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Abstract: Backward probabilities have been used for decades to track hydrologic targets such as
pollutants in water, but the convenient deviation and scale effect of backward probabilities remain
unknown. This study derived backward probabilities for groundwater pollutants and evaluated their
scale effect in heterogeneous aquifers. Three particle-moving methods, including the backward-in-
time discrete random-walk (DRW), the backward-in-time continuous time random-walk (CTRW),
and the particle mass balance, were proposed to derive the governing equation of backward lo-
cation and travel time probabilities of contaminants. The resultant governing equations verified
Kolmogorov’s backward equation and extended it to transient flow fields and aquifers with spatially
varying porosity values. An improved backward-in-time random walk particle tracking technique
was then applied to approximate the backward probabilities. Next, the scale effect of backward
probabilities of contamination was analyzed quantitatively. Numerical results showed that the
backward probabilities were sensitive to the vertical location and length of screened intervals in a
three-dimensional heterogeneous alluvial aquifer, whereas the variation in borehole diameters did not
influence the backward probabilities. The scale effect of backward probabilities was due to different
flow paths reaching individual intervals under strong influences of subsurface hydrodynamics and
heterogeneity distributions, even when the well screen was as short as ~2 m and surrounded by
highly permeable sediments. Further analysis indicated that if the scale effect was ignored, significant
errors may appear in applications of backward probabilities of groundwater contamination. This
study, therefore, provides convenient methods to build backward probability models and sheds light
on applications relying on backward probabilities with a scale effect.

Keywords: backward model; governing equation; scale effect; backward location probability; back-
ward travel time probability

1. Introduction

Kolmogorov derived his well-known transport equations describing the probability
density of random-walk particles in both jump and diffusion processes in 1931 [1,2]:
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where G is the forward conditional probability density, i.e., the probability to find the
particle in location Y [L] at time t [T], given it was in X∗ at time s (s < t); P is the backward

Water 2022, 14, 624. https://doi.org/10.3390/w14040624 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w14040624
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0003-2918-7107
https://doi.org/10.3390/w14040624
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w14040624?type=check_update&version=2


Water 2022, 14, 624 2 of 17

conditional probability density, i.e., the probability that the particle was in location X at
time s, given it is in Y at time t; and the superscript T represents the transpose of the matrix.
Here A and A∗ are the “drift” vectors [LT−1], and B and B∗ are tensors [LT−1/2] defining the
strength of diffusion along the backward and forward directions, respectively. Equation (1)
is called the Kolmogorov forward equation or the Fokker–Planck equation, and Equation
(2) is the Kolmogorov backward equation. During the past four decades, hydrogeologists
have used the forward equation of Equation (1) (with a slightly different diffusive flux to
account for the mass balance, see Section 3.1) to simulate the random walk of particles
to calculate aqueous concentrations of solutes driven by advection and dispersion [3–9].
The corresponding numerical method is called the random-walk particle tracking (RWPT)
method. The RWPT method is computationally appealing because it does not need any
space discretization, does not suffer from numerical dispersion in problems dominated
by advection, conserves the global mass balance automatically, and can be incorporated
into any flow problem [5,9]. The continuum-based classical solvers, such as the finite
element method, the finite difference method, and the method of characteristic models, do
not have these advantages. Therefore, the high efficiency of the RWPT method promotes
applications of the forward equation (Equation (1)) and its variant, which is adopted by
this study.

Kolmogorov’s backward equation (Equation (2)) has also been applied, although by
relatively fewer users, to reverse problems in hydrology. For example, since Uffink [10] first
applied Kolmogorov’s backward equation to calculate the history of groundwater contami-
nation, backward probability has been used to delineate well-head protection zones [11–13],
calculate groundwater ages based on the concentrations of environmental tracers [14], eval-
uate the aquifer vulnerability [15,16], identify the groundwater pollutant source [17–20],
and study the important influence of pumping on natural aquifer recharge [21]. These
studies demonstrate that the application of backward probability has a high efficiency
in backward problems for the case of non-point source contaminants and does not need
initial conditions of solutes on model boundaries (as shown again by this study). These
advantages are not present in the forward transport methods.

Further development is required in both the theoretical derivation and field application
of backward probabilities of contaminants. There have been two main methods used to
derive the governing equation of backward probabilities, namely, the adjoint method
proposed by Kolmogorov [1,2] and expanded recently by Neupauer and Wilson [22–24]
and Zhang et al. [25,26], and the traditional method of the Taylor series expansion of
the Chapman–Kolmogorov equation initiated by Fokker and Planck [27]. However, four
main questions remain for the backward probability models. First, methods that can
conveniently reverse the forward transport models to their backward counterpart are still
needed for hydrologists. Second, one outstanding question that limits further applications of
backward probabilities is whether the vector A and the tensor B in Kolmogorov’s backward
equation must be divergence free. Third, current applications of backward probabilities
are either limited to macroscopically homogeneous or simplified heterogeneous porous
media, or one- or two-dimensional media [26]. The systematic behaviors of backward
probabilities in three-dimensional natural geological media, such as regional-scale alluvial
aquifer/aquitard systems, have not yet been reported in literature. Fourth, the above-
mentioned limitations question the commonly used assumption that the scale effect of
backward probabilities can be ignored. In general, for a short (1.5 m for a commonly used
short-screen) and narrow well surrounded by highly permeable sediments, researchers
assumed that local dispersion around the well screen is negligible compared with the
regional-scale dispersion occurring between the well and the contaminant source (see for
example the particle tracking transport modeling conducted by Weissmann et al. [14] using
the middle interval of a well screen). Therefore, one conclusion is usually drawn and
applied pervasively—the sample collected from either one interval, or the entire interval of
a short screen, is representative of waters at any interval of the well screen. This assumption
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neglects the scale effect of backward probabilities, and quantitative evaluations are needed
to support or correct it.

This study tries to fill the four knowledge gaps mentioned above. We develop the
theoretical basis, improve the calculation algorithm, extend the application areas of back-
ward probabilities, and quantitatively evaluate the scale effect of backward probabilities of
contaminants in heterogeneous aquifer systems (notably, all natural aquifers are hetero-
geneous) in three steps. First, three different methods of particle moving, including the
backward-in-time discrete random-walk (DRW) method, the backward-in-time continuous
time random-walk (CTRW) method, and the particle mass balance method, are proposed
and applied to derive the governing equation of backward location probability (BLP) and
backward travel time probability (BTTP) of contaminants in groundwater flow systems.
We show for the first time that, by tracking backward in time, the widely used random
walk and mass balance theories can conveniently lead to backward probability models.
Next, an improved backward-in-time RWPT technique is applied to solve the backward
probabilities numerically. Finally, the effects of diameter, length, and depth of the well
screen on BLP and BTTP are explored for a three-dimensional heterogeneous medium and
its equivalent homogeneous counterpart using numerical solutions.

2. Governing Equations of Backward Probabilities

Backward probabilities of a particle, including BTTP and BLP, provide the probability
of a particle at certain previous time(s) and location(s) given that the probability of the
particle at the current time and location is 1. Specifically, BTTP describes the time required
for the particle to travel from a known location to an observation point or area, and BLP
describes the possible positions of the particle at a known time or period in the past.

The motion of a particle is well known to be composed of two processes: one is
driven deterministically by a drift vector, and the other is driven by a Gaussian noise (or a
non-Gaussian noise shown by our previous work [25,26]). This motion can be described
by the following nonlinear Langevin equation, which is a stochastic differential equation
modeling random dynamics driven by deterministic and fluctuating forces [27]:

dX = A dt + B dW (3)

where W represents a Wiener process [T1/2], and dX denotes the particle’s displacement
during time dt. Interpreting Equation (3) in its integral version and applying the charac-
teristics of Ito integration, one can use the following equation to describe the previous
information of a particle given its current location and time:

X(t− ∆t)−X(t) = −A ∆t− B ∆W (4)

A reliable backward model is the prerequisite for reliable applications of BLP/BTTP.
In the following sub-sections, we derive Kolmogorov’s backward equation by solving the
probability density function (PDF) of particles with displacements obeying Equation (4).
For cross verification and extension purposes, three different methods are used.

2.1. Backward-in-Time Discrete Random-Walk (DRW) Method

The DRW method is first shown here because of its simplicity. For description sim-
plicity, here we use a one-dimensional random walk (whose three-dimensional extension
is straightforward). Let Pn(l′) denote the probability of a walker being at l′ after n steps
in a one-dimensional random walk. Assuming that the individual steps of the random
walk are independent and identically distributed, we have the following backward-in-time
recurrence relationship:

Pn
(
l′
)
= ∑+∞

l=−∞ p
(
l − l′

)
Pn+1(l) (5)
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where p(l − l′) denotes the probability that a walker who is currently at location l′, moved
from location l. Let ∆ be the step size and e be the time interval between successive steps,
and their limits toward zero; then, Equation (5) can be re-written as:

P(x, s) = ∑+∞
l=−∞ p

(
l − l′

)
P
[
x +

(
l − l′

)
∆, s + e

]
(6)

where P(x, s) is the PDF for the walker located at x at time s.
Assuming P[x + (l − l′)∆, s + e] is differentiable once with respect to s and twice with

respect to x, we can re-write Equation (6) using a formal Taylor expansion:

P(x, s) = ∑+∞
l=−∞ p

(
l − l′

) {
P(x, s) + ∆

(
l − l′

)∂P(x, s)
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+ e
∂P(x, s)
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)2 ∂2P(x, s)
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)}
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Because ∑+∞
l=−∞ p(l − l′) = 1, Equation (7) can be re-arranged to:
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When e→ 0 and ∆→ 0 , the truncation error O
(
e + ∆e + ∆2)→ 0 and becomes

negligible.
We already know that:

lim
∆, e→0
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where a is the x component of A, and b is the x-diagonal component of B [5,27]. They
are also the two parameters used in the nonlinear Langevin equation [27–29]. Dividing
Equation (8) by e and inserting Equations (9) and (10) in Equation (8) leads to the following
backward probability model:

− ∂P(x, s)
∂s

= a
∂P(x, s)

∂x
+

b2

2
∂2P(x, s)

∂x2 (11)

2.2. Backward-in-Time Continuous Time Random-Walk (CTRW) Method

The CTRW method is considered here because it is theoretically stricter than the
DRW method. There have been hundreds of papers discussing Brownian motion using
CTRW (see for example, the review in [30]), but most of them focus on the forward-in-time
movement of particles. An in-depth introduction of the CTRW method can be found in
the classical work of Metzler and Klafter [31]. The Galilei variant/invariant assumptions,
which might be disputable, sometimes are used to directly add an advection term to the
diffusion equation [31]. Here we extend the CTRW method in Metzler and Klafter [31] for
backward-in-time solutions and eliminate the Galilei variant/invariant assumptions.

The backward PDF is:

P(x, τ) =
∫ τ

0
η
(
x, τ′

)
Ψ
(
τ − τ′

)
dτ′ (12)

where τ represents the backward increase in time with τ = ∆s > 0, η(x, τ′) denotes the PDF
for particle reaching x at time τ′, and Ψ(τ − τ′) is the PDF for particles without movement
during the period of τ′ to τ. We use xd and td to represent the detection location and time
for forward-in-time formulations. The backward time is s = td − τ, where 0 < s < td. The
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corresponding Fourier transform (with the symbol of hat ˆ) and Laplace transform (with
the symbol of bar −) of Equation (12) is:

P̂(k, u) = η̂(k, u) Ψ (u) (13)

We then derive the expression of η̂(k, u) and Ψ(u). Considering the decoupled jump
length and waiting time PDF [31]:

η(x, τ) =
∫ ∞

−∞

∫ τ

0
η
(
x′, τ′

)
p
(
τ − τ′

)
λ
(
x− x′

)
dx′ dτ′ + δ(x− xd)δ(τ − 0) (14)

where δ is the Dirac delta function. Equation (14) is equal to:

η(x, τ) = η
(
x′, τ′

)
∗ p(τ) ∗ λ(x) + δ(x− xd)δ(τ)

= η
(
x′, τ′

)
∗ p(τ) ∗ λ(x) + P0(x− xd)δ(τ)

(15)

where p is the waiting time PDF, λ is the jump length PDF, and the symbol “*” denotes
convolution. Taking both the Fourier and Laplace transforms for Equation (15), and then
solving for η̂(k, u), we have:

η̂(k, u) =
P̂0(k)

1− p(u)λ̂(k)
(16)

Because Ψ(τ) = 1−
∫ τ

0 p(τ′)dτ′, the corresponding Laplace transform of Ψ is:

Ψ(u) =
1
u
− 1

u
p(u) (17)

Inserting Equations (16) and (17) into Equation (13) leads to:

P̂(k, u) =
P̂0(k)

1− p(u)λ̂(k)
1− p(u)

u
(18)

To solve Equation (18), we first assume a Poissonian waiting time PDF [31]:

p(τ) =
1
T

exp
(
− τ

T

)
(19)

where T is the mean waiting time and T > 0. We then assume that the particle jump size
satisfies a Gaussian PDF (and the particle has different probabilities of directional particle
movement for multi-dimensional extension). This allows particles to have a non-zero mean
jump length x0:

λ(x) =
1√

4π σ2
exp

[
− (x− x0)

2

4 σ2

]
(20)

where σ is the standard deviation of the random jump size.
The Laplace/Fourier transform of p(τ) and λ(x) is p(u) = 1/(Tu + 1) and λ̂(k) =

exp
(
−k2σ2 + ix0k

)
, respectively. By inserting the first-order Taylor expansion of p(u) and

the second-order expansion of λ̂(k) into Equation (18), we have:

P̂(k, u) =
TP̂0(k)

Tu +

(
x2

0
2 + σ2

)
k2 −

(
x2

0
2 + σ2

)
Tuk2 − ix0k + ix0kTu

(21)

Assuming a long time and large space limit as in Metzler and Klafter [31], we know

that
(

x2
0

2 + σ2
)

Tuk2 is a higher order term than
(

x2
0

2 + σ2
)

k2, and ix0kTu is a higher order
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term than ix0k. Then we obtain the following equation using the reverse Laplace and
Fourier transforms:

∂P(x, τ)

∂τ
=

b2

2
∂2P(x, τ)

∂x2 + a
∂P(x, τ)

∂x
(22)

According to the relationship between the backward time and the increase in backward
time, we can transfer Equation (22) to Equation (11), proving the backward probability
model of Equation (11).

The above-mentioned random-walk-based methods indicate that the governing equa-
tion of the backward-in-time PDF has the same form as Kolmogorov’s backward equation.
This result is not limited to one dimension because random walk methods can be extended
to three dimensions [2,32,33].

2.3. Method of Conservation of Particle Mass

The mass-balance method is proposed here for three-dimensional expansion. It is a
reasonable assumption that each particle moves randomly in multiple dimensional spaces.
For simplicity, we consider particle transport in the X direction first, and then we combine
the spatial movements of each particle. Let Mi be the number of particles in cell i; then, the
particle density in this cell is given by:

Pi = Mi/Ui (23)

where Ui is the volume of cell i [L3]. Assuming that the particle generally moves from cell i
to cell i + 1 under ambient conditions, then the particle number flux from cell i + 1 to cell i
per unit area and per unit time in the backward-in-time process is [34]:

Fx =

(
1
2 + φi

)
Mi −

(
1
2 − φi+1

)
Mi+1

ω
=

[(
1
2
+ φi

)
Pi −

(
1
2
− φi+1

)
Pi+1

]
R ∆x (24)

where the parameter φi represents the difference in probabilities when particles jump
forward and backward along X-axis, so φi > 0; ω is the area of cell normal to X-axis [L2];
R is the number of jumps per unit time for each particle [T−1]; and ∆x is the cell length [L].
Using the following Taylor series approximation:

P(x + ∆x, s) = P(x, s) +
∂ P(x, s)

∂x
∆x + O

(
∆x2

)
(25)

we can then rewrite Equation (24) as:

Fx = (φi + φi+1)R ∆x Pi −
(

1
2
− φi+1

)
R ∆x2 ∂Pi

∂x
−
(

1
2
− φi+1

)
O
(

∆x3
)

R (26)

When ∆x → 0 , it is obvious that (φi + φi+1) R ∆x → a . According to Fick’s law [30],
−
(

1
2 − φi+1

)
R ∆x2 → b2/2. Equation (26) hence becomes:

Fx = aP +
b2

2
∂P(x, τ)

∂x
(27)

For conservative solutes, the total number of particles remains stable during jumping
events. The conservation of particle mass also means the conservation of the number of
particles (which carry the solute mass or backward probability). Substituting Equation (27)
into −∂P/∂s = ∇·F, the mass conservation equation, and then expanding it to three
dimensions, one obtains:

∂P
∂s

= −∇·
(

AP +
1
2

BBT ∇P
)

(28)
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This formula extends Kolmogorov’s backward equation by showing that the vector
A and tensor B, which control the advective and diffusive displacement of particles, do
not necessarily have to be divergence free. This conclusion is consistent with the results of
Neupauer and Wilson [24] using the rigid, but mathematically complex, sensitivity-based
adjoint approach. In the following we discuss whether this extension is reasonable in
applications.

3. The Backward-in-Time RWPT Technique to Solve the Backward Probabilities

Parameters in the particle transport equation are determined by the analogy between
particle jumps (i.e., Kolmogorov’s equation) and solute transport equations. This analogy
is the key to solving backward probabilities using the backward equation [10].

3.1. Parameter Identification

At first, the particle probability density in the forward equation can be transformed to
the solute aqueous concentration in contaminant transport equation. The analogy between
forward equation and the ADE, therefore, can determine the parameters controlling the
forward movements of particles. The well-known ADE for non-reactive solute is:

∂(nC)
∂s

= −∇·(nVC) +∇·(nD ∇C) (29)

where C is the aqueous concentration [ML−3], V is the average groundwater velocity vector
[LT−1], and D is the local hydrodynamic dispersion tensor [L2T−1]. Parameters between
the forward equation of Equation (1) and the ADE (Equation (29)) are related by:

G = nC/m (30)

A∗ = V +∇D + D ∇n/n (31)

B∗(B∗)T = 2D (32)

where m represents the mass of particles [M], and ∇D denotes the gradient of D.
Then the solution of the backward equation can be transformed to the solution of the

forward equation [10]. When the backward equation takes the form of Equation (2) or
Equation (11), the main parameters for the backward equation (Equation (11)), the forward
equation (Equation (1)), and the ADE (Equation (29)) are related by:

A = −A∗ + BBT = −V +∇D (33)

BBT = B∗(B∗)T = 2D (34)

s = td − t (35)

The prerequisites of the above-mentioned formulas are (a) the flow is steady-state, and
(b) the porosity of the porous media is constant. Herein, when the vector A and tensor B
controlling the movement of particles are divergence free, the corresponding groundwater
flow is steady-state, and the porosity is spatially and temporally invariant.

When the backward equation takes the form of Equation (28), we derive the rela-
tionships of main parameters among the backward equation (Equation (28)), the forward
equation (Equation (1)), and the ADE (Equation (29)):

A = −A∗ + BBT = −V +∇D− (
1
n
)∇(nD) (36)

BBT = B∗(B∗)T = 2D (37)

s = td − t (38)
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which are similar to Equations (33)–(35), except for the first line. This formula is valid
for any groundwater flow condition and is not restricted to constant porosity (notably,
when flow is steady state and the medium porosity is constant, Equation (36) reduces to
Equation (33), as expected). Therefore, when the gradients of vector A and tensor B are non-
zero, corresponding flow and porosity values are more representative of natural conditions.
In addition, it is noteworthy that the tensor D takes the same form in all three equations
(backward equation, forward equation, and ADE), whereas the vector A does not have
this property. It is consistent with Arnold’s conclusion that only the diffusion operator is
self-adjoint [32]. Notably, if the diffusive jumps follow a non-Gaussian distribution (such as
super-diffusion along preferential flow paths or fractured rock mass), the diffusion operator
is no longer self-adjoint because preferential jumps of particles are now direction dependent
and non-symmetric (different from the symmetric, direction-independent Fickian diffusion
considered in this study); for details, please see our recent work for backward models for
anomalous diffusion [25,26].

3.2. Numerical Techniques and Verifications

First, the initial and boundary conditions of the original forward transport model
must be modified to fit the backward conditions. The main modifications include: (a) the
reversion of particle source/sink terms; (b) the no-flux boundary (VC−D ∇C = 0, also
named as the 3rd-type boundary) in forward transport problems transfers to a no-gradient
boundary (D∇P = 0, also named as the 2nd-type boundary, representing a free exit bound-
ary) in backward probability problems, and vice versa (the same as in ref. [23]); and (c) if the
no-flux boundary of forward solute transport is also the no-flux boundary of groundwater
flow model, we use the same no-flux boundary for backward probabilities. In RWPT solu-
tions [5,6], a particle-absorbing boundary is set to represent the no-gradient boundary, and
a particle-reflecting boundary to represent the no-flux boundary for backward probabilities.

Then, we refine the releasing manner of particles at the initial time to account for
potential differences in fluxes entering a well screen at different intervals. The initial mass
of each particle released around the screen is proportional to the corresponding flux at
the same direction and location. This algorithm accurately models transport around a
three-dimensional well in a heterogeneous porous medium and is more reasonable than
the uniform-releasing method applied, for example, by ref. [12].

The approach is illustrated using a one-dimensional, semi-infinite domain that mimics
the flow of a production well, and these numerical results are compared to the analytical
solutions provided by Neupauer and Wilson [23], Equations (10) and (11). The domain was
extended from 0 ≤ x < ∞, with the well at x = 0 and an instantaneous point source of
contaminant at x ≥ 0. The actual flow was from right to left (well) at a seepage velocity of
0.24 ft/day, porosity 0.25, and dispersivity 10 ft. As demonstrated by Figure 1, the RWPT
method can reliably simulate backward probabilities. This test indicates that (a) at a single
point in an aquifer, the BLP or BTTP is not a single value but a wide distribution (a skewed
normal distribution in homogeneous cases); and (b) the simulated BTTP contains more
noise. It is well known that the solutions of particle tracking methods become smoother if
the time step is smaller and the particle number is larger.
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Figure 1. Analytical versus numerical solutions of backward location probability (BLP) and backward
travel time probability (BTTP). (a) Plot of BLP from a pumping well, showing the probability at
s = 2000 days for all possible locations of contaminant sources. (b) Plot of BTTP from a pumping well,
for an upstream contaminant source at x = 500 feet. The time step of numerical simulations is 1 day.

4. Quantitative Evaluation of Scale Effects of BLP and BTTP

Here, we use three main steps to numerically evaluate the scale effects of backward
probabilities. The first step is to build geologic models to represent regional-scale subsurface
heterogeneity using transition probability/Markov chain-based geostatistical methods [35].
Next, the groundwater velocities in the simulated aquifers are calculated using the finite
difference code MODFLOW from the U. S. Geological Survey [36]. Finally, backward
location and travel time probabilities are calculated using the backward-in-time RWPT
methods proposed in Section 3.

4.1. Hydrologic Condition, and Flow and Transport Parameters of the Study Area

One heterogeneous model was constructed for the purpose of evaluating the scale
effect of backward probabilities in three-dimensional, complicated heterogeneous me-
dia (Figure 2a). The Markov chain model for the study site was built by Carle [37] and
Fogg et al. [38], and then developed by LaBolle et al. [39]. It represents an alluvial deposi-
tional environment dominated by fine sediments, which is located beneath the Lawrence
Livermore National Laboratory, California. Four hydrofacies, namely, debris flow, flood
plain, levee, and channel (whose properties are listed in Table 1), were recognized by
thousands of meters of cores and drillers’ logs.
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Figure 2. The heterogeneous model (a) and one cross-section (along Y direction) located at the middle
of the model domain (b). The legends 1, 2, 3, and 4 in (a) represent debris flow, floodplain, levee, and
channel hydrofacies, respectively (which are the same as “ID” listed in Table 1). The small rectangle
in the lower right of (b) denotes the well screen. The size of this screen is exaggerated to make its
location clear.
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Table 1. Hydrofacies’ properties for the study site. In the legend, LStrike, LDip, and LVertical represent
the mean length of each facies along the strike, dip, and vertical directions, respectively; “Proportion”
denotes the volumetric global proportion of hydrofacies (from Carle [37]); “ID” represents the identity
number of the hydrofacies in the geostatistical model; and K denotes the mean hydraulic conductivity
calibrated by Fogg et al. [38].

Hydrofacies ID LStrike [m] LDip [m] LVertical [m] Proportion [%] K [m/d]

Debris flow 1 8 24 1.1 7 4.32 × 10−1

Floodplain 2 27 67 2.1 26 4.32 × 10−6

Levee 3 6 20 0.8 19 1.73 × 10−1

Channel 4 10 50 1.3 48 5.18 × 100

Although its global proportion is only 18%, channel facies, the most permeable mate-
rial, forms the main aquifers by interconnecting spatially [38]. To make the heterogeneity
model appropriate for this study, we made some modifications. First, a 2.5 m thick, sandy
sediment was preserved as hard conditional data. It is located near the downgradient
boundary and represents a well surrounded by highly permeable materials (see Figure 2b).
Then, the model domain in LaBolle et al. [39] was extended upstream, to include the full
transport path of solutes from the water table to the well. The cell size of the geologic
model is 5, 10, and 0.5 m in the depositional strike, depositional dip, and vertical directions,
respectively (Figure 2).

The size of cells at and around the monitoring well in the groundwater flow model
(and the following solute transport model) was refined to be 0.1, 0.1, and 0.5 m in the
depositional strike, dip, and vertical directions, respectively. The boundary conditions of
the steady-state flow model are similar to those used by LaBolle et al. [39]. The top boundary
represents a constant recharge with a rate of 0.034 m/year (representing the average net
annual recharge to groundwater; see [39]), and others are general head boundaries. The
hydraulic conductivity, K, for each facies (listed in Table 1) has already been calibrated by
Fogg et al. [38] by modeling field pumping tests, so it was used here unchanged. The top
of the simulation roughly corresponds to the observed water table [39].

In the backward particle-tracking model, we set the top and upgradient boundaries to
be particle-absorbing boundaries, and others to be particle-reflecting boundaries. Because
the dispersion term in the backward equation explains the uncertainty of probabilities as
we go back further in time and location, it has the same purpose as the dispersion term in
the forward ADE, also pointed out by ref. [12]. Hence, in our backward particle-tracking
model, the dispersivity (0.01 m), molecular diffusion coefficient (5.2 × 10−5 m2/d), and
effective porosity (0.35) are the same as those used by LaBolle et al. [39] in their forward
transport model.

A homogeneous and anisotropic model, which is equivalent to the heterogeneous
model (Figure 2a), was built for comparison purposes. Anisotropic values for K of 0.108,
0.449, and 3.61 × 10−3 m/d for the depositional strike, depositional dip, and vertical
directions, respectively, are the up-scaling values of the heterogeneous model according to
Darcy’s law. Effective K values in all three directions were determined through separate
simulations of flow in the depositional strike, dip, and vertical directions [13]. Similar
boundary conditions to those described above were used for this homogeneous simulation.

4.2. Results of the Calculated Backward Probabilities

In the homogeneous medium, the calculated BLP of contaminants in groundwater
collected at different depths along the 2.5 m long screen of the monitoring well have similar
main characteristics (Figure 3), except for the following subtle differences. The distribution
area of BLP at the water table moves more slowly upstream when the sampling location
gets deeper. The corresponding area of distributions increases slightly at the same time.
The shapes of BLP distributions at the water table during whole transport periods are
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concentric ellipses, regardless of well length and the location of screened intervals within
that well. Additionally, the area of the high probability zone, which is in the middle of the
ellipses, decreases when the sampling interval moves to the bottom of the well. On the
contrary, the area of low probability zone increases at the same time, implying the higher
uncertainty (and/or a larger upstream area) with a longer backward time.
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Figure 3. The simulated BLP at the water table for the homogeneous and anisotropic model (described
at the end of Section 4.1). The effective time is the entire backward transport time when all particles
hit the water table. The sampling location is the top interval (z = 21.4 m) (a) and the bottom interval
(z = 19.1 m) (b) of the well screen shown in Figure 2b. The arrow in (a) represents the regional-scale
flow direction of groundwater. The z value used in all figures is consistent with the z-coordinate
showing in Figure 2.

The corresponding BTTP and mean travel time in this homogeneous aquifer change
regularly with the variation in sampling depths (Figure 4a). When the sampling location
becomes deeper, the BTTP distribution shifts to older zones along the time axis (Figure 4a)
(because of the larger travel distance) with only slight fluctuations in the distribution width
and peak. The corresponding mean travel time follows an almost linear trend as the depth
of the sample interval increases (shown by the hollow circles in Figure 5b). The average
acceleration rate of mean travel times along this 2.5 m long well screen is 3.36 year/m,
resulting in an 8-year difference for ground water sampled at the top interval (with the
depth of z = 21.5 m) and the bottom interval (z = 19.0 m) of this well.

Calculations show that the horizontal size of the screen has minimum influence on
backward probabilities. The first two moments of BTTP in the homogeneous model are
almost identical when the diameter of the well screen increases from 0 to 0.2, 0.4, and 0.6 m
(where the mean backward travel time is shown by the triangles in Figure 5a). The similar
behavior was also found in the heterogeneous media (shown by the circles and diamonds
in Figure 5a).

In the heterogeneous model, the BTTP is, however, sensitive to the variation in sam-
pling depths inside of the screen (Figure 4b). When sampling at the top, middle, and
bottom intervals of a same screen, the behaviors of corresponding BTTP at these different
intervals are quite different. The top interval receives recharge within a relatively short
period (about 15 years), whereas the bottom interval receives its recharge in a 50-year-long
range without apparent peaks. The simulated mean backward travel time also fluctuates
obviously with the variation in sampling depths (Figure 5b). The mean backward travel
time at the bottom interval is 30 years older than that at the top interval. This discrepancy
is even larger than the mean travel time at the top interval.
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Figure 4. The simulated backward travel time probability (BTTP) for groundwater collected from
the top interval (line 1, z = 21.4 m), middle interval (line 2, z = 20.25 m), bottom interval (line 3,
z = 19.1 m), and the entire 2.5 m long interval (line 4) for an equivalent homogeneous model (a) and
its original heterogeneous counterpart (b). In (c), the sampling location is the whole screen, and the
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z = 19.0–21.5 m), respectively.
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top interval. In other words, the water packages captured by the bottom interval generally 
have longer travel distances and larger recharge areas. This discrepancy results not only 
in a longer tail of backward travel times, but also in a lower peak in probability distribu-
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heterogeneous aquifer such as the typical alluvial setting, if the vertical lengths of the 
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Figure 5. (a) The simulated first moment of backward travel time versus the diameter of the well
screen. The sampling location is the bottom intervals (z = 19.0–19.5 m, shown by the solid triangle) and
the top intervals (z = 21.0–21.5 m, shown by the hollow triangle) of an effective homogenous model;
and the bottom intervals (z = 19.5–20.0 m, the solid diamond) and the top intervals (z = 20.5–21.0 m,
the hollow diamond) of the original heterogeneous model; and the bottom intervals (z = 19.0–19.5 m,
the solid circle) and the top intervals (z = 21.0–21.5 m, the hollow circle) of the original heterogeneous
model. (b) The simulated first moment (i.e., the mean) of backward travel time at each point along
the whole well screen located inside the heterogeneous model and its effective homogeneous model.
The horizontal bar represents the standard deviation of age distributions along the positive direction.
The solid and hollow circles represent the corresponding results of the heterogeneous model and its
effective homogeneous counterpart, respectively.

In the heterogeneous model, the vertical length of the well screen also plays an
important role in BTTP. When the screen length increases from 0.5 to 1.5 and 2.5 m, the
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resultant peak of BTTP distribution decreases by ~50% (Figure 4c). This is because the
proportion of old components for water packages collected through the whole screen
increases with the increase in screen lengths.

The characteristics of BLP may explain the behaviors of BTTP mentioned above
(Figure 6). The water packages entering the bottom interval of the screen originate from
further upstream zones and further horizontal zones than the water packages entering at the
top interval. In other words, the water packages captured by the bottom interval generally
have longer travel distances and larger recharge areas. This discrepancy results not only in a
longer tail of backward travel times, but also in a lower peak in probability distribution with
a larger width for probability mass conservation. Therefore, in a complicated heterogeneous
aquifer such as the typical alluvial setting, if the vertical lengths of the screens of monitoring
wells are different, or if the vertical sampling depths in this well screen are different, both
the BLP and the BTTP may be quite different, even for a short screen surrounded by highly
permeable sediments.
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normalized concentrations of contaminants measured at different depths along a short 
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miss the main characteristics of contaminant plumes. On the contrary, if the well screen is 
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Figure 6. The simulated backward location probability of groundwater collected from wells (the small
rectangle in Figure 2b) located inside the heterogeneous model shown in Figure 2a. The effective
sampling time is the complete transport time for all particles until they hit the water table. The
sampling location is located at the top interval (z = 21.4 m) (a), the middle interval (z = 20.3 m) (b), the
bottom interval (z = 19.1 m) (c), respectively. The samples are also collected through the whole
screened intervals with a length of 0.5 m (z = 21.0–21.5 m) (d), 1.5m (z = 20.0–21.5 m) (e), and 2.5m
(z = 19.0–21.5 m) (f), respectively. To show better the BLP peak position, a slightly different grey scale
(for the maximum level) is used in these plots.
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5. Discussion

The major finding of this work (i.e., BLP and BTTP are sensitive to the vertical interval
and length of well screens) has profound meanings for real-world applications where BTP
and BTTP are used as critical indices. Specifically, the scale effect of backward probabil-
ities can result in strong spatial and temporal variations in measured concentrations of
groundwater samples, which thus raises serious questions in the current applications of
backward probabilities, including the monitoring and evaluation of groundwater quality,
identification of groundwater pollutant sources, assessment of aquifer vulnerability, and
delineation of well-head protection zones. For instance, as indicated by Figure 7, the
normalized concentrations of contaminants measured at different depths along a short
screen (2 m long) may vary up to 1 order of magnitude due to the scale effect of backward
probabilities. This strong variation results in the following dilemma. If the monitoring
network of groundwater quality is too sparse (a common scenario), it is difficult to capture
variations in concentration within such a small local scale, and then it is most likely to
miss the main characteristics of contaminant plumes. On the contrary, if the well screen is
relatively long, a small amount of water collected from specific interval(s) of the well may
not represent the aquifer where the well is. In both cases, it is important to evaluate the
measurements based on the exact sampling location to obviate any misleading data. The
method proposed by this study can be developed to assist field works, such as the design
of monitoring networks.
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This study therefore answered the four backward probability-related questions 
raised in Introduction. First, three particle-moving methods, namely, the backward DRW, 
backward CTRW, and particle mass balance, conveniently converted the forward-in-time 
transport model to its backward counterpart. Second, the backward conversion showed 
that the vector 𝑨 and the tensor 𝑩 in Kolmogorov’s backward equation need not to be 
divergence free. Third, the backward PDF properties were systematically analyzed for pol-
lutants moving in a three-dimensional alluvial aquifer, whose nuance cannot be fully cap-
tured by its “equivalent” homogeneous model. Fourth and most importantly, extensive 
numerical experiments revealed the strong (vertical) scale effect of backward probability, 
challenging the commonly used assumption that the scale effect of backward probability 
is negligible for regional-scale natural aquifers. 

Future extensions of this work are needed. For example, subsurface hydrodynamics 
and heterogeneity distributions influence the scale effect of backward probabilities and 
thus require further investigation. First, the main hydrodynamic conditions affecting the 
variations in backward probabilities include boundary conditions and transport parame-
ters used in the simulation. Boundary conditions include the rate of recharge applied to 
the top boundary and horizontal flux from the upgradient boundary. Our preliminary 
results (not shown here) revealed that a larger recharge rate from the top boundary and/or 
a smaller flux from the upgradient boundary will cause smaller variations in backward 
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Figure 7. The simulated normalized concentration at the top and bottom intervals of the well screen
(0.5 m long for each interval) with an instantaneous source (x = 175~185 m, y = 711 m, and z = 39.01 m)
near the water table. The dark and the light points represent the concentrations at the top and bottom
intervals, respectively.

As mentioned above, researchers simplify the heterogeneous aquifers for many rea-
sons, such as lack of data or scale limitations. Comparisons in this study indicate the
heterogeneous model has significantly different backward probabilities compared to the
equivalent homogeneous and anisotropic models. However, our hydrogeologic interpre-
tive skills have been strongly influenced by homogeneous conceptual models. We need to
better understand the limitations of replacing a real-world heterogeneous medium by a
homogeneous model when investigating backward probabilities, because the homogeneous
model may be misleading.

This study therefore answered the four backward probability-related questions raised
in Introduction. First, three particle-moving methods, namely, the backward DRW, back-
ward CTRW, and particle mass balance, conveniently converted the forward-in-time trans-
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port model to its backward counterpart. Second, the backward conversion showed that the
vector A and the tensor B in Kolmogorov’s backward equation need not to be divergence
free. Third, the backward PDF properties were systematically analyzed for pollutants
moving in a three-dimensional alluvial aquifer, whose nuance cannot be fully captured by
its “equivalent” homogeneous model. Fourth and most importantly, extensive numerical
experiments revealed the strong (vertical) scale effect of backward probability, challenging
the commonly used assumption that the scale effect of backward probability is negligible
for regional-scale natural aquifers.

Future extensions of this work are needed. For example, subsurface hydrodynamics
and heterogeneity distributions influence the scale effect of backward probabilities and
thus require further investigation. First, the main hydrodynamic conditions affecting the
variations in backward probabilities include boundary conditions and transport parameters
used in the simulation. Boundary conditions include the rate of recharge applied to the
top boundary and horizontal flux from the upgradient boundary. Our preliminary results
(not shown here) revealed that a larger recharge rate from the top boundary and/or a
smaller flux from the upgradient boundary will cause smaller variations in backward
probabilities along the well. In the models used by this study, the most important transport
parameter is the molecular diffusion coefficient. A larger molecular diffusion coefficient
may enhance leakage recharge from sediments having low permeability, resulting in more
old components in the backward travel time probability distribution. Second, variation in
the heterogeneity structure, such as the correlation length and the proportion of hydrofa-
cies, may result in different preferential paths for both water and solute. Therefore, the
heterogeneity structure may play an important role in the scale effect of backward probabil-
ities. This topic will be further investigated in a future paper. Finally, the most important
factor in a real-world application that may change the simulation results of this study is
the actual distributions of depositional materials around the screened well. Sediments
having low permeability may form mixed layers, such as clay laminae, within the highly
permeable materials around the screen. The existence of low-permeability materials can
enhance the difference in water intakes at different depths of the screen, and then enhance
the scale effect of backward probabilities. One possible means to address this issue is to
build and analyze multiple different but equally possible realizations for each scenario
of hydrofacies models using the geostatistical tool applied above. The uncertainty of the
calculated backward probabilities caused by the above factors deserves further research.

6. Conclusions

This study tried to fill the knowledge gaps of backward probabilities by building the
governing equations and evaluating the scale effect of backward location and travel time
probabilities for pollutants moving in a three-dimensional aquifer. Three main conclusions
were drawn.

First, the governing equation of backward location probability and backward travel
time probability cross-verified Kolmogorov’s backward equation and extended the theoreti-
cal basis of backward probabilities. The improved backward RWPT technique extended the
application of backward probabilities to more complex, three-dimensional, heterogeneous
alluvial settings. The groundwater flow field is not limited to steady-state conditions and
the media do not have to have constant porosity values (see Equation (36), for example,
where the velocity can be time dependent and the porosity can change in space).

Second, numerical experiments indicated that the backward probabilities are not sen-
sitive to the well screen diameter, because the horizontal scale of the aquifer is much larger
than the diameter of a well screen (hundreds of meters verses ~10−1 to 100 m in this study).
Therefore, a well can be simplified to be a vertical line inside an aquifer system during
numerical modeling. Numerical simulations conducted by LaBolle et al. [39] supported this
conclusion by showing that the main behaviors of plume migrations were not significantly
influenced by a limited variation in the initial horizontal location of contaminants.
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Third, the backward location and travel time probabilities of groundwater contami-
nants can be significantly influenced by the variations in the vertical lengths of the well
screen or the depths of sampling points along the well screen in complex heterogeneous
aquifers. The results of this study showed that the backward probabilities of contaminants
from one depth inside a 2.5 m long screen surrounded by highly permeable materials
cannot represent the backward probabilities of contaminants in water packages entering
the screen through another depth. Although the local dispersion around the well screen
is negligible compared with the regional-scale dispersion occurring between the well and
the source, groundwater can reach individual intervals of the same screen from different
pathways connecting the water table and the well. Thus, the backward probabilities can
change vertically, resulting in a scale effect of backward probabilities. The scale effect of
backward probabilities may strongly affect real-world applications relying on BLP/BTTP.
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