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Abstract: The main goal of this study was to obtain new results on the physically based future
hydrological consequences of climate change in the Amur, Lena, and Selenga River basins by using
data from an ensemble of global climate (general circulation) models (GCMs) as boundary conditions
in spatially distributed, process-based runoff formation models. This approach provides a basis for a
more detailed comparison of the sensitivity of hydrological systems of neighboring large river basins
in Eastern Siberia and the Far East. The greatest increases in annual flow are predicted for the Lena
River under Representative Concentration Pathway (RCP) 2.6 and RCP 6.0 by the middle and end of
the 21st century and for the Selenga River under RCP 6.0 by the end of the 21st century, while the
Amur flow anomalies are close to zero. During the 21st century, the greatest relative changes in river
flow are predicted for the spring flood, especially for the Lena and Selenga, under both scenarios.
The summer–autumn and winter runoff of the Amur River has a negative change of up to 8% for
the two RCPs, and, on the contrary, the anomalies are positive for the Lena and Selenga. Evaluating
runoff variations between RCPs, we noted high summer–autumn and winter runoff changes for the
Amur River under RCP 6.0 for the future period, a significant increase in anomalies of the spring
and winter runoff of the Lena under RCP 6.0 by the end of the 21st century, and a greater prevalence
of summer–autumn and winter runoff increase for the Selenga River under RCP 2.6 during the 21st
century, but it is especially pronounced by its end.

Keywords: climate-driven runoff change; runoff generation; process-based hydrological modeling;
RCPs; GCMs; ISIMIP; Amur River; Lena River; Selenga River; ECOMAG

1. Introduction

In the last decade, methods of assessing the regional impact of climate change on the
water regime of large rivers using spatially distributed, physically based runoff formation
models, in which the boundary conditions are scenarios of meteorological impacts on
the river watershed according to general circulation models (GCMs) (e.g., [1–3]), have
become increasingly common. In addition to calculating climate-driven changes in river
flow, this approach can be used to determine contributions to flow generation by physical
processes of the hydrological cycle, such as the formation of snow cover and snowmelt,
soil freezing and thawing, evaporation, infiltration, and changes in the dynamics of soil
moisture, surface and subsurface runoff, etc.

Studies of the hydrological impacts of climate change within the water sector of the
international Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) initiated by the
Potsdam Institute for Climate Impact Research (PIK, Germany) have significantly promoted
the idea of the joint use of regional hydrological and global climate models. Simulation
results for river basins located in different continents and physiographic conditions showed
that regional hydrological models successfully tested on observational data [4,5] are a more
reliable tool for estimating future water regime changes for individual river basins [6].
Different testing methods are used for physically based regional hydrological models [4,7],
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which significantly reduces the uncertainty of estimates of current and future changes in
the water regime of rivers compared to runoff calculations from global hydrological models
or climate models [8,9].

Catchment-scale hydrological models allow the detailed consideration of the diversity
of river flow formation mechanisms, the spatial distribution of land surface characteris-
tics (relief, soils, and land use/land cover (LULC)), and other features of the river basin.
To calculate future changes in water regime, hydrological models use the GCM output
data under different Representative Concentration Pathways (RCPs) of global socioeco-
nomic development, which, to a great extent, manifests in the anthropogenic influence on
climate change.

Climate change significantly affects the transformation of the hydrological regime of
large rivers in the Asian part of Russia. In this regard, studies have been carried out for
the major rivers of Siberia and the Far East: the Amur, Lena, and Selenga. The Amur River
basin is one of the most flooded territories of Russia, where a catastrophic flood, in terms of
damage and duration, occurred in 2013 [10,11]. In addition, high flooding in this basin was
then observed in 2019 and 2020. The Arctic Lena basin is characterized by some of the most
intense changes in climate and river flow. Since the beginning of the 21st century, the Lena
runoff has experienced statistically significant increases [12]. The Selenga River had an
extreme low-water period in 1996–2017 [13], followed by several years of high river flows
in this basin. These observations have increased the relevance of analyzing the impact of
future climatic changes on the water regime of these river basins.

In [14], it was shown that the anomalies of annual runoff for the Amur River basin
during the 21st century (relative to the reference period 1986–2005) were insignificant
relative to the natural flow variability using the ECOMAG hydrological model and GCM
data for various RCPs. Using the ECOMAG model and GCM data in [15], it was shown
that the Selenga River runoff will decrease in the 21st century, especially towards the end
of the period, when runoff reduction under RCP 6.0 and RCP 8.5 will be 20–40% relative to
the reference period 1991–2005. More studies on the hydrological consequences of climate
change have been conducted for the Lena basin using runoff formation models and GCM
data. Calculations are based on catchment-scale hydrological models from ECOMAG,
HBV, HYPE, mHM, MIKE SHE, SWAP, SWAT, SWIM, VIC, and WaterGAP3 [16–21]. The
overall trend in Lena River flow in the 21st century is related to an increase in annual runoff
under various RCPs, mainly due to an increase in snowmelt runoff. According to [22], the
anomalies of normal runoff of the Lena River using different GCMs and RCPs will fall in
the range of 14–30% by the end of the 21st century.

The main goal of this study was to obtain new results of physically based future
hydrological consequences of climate change in the Amur, Lena, and Selenga River basins
using the data of an ensemble of GCMs as boundary conditions in spatially distributed
process-based runoff formation models. This approach allows future river flow to be
calculated according to GCM ensemble data under different RCPs using hydrological
models developed on the basis of a unified information base. This provides a basis for a
more detailed comparison of the sensitivity of the hydrological systems of neighboring
large river basins in Eastern Siberia and the Far East.

2. Materials and Methods
2.1. Study Area

The Amur basin is located between 42◦ and 56◦ N, 108◦ and 142◦ E. The catchment area
of the Amur River is 1,855,000 km2, including 1,003,000 km2 within the Russian Federation,
820,000 km2 within the People’s Republic of China, and 32,000 km2 within Mongolia.
The Amur basin is located in a temperate climate zone with monsoon circulation in the
atmosphere. The average annual flow is 357 km3. The water regime is characterized by
low spring flood, a series of high summer–autumn floods, and a winter low-water period.
The main tributaries are the Zeya, Bureya, Sungari, and Ussuri Rivers. To reduce the risk
of flooding in the Amur basin, there are several large reservoirs: the Zeya and Bureya in
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the Russian Federation [23] and Fengman, Baishan, Lianhua, and Nierzi in the People’s
Republic of China.

The Arctic Lena River basin is located between 52◦ and 73◦ N, 103◦ and 142◦ E. The
catchment area of the Amur River is 2,490,000 km2. The water regime of the Lena River
is characterized by a high spring flood, summer–autumn floods, and low winter runoff.
The average annual flow is 530 km3. The main tributaries are the Aldan, Vilyui, Vitim, and
Olekma Rivers. The Vilyui Reservoir is in the Lena basin.

The Selenga River is the main tributary of Lake Baikal. The Selenga basin is located
between 46◦ N and 53◦ N, 96◦ E and 113◦ E. The catchment area of the Lena River is
447,000 km2, and 67% and 33% of the catchment area belong to Mongolia and Russia,
respectively. The water regime is characterized by a low spring flood, a series of high
summer–autumn floods, and low winter runoff. The average annual flow is 27.8 km3.
The main tributaries of the Selenga River are the Orkhon, Eg, Chikoi, Khilok, Uda, and
Dzhida Rivers.

2.2. Hydrological Models

The runoff generation models of the studied river basins were developed based on
the ECOMAG software with a daily time step and spatial resolution equal to the size of
hydrological response units (HRUs), which can be used to describe the spatial distribution
of snow cover formation and snowmelt over the watershed, evapotranspiration, soil freez-
ing and thawing, vertical heat and moisture transfer in frozen and unfrozen soil, surface,
subsurface and groundwater runoff, and routing flow in the river system, taking into
account the influence of reservoirs. Modeling of hydrological processes at each HRU was
performed for four levels: the topsoil layer, horizon of caliche, groundwater, and prechan-
nel flow. During the cold season, snow cover was added. In the model, the subsurface
and groundwater flow is described according to the Darcy equation, and the prechannel
and streamflow are described by the kinematic wave equation. The total porosity in the
soil aeration zone is divided into capillary and noncapillary zones. Potential evaporation
was estimated according to the Dalton method. The snowmelt rate was calculated using
the degree-day method. The phase transformation of precipitation depends on the air
temperature. The evaporation of solid and liquid phases of snow was estimated using data
on the air humidity deficit. When calculating infiltration of rain- and meltwater into frozen
soil, the effect of ice content in frozen soil on the hydraulic conductivity of the soil was
taken into account. A detailed description of the structure and runoff generation processes
in the ECOMAG model is presented in [24–26]. The ECOMAG model was used for large
watersheds of lowland rivers in European Russia [27–31], Arctic rivers [9,16,22,32], a small
permafrost watershed [33], and mountain rivers with glacial runoff [34], as well as rivers
with summer–autumn floods [15,35] and medium-sized semi-mountain rivers [26,36,37]. A
description of the runoff generation model is given for the Amur River basin in [35], for the
Lena River basin in [38], and for the Selenga River basin in [15,39].

Schematization of the river network and river basins as a set of HRUs was performed
based on the HYDRO1k digital elevation model (DEM) with a spatial resolution of 1 km.
The total number of constructed HRUs was 1947 in the Amur basin with an average area of
950 km2, 664 in the Lena basin with an average area of 3700 km2, and 469 in the Selenga
basin with an average area of 970 km2 (Figure 1). The less detailed schematization of the
Lena basin can be explained by the large catchment area of the calibration gauges, which
do not require excessive detail when dividing the basin into HRUs.

Global databases were used to determine the model parameters distributed over the
watersheds: the Harmonized World Soil Database and the Global Land Cover Characteri-
zation database. The meteorological input database includes time series of daily values
of air temperature and relative humidity and precipitation measured at weather stations
(Table 1) or according to the EWEMBI meteorological reanalysis with a regular spatial grid
of 0.5◦ × 0.5◦ [40].
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DEM Hydro1k 
Basin schematization, 1947 664 469 

Figure 1. Hydrological response units (HRUs) in hydrological models of the Amur, Lena, and Selenga
River basins.

A database of hydrological characteristics was prepared for model calibration, which
includes daily discharges at various gauges in the Amur, Lena, and Selenga basins, as well as
discharges from the Zeya, Bureya, and Vilyui reservoirs. Due to the lack of data on discharges
from Chinese reservoirs in the Sungari River basin, the reservoirs are described similarly to
lakes using the linear capacity model. Similarly, the model takes into account discharge from
Lake Khanka in the Amur River basin and from Lake Khubsugul in the Selenga River basin.
Using the estimates of calculation efficiency proposed in [41] based on the combination of NSE,
KGE, and PBIAS criteria, it was assumed that in the calculation of hydrographs, results are
considered good if 0.70 ≤ NSE ≤ 1, 0.70 ≤ KGE ≤ 1 and |PBIAS| ≤ 15% and satisfactory if
0.50 ≤ NSE < 0.70, 0.50 ≤ KGE < 0.70 and 15% < |PBIAS| ≤ 25%.



Water 2022, 14, 609 5 of 22

Table 1. Characteristics of river basins and input information for hydrological models.

Parameter Amur Lena Selenga

Catchment area, km2 1,855,000 2,490,000 447,000
DEM Hydro1k
Basin schematization,
number of HRUs 1947 664 469

Soil Harmonized World Soil Database
LULC Global Land Cover Characterization
Meteorological data 232 weather stations 203 weather stations EWEMBI reanalysis
Air temperature, ◦C −0.3 −8.9 −2.3
Precipitation, mm 555 372 322
Runoff depth, mm 181 229 61

Spatial calibration of the basin model parameters was carried out for the period
1994–2003 at 15 gauges with catchment areas from 7560 to 1,790,000 km2 for the Amur
River and at 7 gauges with catchment areas from 115,000 to 2,460,000 km2 for the Lena
River basin [15,35,38]. The models were validated for the same gauges using independent
hydrological data for the period 2004–2013. A model calibration period of 1984–1993 was
chosen for the Selenga River basin, and a validation period of 1994–2003 was chosen to
assess the performance of the runoff formation model for both the high-water period before
1995 and the subsequent low-water period. Evaluation of modeling efficiency was carried
out for 4 gauges with a catchment area from 282,000 to 445,000 km2.

2.3. Hydrological Modeling Using the GCM Output Data for the Historical Period

In order to reduce the existing uncertainties and increase the spatial detail of climate
projections, numerical experiments with regional hydrological models for the studied river
basins involved the use of daily values of surface air temperature, humidity, and precipi-
tation, which were calculated using the ensemble of four GCMs-CMIP5 (GFDL-ESM2M,
HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-CHEM) from the ISIMIP2b project. The data
were prepared by converting the primary estimated daily mean meteorological data for the
historical period to the EWEMBI reanalysis data according to the bias correction procedure
described in [42]. Data for the future period were climate projections in a 0.5◦ × 0.5◦ spatial
grid up to 2099 under different RCPs [43]. At the same time, calculations were made accord-
ing to RCP 2.6 as the optimal scenario and according to RCP 6.0, because it corresponds
to the current rates of climate change in Eastern Siberia and the Far East to the greatest
extent [38]. RCP 4.5 projections fall within the range of the two scenarios mentioned above,
and RCP 8.5 was not considered due to its excessive extremity and weak realism in terms
of its annual and seasonal values.

Numerical experiments using the developed runoff generation models and the GCM
output data did not take into account the flow regulation by reservoirs located in the Amur
and Lena basins, since the response of the natural hydrological system to climate change
was investigated. To assess the reproduction of river flow simulated by GCMs for the
reference period (1970–1999 for the Amur and Lena Rivers; 1981–2005 for the Selenga), a
comparison was made with the calculation results based on data from weather stations (the
Amur and Lena basins) or reanalysis (the Selenga basin).

2.4. Changes in Air Temperature and Precipitation Using the GCM Output Data for the
Future Period

First, the anomalies of air temperature and precipitation for the studied river basins
during the 21st century were estimated relative to the values determined for the historical
reference period (1970–1999 for the Amur and Lena Rivers; 1981–2005 for the Selenga
River). Anomalies of basin-averaged meteorological values (in degrees Celsius for air
temperature and in percent for precipitation) were calculated for each of the four GCMs
and then averaged over the ensemble for each RCP scenario and the 30-year period corre-
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sponding to the middle (2036–2065) and end (2070–2099) of the 21st century. In order to
compare the three river basins, a unified division of the year into seasons was performed:
winter (November–March), spring (April–May), summer (June–August), and autumn
(September–October).

To assess the spatial and temporal variability of climatic characteristics, maps of mean
annual air temperature and precipitation were constructed based on the calculation results
of runoff formation models for HRUs in the Amur, Lena, and Selenga basins using GCM
data under RCP 2.6 and RCP 6.0 for the middle and end of the 21st century. Then, these
distributions were compared with those determined using GCM data for the historical
period, and anomalies of mean annual air temperature and precipitation were determined.

2.5. Hydrological Modeling Using the GCM Output Data for the Future Period

At this stage, projections of daily meteorological values according to GCMs under
RCPs during the 21st century were used as the input data of runoff formation models of
Amur, Lena, and Selenga Rivers, the water regime characteristics of which were calculated
with a daily time step and a spatial resolution equal to HRU size. Hydrological modeling
during the 21st century was carried out with the same parameters that were set for the
historical period.

During the 21st century, runoff anomalies were estimated similarly to the calcula-
tions for climatic characteristics. Calculations were performed for each of the four GCMs,
and then ensemble averaging was carried out for each RCP and the 30-year period cor-
responding to the middle (2036–2065) and end (2070–2099) of the 21st century. The river
flow was divided into seasons as follows: spring flood for the Amur (April–June), the
Lena (May–June), and the Selenga (April–May); summer–autumn flood period for the
Amur (July–October), the Lena (July–October), and the Selenga (June–October); and winter
low-water period for the Amur (November–March), the Lena (November–April), and the
Selenga (November–March). This choice is explained by climatic parameters, the size of
catchments, the travel time of streamflow to outlet gauges for which the calculation results
are presented, and the features of the water regimes of large tributaries of the studied rivers.
The detection of statistical significance of climatically determined changes in river runoff
was performed using the Mann–Whitney U-test [44]. Calculations were performed at 5%
significance level.

Flow duration curves (FDCs) of daily discharges of the studied rivers for the historical
period and the middle and end of the 21st century under RCP 2.6 and RCP 6.0 were plotted
to assess the trend of high and low flow. Boxplots were constructed to compare daily
flow anomalies of different exceedance probabilities (Q10, Q90). To assess the spatial and
temporal variability of hydrological characteristics, mean annual runoff rate maps were
constructed based on the simulation results for HRUs in the Amur, Lena, and Selenga
basins according to GCMs by the middle and end of the 21st century under two RCP
scenarios. Then, these maps were compared with those constructed using GCM data for
the historical period.

3. Results and Discussion
3.1. Hydrological Models

Figures 2 and 3 show observed and simulated daily hydrographs for outlet gauges of
the Amur, Lena, and Selenga Rivers for the periods of model calibration and validation.
The calculation results of statistical criteria allow us to conclude that the modeling of the
Amur and Lena runoff using data from weather stations and the Selenga runoff using
reanalysis data is good (Table 2). In addition, criteria were observed to have low sensitivity
in the transition from the calibration period to the validation period, which indicates the
robustness of the hydrological models.
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Table 2. Performance of hydrological modeling of daily discharges of the Amur, Lena, and Selenga
Rivers for the periods of calibration and validation.

River–Gauge Catchment
Area, km2

Calibration Validation

NSE KGE PBIAS, % NSE KGE PBIAS, %

Amur–Bogorodskoe 1,790,000 0.83 0.89 −5.7 0.83 0.91 0.7
Lena–Kusur 2,430,000 0.91 0.89 −6.9 0.90 0.91 −2.7
Selenga–Mostovoi 440,000 0.84 0.73 10.8 0.80 0.86 −6.4
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Figure 3. Observed and simulated daily hydrographs for outlet gauges over the validation period of
models for the Amur (a), Lena (b) (2004–2013), and Selenga (c) (1994–2003) Rivers (there are no data
on the observed Lena runoff for 2012–2013).

3.2. Hydrological Modeling Using the GCM Output Data for the Historical Period

When comparing the normal monthly runoff simulated using GCM data for the
historical reference period to the calculations of the Amur runoff using weather station
data, the flow during the spring flood was overestimated by 22%, and the flow during
summer–autumn floods was underestimated by 6% [38]. According to GCM data, the Lena
River was characterized by a flow overestimation of 10% in June. According to GCM data
for the Selenga basin, flow overestimation of 16% in June and underestimation of 10% from
August to October were observed. The calculation results of the normal annual runoff using
GCM data for the reference period were more accurate. According to the GCM ensemble
data, the relative error in calculating the runoff was 2.5% for the Amur River, 3.7% for the
Lena River, and 5% for the Selenga River.



Water 2022, 14, 609 9 of 22

3.3. Changes in Air Temperature and Precipitation Using the GCM Output Data for the
Future Period

The assessment of anomalies of basin-averaged climatic characteristics of the Amur,
Lena, and Selenga Rivers by the middle (2036–2065) and end (2070–2099) of the 21st century
relative to the historical period showed the following results. Both mean annual and
seasonal air temperatures for the three river basins are predicted to increase, and annual
and seasonal precipitation is also predicted to increase. According to RCP 2.6, the increase
in mean annual air temperature will be 1.8 ◦C in the Amur basin, 2.2 ◦C in the Lena basin,
and 1.7 ◦C in the Selenga basin by the middle of the 21st century and 2 ◦C, 2.4 ◦C, and 1.7 ◦C
by the end of the 21st century, respectively (Figure 4). According to RCP 6.0, the increase in
mean annual air temperature will be 2.1 ◦C in the Amur basin, 2.4 ◦C in the Lena basin, and
1.8 ◦C in the Selenga basin by the middle of the 21st century and 3.6 ◦C, 4.2 ◦C, and 3.3 ◦C
by the end of the 21st century, respectively. According to RCP 2.6, the increase in annual
precipitation will be 7% in the Amur basin, 9% in the Lena basin, and 7% in the Selenga
basin by the middle of the 21st century and 6%, 10%, and 8% by the end of the 21st century,
respectively (Figure 5). According to RCP 6.0, the increase in annual precipitation will be
6% in the Amur basin, 11% in the Lena basin, and 7% in the Selenga basin by the middle of
the 21st century and 12%, 18%, and 9% by the end of the 21st century, respectively.

Thus, the largest increase in mean annual air temperature is found for the Lena
basin, and the smallest is for the Selenga basin. The difference in warming between
RCP 2.6 and RCP 6.0 by the middle of the 21st century is not significant for the three basins
but is predicted to increase significantly by the end of the 21st century. The largest increase
in annual precipitation is predicted for the Lena basin. A significant increase in precipitation
anomalies (almost twofold) is noted for the Amur and Lena basins under RCP 6.0 compared
to RCP 2.6.

The calculation results of changes in seasonal meteorological values are presented
below. According to RCP 2.6, by the middle of the 21st century, the warming in the Amur,
Lena, and Selenga basins will be 1.6–2.7 ◦C in winter, 1.4–1.9 ◦C in spring, 1.7 ◦C in summer,
and 1.9–2.4 ◦C in autumn; by the end of the 21st century, it will be 1.8–3 ◦C in winter,
1.6–1.9 ◦C in spring, 1.6–1.7 ◦C in summer, and 1.7–2.2 ◦C in autumn (Figure 4). According
to RCP 6.0, by the middle of the 21st century, the warming will be 1.7–2.9 ◦C in winter,
1.8 ◦C in spring and summer, and 2–2.5 ◦C in autumn; by the end of the 21st century, it will
be 3.4–5.3 ◦C in winter, 2.9–3.5 ◦C in spring, 3.0–3.4 ◦C in summer, and 3.3–4.1 ◦C in autumn.
According to RCP 2.6, by the middle of the 21st century, the increase in precipitation in
the Amur, Lena, and Selenga basins will be 15–19% in winter, 8–11% in spring, 3–6% in
summer, and 4–12% in autumn; by the end of the 21st century, it will be 12–25% in winter,
8–9% in spring, 3–8% in summer, and 4–14% in autumn (Figure 5). According to RCP 6.0,
by the middle of the 21st century, the increase in precipitation will be 17–26% in winter,
7–11% in spring, 3–5% in summer, and 5–12% in autumn; by the end of the 21st century, it
will be 28–44% in winter, 15–18% in spring, 5–10% in summer, and 8–22% in autumn.

The largest seasonal increase in air temperature is predicted for the Lena basin in the
autumn–winter period for the two RCPs and periods. A similar trend is noted for the Amur
basin but with smaller values of anomalies. There will be relatively even seasonal warming
in the 21st century under RCPs for the Selenga basin. Under the two RCPs, winter makes
the largest contribution to the increase in precipitation, and summer makes the smallest. A
more intensive increase in autumn–winter precipitation is noted for the Lena basin and in
summer precipitation for the Amur and Selenga basins. The three rivers are predicted to
undergo significant increases in seasonal air temperature and precipitation by the end of
the 21st century under RCP 6.0.
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The results of estimation of spatial and temporal variability of mean annual air tem-
perature and precipitation based on the results of runoff formation model calculations for
HRUs in the Amur, Lena, and Selenga basins using GCM data by the middle and end of
the 21st century under RCPs relative to the historical period are given below. By the middle
of the 21st century, the increase in mean annual air temperature under RCP 2.6 will be
1.4–2 ◦C for the Amur and Selenga basins, 2–2.5 ◦C in most of the Lena basin, 2.5–3 ◦C in
the Lower Lena, and 1.4–2 ◦C in the Upper Vitim (Figure 6). By the end of the 21st century,
the increase in mean annual air temperature under RCP 2.6 will be 1.4–2 ◦C in the Selenga
basin; 2–2.5 ◦C in the Amur basin for the Upper and Lower Amur, Zeya, Sungari, and left
tributaries of Ussuri, and 1.4–2 ◦C for the remainder of the Amur basin; and 2–2.5 ◦C in
most of the Lena basin, Lower Lena, and left tributaries of Vilyui. By the middle of the
21st century, the rate of warming under RCP 6.0 will be similar to that under RCP 2.6 by
the end of the 21st century. The difference is in whether the 2 ◦C warming threshold is
exceeded in the Upper Amur. By the end of the 21st century, the increase in mean annual
air temperature under RCP 6.0 will be 3–4 ◦C in the Selenga and Amur basins, 4–5 ◦C
for the Lower Amur and most of the Lena basin, and 3–4 ◦C for the Upper Lena, Vitim,
Olekma, and Upper Aldan.

By the middle of the 21st century, the increase in annual precipitation under RCP
2.6 will be 5–10% in most of the Selenga basin and 1–5% in the western part of the basin;
5–10% in most of the Lena basin and 10–15% in the Lower Lena and Vilyui; and 1–5% in
the Amur basin in the Lower Shilka and Argun, Upper Sungari, and Zeya basins, 10–15%
for the Middle Amur, Middle and Lower Ussuri, and Upper Mudanjiang, and 5–10% for
the remainder of the Amur basin (Figure 7). By the end of the 21st century, the increase
in precipitation under RCP 2.6 will be 5–10% in most of the Selenga basin and 10–15% for
the Tuul and Uda; 10–15% in most of the Lena basin and 5–10% for the Upper Lena, Vitim,
Olekma, and Aldan; and 1–5% in the Amur basin for the Selemdzha, Bureya, Lower Zeya,
Sungari, Upper Ussuri, and Amgun, 10–15% for the Ingoda, Onon, and Mudanjiang, and
5–10% for the remainder of the Amur basin. By the middle of the 21st century, the increase
in annual precipitation under RCP 6.0 will be 5–10% in most of the Selenga basin and 1–5%
in the western part of the basin; 10–15% in most of the Lena basin and 5–10% for the Upper
Lena, Vitim, Olekma, Aldan, and Lower Lena; and 1–5% for the Shilka, Zeya, Bureya,
Sungari, Khor, Amgun, and Middle and Lower Amur and 5–10% for the remainder of the
Amur basin. By the end of the 21st century, the increase in annual precipitation under RCP
6.0 will be 5–10% in most of the Selenga basin and 10–15% for the Tuul, Chikoi, Uda, and
Khilok; 15–20% in most of the Lena basin, 5–10% for the Upper Lena, Vitim, and Olekma,
20–30% for the Lower Vilyui, Middle Aldan, and Lower Lena, and up to 30–45% in the
Lena delta area; and 10–15% in most of the Amur basin, 5–10% for the Upper Selemdzha
and Argun, and 15–20% for the Upper Sungari and Lower Amur.

3.4. Hydrological Modeling Using the GCM Output Data for the Future Period

The assessment of annual and seasonal runoff anomalies of the Amur, Lena, and
Selenga Rivers in the middle (2036–2065) and end (2070–2099) of the 21st century relative to
the historical period showed the following results. According to RCP 2.6, by the middle of
the 21st century, the change in annual runoff of the Amur, Lena, and Selenga predicted by
the GCM ensemble will be 0.1%, 12%, and 10%, respectively. By the end of the 21st century,
the change in annual runoff of the Amur, Lena, and Selenga will be −2%, 18%, and 25%,
respectively (Figure 8). According to RCP 6.0, by the middle of the 21st century, the change
in annual runoff of the Amur, Lena, and Selenga will be −3%, 14%, and 6%, respectively.
By the end of the 21st century, the change in annual runoff of the Amur, Lena, and Selenga
will be −2%, 23%, and 2%, respectively.
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Figure 6. Anomalies of mean annual air temperature in the Amur, Lena, and Selenga River basins by
the middle (a,c) and the end (b,d) of the 21st century under RCP 2.6 (a,b) and RCP 6.0 (c,d) relative to
the historical period.

Analyzing the change in intra-annual runoff, it was noted that by the middle of the
21st century under RCP 2.6, the runoff change for the Amur, Lena, and Selenga basins
will be 4%, 21%, and 18% during the spring flood, respectively; −2%, 6%, and 7% during
summer–autumn floods; and 2%, 6%, and 14% during the winter low-water period. By
the end of the 21st century, the runoff change for the Amur, Lena, and Selenga basins will
be −0.4%, 24%, 26%, respectively, during the spring flood; −2%, 15%, and 21% during
summer–autumn floods; and −4%, 5%, and 35% during the winter low-water period
(Figure 8). According to RCP 6.0, by the middle of the 21st century, the runoff change for
the Amur, Lena, and Selenga basins will be 4%, 24%, and 14%, respectively, during the
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spring flood; 6%, 7%, and 3% during summer–autumn floods; and 4%, 8%, and 9% during
the winter low-water period. By the end of the 21st century, the runoff change for the Amur,
Lena, and Selenga basins will be 5%, 35%, and 27%, respectively, during the spring flood;
4%, 15%, and −4% during the summer–autumn floods; and 8%, 14%, and 3% during the
winter low-water period.
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Figure 8. Anomalies of annual (a,b) and seasonal (spring flood (c,d), summer-autumn floods (e,f),
winter low flow (g,h)) runoff of the Amur, Lena, Selenga rivers by the middle (2036–2065) and end
(2070–2099) of the 21st century under RCP 2.6 and RCP 6.0 relative to the historical period.

The greatest increase in the long-term annual runoff is predicted for the Lena River
under RCP 2.6 and RCP 6.0 by the middle and end of the 21st century and for the Selenga
River under RCP 6.0 by the end of the 21st century, while the Amur flow anomalies are close
to zero. During the 21st century, the greatest relative changes in river flow are characteristic
of the spring flood, especially for the Lena and Selenga under both scenarios. The summer–
autumn and winter runoff of the Amur River has a negative change of up to 8% for the
two RCPs and periods of the 21st century, and on the contrary, positive anomalies are
observed for the Lena and Selenga. Evaluating runoff variations between RCPs, we noted
high summer–autumn and winter runoff changes of the Amur River under RCP 6.0 during



Water 2022, 14, 609 16 of 22

the future period, significant increases in anomalies of the spring and winter Lena runoff
under RCP 6.0 by the end of the 21st century, and a greater prevalence of summer–autumn
and winter runoff increase of the Selenga River under RCP 2.6 during the 21st century,
but it is especially pronounced by its end. The Mann–Whitney U-test showed statistically
significant (at 5% level) changes in the annual and seasonal Lena runoff during the 21st
century under both RCPs, as well as the Amur winter runoff under RCP 6.0 by the middle
of the 21st century (Table 3).

Table 3. Significance of changes in annual and seasonal runoff of Amur, Lena, and Selenga Rivers in
21st century under RCP 2.6 and RCP 6.0 by the Mann–Whitney U-test at 5% level.

River Period
Annual Spring Flood Summer–Autumn Floods Winter Low Flow

RCP 2.6 RCP 6.0 RCP 2.6 RCP 6.0 RCP 2.6 RCP 6.0 RCP 2.6 RCP 6.0

Amur
2036–2065 − − − − − − − +
2070–2099 − − − − − − − −

Lena
2036–2065 + + + + + + + +
2070–2099 + + + + + + + +

Selenga 2036–2065 − − − − − − − −
2070–2099 − − − − − − − −

Further, the results of changes in high and low runoff based on FDC of daily discharges
of the studied rivers for the historical period and the middle and end of the 21st century
under RCP 2.6 and RCP 6.0 are reported (Figure 9). A comparison of daily flow anomalies
of exceedance probability (Q10, Q90) showed that the high flow (Q10) of the Amur River
will decrease by 5% by the middle of the 21st century under RCP 6.0 (other values will be
about 1%), the Lena will increase by 9–14% depending on the RCP and period of the 21st
century, and the Selenga will increase by 10–25% under RCP 2.6 and by 6% under RCP 6.0
by the middle of the 21st century and will decrease by 1% by the end of the 21st century.
The low flow (Q90) will decrease by 5–9% for the Amur, whereas it will increase by 2–4%
for the Lena and by 7–42% for the Selenga depending on the RCP and period of the 21st
century. The above results show that the probability of flooding in the Lena and Selenga
will increase, and for the Amur, no significant changes in high flow are revealed, while the
probability of hydrological droughts will decrease.

The results of the assessment of scenario (differences between RCPs) and model
(differences between GCMs) uncertainties of the mean annual values of air temperature,
precipitation, and river runoff in the Amur, Lena, and Selenga basins showed that the
model uncertainty of air temperature changes is prevalent by the middle of the 21st century.
Its relative contribution to the general uncertainty of the projections is 85–90% for the basins
of the studied rivers, and by the end of the 21st century, the scenario uncertainty increases
to 46–53%. For precipitation, the contribution of model uncertainty by the middle of the
21st century is greatest for the Lena basin at 85% and decreases to 57% by the end of the
calculation period, whereas for the Selenga basin, it is the lowest by the middle of the
21st century at 63% and increases to 67% by the end of the calculation period, making it
the source of the greatest uncertainty of the three studied river basins. River flow filters
uncertainties in climatic characteristics to some extent. During the 21st century, the scenario
uncertainty of Lena and Selenga runoff increases from 30% and 15% to 49% and 41%, and
the Amur runoff uncertainty, on the contrary, decreases from 34% to 28%.

Both areas with a positive and negative trend in the studied river basins are marked
by assessing the spatial variability of the mean annual runoff rate. According to RCP 2.6, by
the middle of the 21st century, there will be a decrease in the runoff rate of 1 L·s−1· km−2

in the Upper Selenga, Orkhon, Eg, Chikoi, Khilok, and Uda and an increase in the runoff
rate of 1 L·s−1·km−2 for the remainder of the Selenga basin (Figure 10). The Lena basin
will be characterized by a decrease in runoff rate in the Upper and Middle Lena, Vitim,
Olekma, Aldan, and Vilyui, with the highest values (up to 2 L·s−1·km−2) for Central
Yakutia, and the remainder of the basin will have a positive trend, with the highest values
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(up to 2 L·s−1·km−2) in the Lower Lena. There will be mainly a decrease in runoff rate
in the Amur basin for the Shilka, Argun, Zeya, Sungari, and Upper Bureya, with the
highest values (up to 2–2.5 L·s−1·km−2) for the tributaries of the Zeya Reservoir and Upper
Argun, and the Tunguska, Khor, and Bikin will have the highest increase in runoff rate of
2 L·s−1·km−2. According to RCP 2.6, the following changes will occur by the end of the
21st century: the catchment area with a negative runoff trend will decrease in the Selenga
and Lena, while the overall distribution will remain similar to that in the middle of the 21st
century. On the contrary, the area with a negative runoff trend will increase significantly
in the Amur basin, including the Lower Zeya, while the runoff will increase in the Lower
Nenjiang, Khor, and mouth area of the Amur River.
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Figure 10. Anomalies of mean annual runoff rate in the Amur, Lena, and Selenga River basins by the
middle (a,c) and the end (b,d) of the 21st century under RCP 2.6 (a,b) and RCP 6.0 (c,d) relative to the
historical period.

By the middle of the 21st century, the Lena basin will have a similar distribution of
runoff rate changes under RCP 6.0 compared to RCP 2.6, and the area with the greatest
decrease will be smaller (Figure 10). In the Selenga basin, the area of decreased runoff rate
will extend to the Dzhida and the entire watershed up to the Orkhon mouth. In the Amur
basin, the Upper Sungari and the Russian part of the Ussuri basin will be added to the
area with a negative trend in the annual runoff. At the same time, the greatest decrease in
runoff is noted in the Upper Ussuri and Mudanjiang. By the end of the 21st century, the
Lena basin will be characterized by a similar distribution of runoff rate changes under RCP
6.0 compared to RCP 2.6, but the difference in these changes will increase. The runoff will
decrease even further in the middle part of the Lena basin, and the anomalies will increase
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from 1–2 to 2–4 L·s−1·km−2 for some mountainous areas. The runoff rate will decrease by
0.1–1 L·s−1·km−2 in the Selenga basin. A similar distribution of runoff rate changes will
remain in the Amur basin, but its decrease will become greater in the Shilka, Zeya, and
Ussuri basins.

4. Conclusions

The calculation of changes in the annual runoff of the Amur, Lena, and Selenga Rivers
by the middle and end of the 21st century relative to the period of the end of the 20th
century showed almost zero anomalies of the Amur runoff under different RCPs, increases
in the Lena runoff of 12–18% under RCP 2.6 and 14–23% under RCP 6.0, and increases
in the Selenga runoff of 10–25% under RCP 2.6 and 2–6% under RCP 6.0. An increase in
the Amur runoff during the spring flood of up to 5%, a runoff decrease during summer–
autumn floods of 2–6%, and a change in winter runoff from −8% to 2% were revealed. An
increase in the Lena runoff during the spring flood of 21–35%, a runoff decrease during
summer–autumn floods of 2–6%, and increases in winter flow of 5% under RCP 2.6 and
8–14% under RCP 6.0, depending on the period of the 21st century, were detected. It was
determined that the Selenga runoff during the spring flood will increase by 14–18% and
27% by the middle and end of the 21st century, and runoff during summer–autumn floods
will increase by 3% and 7% under RCP 6.0 and RCP 2.6 by the middle of the 21st century.
By the end of the 21st century, the Selenga runoff will have contrasting changes: a runoff
increase during summer–autumn floods of 21% under RCP 2.6 and a decrease of 4% under
RCP 6.0, an increase in winter runoff of 9–14% under the two RCPs by the middle of the
21st century, and increases in winter runoff of 35% under RCP 2.6 and 3% under RCP 6.0
by the end of the 21st century.

The greatest increase in the long-term annual runoff is predicted for the Lena River
by the middle and end of the 21st century under RCP 2.6 and RCP 6.0 and for the Selenga
River by the end of the 21st century under RCP 6.0, while the Amur flow anomalies are
close to zero. During the 21st century, the spring flood is characterized by the greatest
relative changes in river flow, especially for the Lena and Selenga under both scenarios.
The summer–autumn and winter runoff of the Amur River has a negative change of up
to 8% for the two RCPs and both periods of the 21st century, and on the contrary, positive
anomalies are observed for the Lena and Selenga. Evaluating runoff variations between
RCPs, we noted large changes in the summer–autumn and winter runoff of the Amur
River under RCP 6.0, a significant increase in anomalies of the spring and winter Lena
runoff under RCP 6.0 by the end of the 21st century, and a greater prevalence of summer–
autumn and winter runoff increase of the Selenga River under RCP 2.6 during the 21st
century, but it is especially pronounced by its end. The Mann–Whitney U-test showed
statistically significant changes in the annual and seasonal Lena runoff during the 21st
century under both RCPs, as well as the Amur winter runoff under RCP 6.0 by the middle
of the 21st century.

The high flow of the Amur River will decrease by 5% by the middle of the 21st century
under RCP 6.0 (other values will be about 1%), the Lena will increase by 9–14%, depending
on the RCP and period of the 21st century, and the Selenga will increase by 10–25% under
RCP 2.6 and by 6% under RCP 6.0 by the middle of the 21st century and will decrease by
1% by the end of the 21st century. The low flow will decrease by 5–9% for the Amur and
will increase by 2–4% for the Lena and by 7–42% for the Selenga, depending on the RCP
and period of the 21st century. The results show that the probability of flooding in the
Lena and Selenga will increase, and for the Amur, no significant changes in high flow are
revealed, while the probability of hydrological droughts will decrease.

Thus, the verification of runoff generation modeling of the intra-annual water regime
using GCM data for the historical period allowed us to obtain similar results of annual
runoff changes for the Amur River [14] and Lena River [22], as well as to specify changes in
the Selenga runoff [15], for which we should expect alternating high-water and low-water
periods rather than a monotonic decrease in flow by the end of the 21st century, reaching
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critical values. Prospects for refining the calculation results of water regime anomalies
could be to account for LULC dynamics in climate projections for the 21st century. However,
future LULC changes derived from the models mainly include the dynamics of the area
occupied by different crops or urban landscapes [45,46]. In other words, the impact
of anthropogenic transformation of landscapes under different socioeconomic scenarios,
rather than a gradual change in natural vegetation cover due to air temperature and
precipitation over the 21st century, is estimated. The use of climatic projections calculated
based on the GCM output data of the CMIP6 may allow the estimates of the hydrological
consequences of climate change to be refined. In addition, this may be facilitated by
modern accounting of global socioeconomic change scenarios, but the uncertainties of
runoff calculations associated with both the internal structure of hydrological models and
the selection of the optimal GCM and RCP will still exist. Moreover, these uncertainties
will increase as the calculation time horizon increases.
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