
to the calculated results, the WRM performance of Liaoning, Chongqing, Inner Mongolia,
and Jiangxi improved the most during 2018–2019, with increases greater than 25%. (2) In
terms of a spatial perspective, WRM performance was largely different. Sichuan, Shaanxi,
Xinjiang, Inner Mongolia, and Guangxi had significantly higher WRM performance in
2015 and 2019. Furthermore, different from the traditional understanding, the areas where
there was more room for WRM performance improvement were areas with abundant water
resources per capita. (3) From 2013 to 2019, China’s WRM total factor productivity showed
a trend of decline first and then increased. In most years, EC was the main driver of total
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factor productivity in WRM. TC limits the improvement of total factor productivity in WRM
to some extent. Therefore, it is still necessary to continuously improve the research and
development of WRM, take technological progress as the main driving force of the water
resources management production front, and improve the overall WRM performance in
China. (4) WRM performance is affected by multiple factors, and the degree of influence of
different factors varies greatly. Using the Tobit model to analyze the selected six influencing
factors, this research found that economy, industrial structure, environmental management
capabilities, and regional factors had the greatest impact on WRM capabilities. Among
them, economic and environmental management capabilities were negatively correlated
with WRM performance.

6. Conclusions

Based on the calculation results and the above analysis, there are some suggestions
that can provide a reference for WRM in China and other countries or regions adopting a
regional WRM model: (1) Since limited resources will be allocated to industries that can
use resources most effectively [81], the effective way to improve WRM in water-scarce
areas is to strengthen the construction of factor markets and promote the construction of
market mechanisms. In areas where water resource efficiency is already relatively high, a
certain intensity of market supervision can ensure the continuous and efficient use of water
resources. (2) Though there are abundant water resources per capita in some regions such as
Tibet Province, relatively backward economic conditions and low production efficiency lead
to poor WRM performance. For these areas, the principle of sustainable utilization must
be upheld. In particular, the utilization efficiency of water resources and the number of
WRM technical personnel must be largely improved. (3) The dependence of the total factor
productivity index on technological changes was obvious, indicating that technological
backwardness in most regions was the primary restricting factor for low WRM performance.
Regions such as the Southwest, Central China, and Northeast should increase investment
in science and technology, calling people to use water in a more scientifically sustainable
manner. In addition, it was also found that changes in technical efficiency changes (EC) did
not show positive growth. Therefore, optimizing the industrial structure and strengthening
the management systems are the only ways to improve WRM performance. (4) Currently,
China’s economic development has shifted from a stage of rapid growth to a stage of high-
quality development [82,83]. Thus, the industrial structure needs to be transformed from
an extensive industrial structure to an intensive one urgently. During the rapid progress of
China’s urbanization, the promotion of the industrial structure, gradual improvements in
independent innovation capabilities, and the optimization of the internal structure of the
tertiary industry will help to realize improvements in WRM performance.

In another study on the evaluation of water resources utilization efficiency (WRUE) in
China [80], the research indicates that the WRUE increased from 0.342 in 2003 to 0.876 in
2018, with an average annual growth rate of 6.451%. This efficiency varied significantly
from northern to southern regions. The results of this paper showed good consistency with
the results of previous research. By introducing the window DEA–Malmquist model and
the Tobit model, the WRM performance of different regions under the same management
model can be effectively evaluated to further promote the sharing of WRM experience in
neighboring areas or areas with similar conditions. In the selection of research methods,
more econometric methods, such as spatial regression analysis can be used to measure
WRM performance. Not only will the application of various methods promote the inter-
disciplinary development of disciplines theoretically, but it can also provide guidance for
the government to practically improve WRM capacity. This paper is a preliminary study
on the measurement of WRM performance. Exploring the effective evaluation of WRM
performance provides an opportunity for the construction of a National Modern Water
Network in China and has become the focus of many studies.
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