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Abstract: Reclamation of treated wastewater is considered a viable option for reducing the agricul-
tural and national water deficit, especially in Mediterranean-type and arid climatic conditions. Given
that Chile is a country around 40% of whose territory is classified as semi-arid and desert and 20% as
Mediterranean, with serious water scarcity problems, and which uses a great deal of the resource in
agricultural irrigation, the present paper offers perspectives on the current state of treated wastewater
reuse and considers challenges to improving the development of water reclamation for irrigation
in Chile as a case study. The methods followed included a systematic literature review to answer
two important questions: (a) What is the state of reclamation of treated wastewater for irrigation in
Chile? and (b) What criteria/parameters determine the feasibility of reclaiming treated wastewater
for irrigation in Chile? The results showed that Chile has been affected by climate change in a short
time: a megadrought has occurred over the last ten years, increasing the necessity for the country
to secure alternative water sources for irrigation. The country has advanced greatly in wastewater
treatment coverage, achieving almost 100% in urban areas, with technologies that can produce quality
water as a new water source for irrigation. However, the lack of regulations and limited frameworks
could explain the low direct reuse at present—below 1% of total flow. Regarding challenges, the
necessity of updates to Chile’s institutional and legal frameworks, besides the inclusion of rural
communities and the study of emerging contaminants, will be discussed. By these means, it will be
possible to more efficiently utilize recycled wastewater as a new source for irrigation in this country.

Keywords: Chilean agriculture; wastewater treatment and reuse; greywater; arid climate; Mediter-
ranean climate; Atacama Desert

1. Introduction

Several studies have explored the reclamation and safe use of treated wastewater for
irrigation [1,2]. At present, it is technologically possible to treat wastewater and remove
pollutants so as to produce water that meets the standards defining drinking water qual-
ity [3–5]. In the case of irrigation, reclamation and recovery of wastewater for use as a
water source is attractive and a sound alternative for reducing the agricultural water deficit,
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reducing the pressure of water scarcity found in Mediterranean-type and arid climatic
conditions, besides being an ancient practice in numerous cities that are surrounded by
agricultural fields [1,6,7].

Concerns about irrigation using treated municipal wastewater have generated several
detailed studies about the risks to and effects on crops as well as human health and the en-
vironment [2,8,9]. Most of these studies have focused on the impact (or effects) of reclaimed
water irrigation on the health of ecosystems and people [10–14]. Some of the studies address
the technologies available for water reclamation, including best practices [15,16]. Recently,
the study of emerging compounds and their effects on crops and human health have also
been addressed [17,18]. In addition, development analyses of reclamation strategies for
entire countries, such as China, have been published [16,19,20]. Wu et al. [16] presented the
results of a risk assessment for and discussed system regulation and the efficient utilization
of reclaimed water irrigation in China. The study analyzed issues such as environmental
behavior and evaluated the characteristic pollutants, suggesting the use of safe and efficient
irrigation systems and irrigation technology and finally recommended a model for the
reclamation of treated wastewater according to different utilization types.

The World Health Organization (WHO) (Geneve, Switzerland) and the Food and
Agriculture Organization (FAO) (Rome, Italy) have produced guidelines that set standards
for safe use of treated wastewater for irrigation purposes [1]. Back in 1973, WHO published
the first standards, with an update in 2006. The latest version is mainly focused on
microbial health risks but it also contains recommended maximum organic and inorganic
pollutants in soils, which are assessed by QMRA (Quantitative Microbial Risk Assessment)
and epidemiological evidence [21]. In addition, several countries and organizations have
adopted more detailed and rigorous standards by establishing their own regulations
and guidelines to fit their needs [22–24]. The aim of these standards is to treat the raw
wastewater so as to reach a quality sufficient to be considered “recycled wastewater”.
Even though standards are important in terms of safe wastewater recycling, other aspects
must be taken into consideration if wastewater is to be reclaimed, including treatment
technologies, legal frameworks, agricultural issues related to crops, economic aspects
related to the promotion of this water source by governments, the distance between sources
and agricultural fields, socio-cultural stands, and climate.

Voulvoulis [25] points out that reclaimed wastewater reuse has not yet been exploited
in many areas and that a transition to a circular economy has the potential to create
significant synergies for the broader adoption of recycled water as an alternative freshwater
resource for irrigation or other purposes. This synergy is part of the goals of the circular
economy, which is in line with the concept of sustainable development: economic prosperity,
environmental quality, and a positive impact on social equality, also included in the United
Nations Sustainable Development Goals [26–28]. However, in Chile, a country with the
most arid area in the world (the Atacama Desert) and serious water scarcity problems and
which uses a great deal of the resource in agricultural irrigation, faces scientific and technical
challenges. Currently, reclamation of treated wastewater as part of the national circular
economy strategy for managing wastewater is limited and needs to be addressed [6,7,29–34].
Therefore, the present work assesses published scientific, regulatory, institutional, and
technical information, analyzing and providing an update on the current state of treated
wastewater reclamation in Chile. In addition, the document describes challenges and
suggestions to improve the development of recovery of treated wastewaters as “new water
sources” for irrigation, as part of a circular economy strategy—a necessary vision for
managing wastewater treatment for the future.

2. Methods

The systematic literature review (SLR) proposed by Tranfield et al. [35] was used to
compile and analyze scientific, academic, governmental, and professional information
about recycled wastewater reuse for irrigation purposes in Chile. An SLR is a review that
is designed to locate, appraise, and synthesize the best available evidence relating to a
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specific research question in order to provide informative and evidence-based answers [36].
The SLR enables a qualitative analysis (evaluation and interpretation) and is used when
the scope of a review is specific and the dataset small and manageable enough such that
its content can be manually reviewed [37]. Recently, SLR has been used to evaluate the
use of reclaimed water, but in very specific studies of organic compounds present in
wastewater [38–40]. SLRs follow well-defined and transparent steps and always require the
following: a definition of the question or problem, identification and critical appraisal of the
available evidence, synthesis of the findings, and the drawing of relevant conclusions [36].
The SLR process for this research article was divided into: (1) planning, (2) execution,
(3) analysis, and (4) reporting [41]. Figure 1 summarizes the SLR process for this article.
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The planning stage began with the definition of the SLR’s objective: to identify the
current state and the challenges faced in the reclamation of treated wastewater for irrigation
in Chile. Subsequently, the research questions (RQs) were formulated in accordance with
the provisions of the PICo (Population, Phenomenon of Interest, and Context) elements
for qualitative reviews. The PICo elements can aid in defining the question and inclusion
criteria used to select studies for the systematic review [43]. Accordingly, the following
questions were formulated:

• RQ1: What is the state of the reclamation of treated wastewater for irrigation in Chile?
• RQ2: What criteria/parameters determine the state of the reclamation of treated

wastewater for irrigation in Chile?

The SLR protocol establishes the process of searching for and evaluating the infor-
mation to answer the search questions and achieve the research objective. To address the
two questions of the article, it was decided to first include the contents of peer-reviewed
journals from the Web of Science (WoS), Scopus, and Scielo. These databases were used
first for obtaining scientific evidence that could apply to the Chilean context. The search
continued through thesis databases of Chilean universities. Next, information about regu-
lations and the technical reports of governmental institutions as well as technical reports
in non-scientific journals, all with diffusion mainly in Chile, were examined. In this way,
perspectives on the current state of affairs and challenges were obtained from scientific
and technical sources so as to truly reflect the use of reclaimed wastewater in the country,
making the present study more robust. The search was focused on the period 2011–2021,
however, some relevant information published prior to this period was included. Table 1
shows the terms used in the search and the results.

Table 1. Keyword combinations used to obtain information about recycled wastewater reuse for
irrigation as employed in the SLR process (includes only scientific databases and thesis databases of
Chilean universities).

Keyword K1: Wastewater
K2: Chile

K3: Agriculture
K4: Irrigation

K5: Recycled
K6: Reuse

K7: Treatment
K8: Policy

K9: Regulation
K10: Standard

Combinations
Results from Database

WoS Scopus Scielo Thesis

C1: K1 and K2 68 110 25 483
C2: K1 and K2 and K3 5 12 0 304
C3: K1 and K2 and K4 7 16 2 38
C4: K1 and K2 and K4
and (K5 or K6 or K7) 4 0 1 149

C5: K1 and K2 and K3
and (K5 or K6 or K7) 0 0 0 21

C6: K1 and K2 and (K8
or K9 or K10) 17 25 4 36

Title/Abstract/Keywords

C1: wastewater and Chile
C2: wastewater and Chile and agriculture
C3: wastewater and Chile and irrigation
C4: wastewater and Chile and agriculture and (recycled or reuse or Treatment)
C5: wastewater and Chile and irrigation and (recycled or reuse or treatment)
C6: wastewater and Chile and (Policy or regulation or Standard)

The execution phase started with the literature search in the selected databases. Dupli-
cate articles (present in different databases) were considered only once. Each selected article
was categorized as relevant or not relevant according to the relation of its title and abstract
to the research questions. Each of the authors performed the categorization independently.
These articles were evaluated using an article quality checklist form. This form assessed
the locality of the research, recycled wastewater reuse, and performance indicators or
research outcomes.
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Once the relevant articles were identified, a quality assessment took place. In the
quality assessment, the authors carried out an exhaustive and complete analysis of the
relevant articles to select those closely related to recycled wastewater reuse in agricultural
irrigation in Chile. As in the previous stage, a cross-check of the relevant data found was
performed [44].

Subsequently, the reporting stage began with data extraction, which consisted of
obtaining information directly related to the objective of this research. The systematic
identification and evaluation of the data/evidence in the articles was carried out according
to the methodological principles of the grounded data theory (GDT). Through comparisons
of the articles, evidence was collected, coded, and analyzed to generate concepts and
categories in order to discover the relationships between these articles and, in this way, find
decisive evidence bearing on the questions posed and construct explanations [45]. Data syn-
thesis involved collecting and summarizing the results of the studies in tables and figures.
Finally, the reporting stage concluded with the writing up of the results of the research,
highlighting the methods and analysis of results. Data from the studies were integrated
qualitatively by systematically describing the results included in figures and tables. The
information analyzed was separated into two main subjects that cover several topics. First,
perspectives on the current state encompass: (1) the context of climate and water resources
in Chile, (2) Chile as an agricultural country, (3) irrigation in Chile, (4) the current status of
wastewater reclamation in Chile, and (5) regulations related to treated wastewater in Chile.
Second, challenges for reclamation of recycled wastewater as a new source for irrigation
of agricultural products include: (1) institutional and (2) regulatory challenges, as well as
challenges for (3) rural communities and those presented by (4) emerging compounds.

3. Results and Discussion
3.1. Perspectives on the Current State
3.1.1. The Context of Climate in Chile

Continental Chile is located in South America between latitudes 17◦30′ S and 56◦30′ S,
with a vast length of more than 4000 km, bounded on the east by the Andes Mountain Range
and on the west by the Pacific Ocean [33]. The country covers an area of 756,102 km2 [46].
The climate in Chile is highly varied and can be categorized into four regional macrozones:
semi-arid and desert (north), Mediterranean (central), temperate (south), and tundra and
glacial (extreme south) (Figure 2). According to Vera-Puerto et al. [33] and depicted in
Figure 2, approximately 40% of Chilean territory can be categorized as semi-arid and desert
(north). This area is known as the Atacama Desert. Chile is organized into 16 administra-
tive regions, occupying each climatic macrozone: (a) semi-arid and desert, which covers
Arica and Parinacota, Tarapacá, Antofagasta, Atacama, and Coquimbo; (b) Meditarrenean,
including Valparaíso (excluding Easter Island), Metropolitana, O’Higgins, Maule, Biobio,
and Araucania; (c) temperate, including Los Ríos and Los Lagos; and (d) tundra and glacial,
represented by Aysén and Magallanes (excluding Antarctic territory).
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The extent of the country presents a large variety of geographical and geological
characteristics which can translate into a high vulnerability to climate change effects. One
of the most evident effects is drought. Historically, the country has always suffered from
drought events, with a maximum duration of two years. However, since 2010, Chile has
been suffering megadrought events which have impacted the central zone where more
than 13 million inhabitants live (79% of the country’s population) [48]. Garreaud et al. [48]
showed that the longevity of the megadrought is associated with anthropogenic forces,
showing the influence of climate change on Chile’s climate. For the near future, climate
change, also, will play an important role in the hydrological components, causing an
increase of evapotranspiration and a decrease of precipitation, percolation, surface flow,
and groundwater recharge [49]. Therefore, climate change impacts agricultural production,
influencing the quality and quantity of water available for irrigation [50].

Given the water scarcity scenario in the country, amplified by climate change, there is
a need to find new water sources in order to maintain agricultural production and ensure
potable water supplies for the whole country [51]. In the last two decades, several authors
have discussed the use of recycled wastewater as a new water source mainly to be used for
the irrigation of agricultural products [7,30,33,52,53].

3.1.2. Chile as an Agricultural Country

In the last part of the 20th century, the Chilean agricultural sector turned its production
paradigm from a traditional model to a globalized one, mainly focused on producing and
exporting fresh fruits [54,55]. As one would expect, water has been vital for Chile, irrigation
being required for nearly 70% of the country’s agricultural surface [56]. Currently, Chile
is the largest southern hemisphere fruit exporter and ranks second worldwide [56–59].
This is because the country has unique comparative advantages in terms of agroclimatic
and soil conditions for fruit production. Due to its geography, the country has an enor-
mous climate heterogeneity from its northern to its southern extremities (Figure 2) [60,61].



Water 2022, 14, 627 7 of 20

Agriculture contributes around 3% to the Chilean gross national product, and its fresh
fruit export industry is crucial to this contribution [56,58,59,62]. The top five fruit species
planted and exported by Chile are table grapes, apples, avocados, cherries, and citrus fruits
(Table 2) [57,59]. Table 2 resumes Chilean fruit production between 2013 and 2018.

Table 2. Ranking of the main fresh fruits produced and exported by Chile between the years 2013
and 2018.

Region Fruit Species Planted
Surface (ha)

Total Volume Exported (t) per Agricultural Season

2013–2014 2014–2015 2015–2016 2016–2017 2017–2018

Antofagasta–O’Higgins Table grapes 48,593 729,754 759,855 700,799 732,663 731,775
O’Higgins–Los Lagos Apples 36,205 811,894 683,485 730,615 709,528 774,710
O’Higgins–Los Lagos Avocado 36,205 134,586 68,050 119,928 1,263,657 1,431,257
O’Higgins–Maule Cherry 29,908 68,544 103,081 83,763 95,289 186,504
Coquimbo–O’Higgins Citrus 17,385 169,815 191,860 246,609 279,103 295,620
RM–Maule Plums 17,340 46,982 97,092 116,279 99,452 120,658
O’Higgins–Los Lagos Blueberries 14,573 74,387 92,210 91,431 103,687 110,206
Valparaiso–O’Higgins Peaches 11,540 18,391 27,927 29,054 26,045 31,191
O’Higgins–Maule Kiwifruit 9717 116,123 166,507 185,986 181,162 176,556
RM–Maule Pears 8537 119,381 133,799 126,561 150,842 129,541
RM–O’Higgins Nectarines 5340 25,123 56,782 57,124 62,107 66,634
Coquimbo–Los Lagos Others ≤800 6533 7672 7855 7750 7094

The statistics for fruit production indicate that the northern (the regions of Arica
and Parinacota to Coquimbo), central (the regions of Valparaíso to Bío-Bío), and southern
macrozones (the regions of La Araucanía to Aysén) accounted for 11%, 84%, and 5% of
the almost 348,000 planted hectares (ha) [54,60]. This fact shows that more agricultural
development is located in the central macrozone where Mediterranean climatic conditions
are prevalent.

3.1.3. Irrigation in Chile

It is well known that irrigated agriculture consumes more than 70–80% of world
freshwater resources, implying a high vulnerability to climate change [63,64]. In the
northern Chilean macrozone, water for irrigation is predominantly taken from the Andes
Mountains from the melting glaciers and the rainfall-induced highland floods in summer.
The water balance in this area is negative due to the high aridity and lack of rainfall, limiting
water availability for agriculture [6,65]. The central macrozone (Mediterranean), where
the greater part of Chilean agriculture is concentrated, obtains water for irrigation from
water reservoirs, products of the rain and snow accumulated in the Andes Mountains in
the fall–winter season. Most annual precipitations occur during this period, with almost
negligible events in the spring and summer seasons [48]. The southern climate macrozone
is mainly temperate (Figure 2), with rainfall spread over the whole year, and the region is
focused on agriculture and livestock [60,65].

Since the 1980s, several state economic incentives for increased irrigation efficiency
have been provided, including changing traditional gravitational methods, e.g., flood and
furrow methods, to technical methods, such as sprinkler, drip, or similar technologies.
Unfortunately, irrigation policies have only focused on technological development and
have not dealt with the use of alternative water sources, including reclamation of treated
wastewater.

According to the Comision Nacional del Riego (CNR, by its initials in Spanish) (Na-
tional Commission for Irrigation (Santiago, Chile) [66], the water balance projected for
Chile between 2005 and 2025 will result in a reduction of water available for irrigation.
The northern climatic macrozone will linearly increase its overall water deficit at rates of
24 million m3 every 15 years. The projected reductions in water availability will average
1481 million m3 by the year 2025. The projections of water availability for the central
and southern macrozones in 2025 also showed reductions of 346 and 37 million m3 every
15 years, respectively. This situation forces the Chilean agriculture industry, if it wishes
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going to maintain current production levels and expand to other products and open new
markets, to take measures to deal with the altered scenario. Among the different measures
that might be taken, including investment in modern irrigation technologies, better irriga-
tion to cover water demand, exploration of new crops and new cultivation techniques, it is
clear that new water sources and the reclamation of treated wastewater will be important
components of this adaptation.

3.1.4. Current Status of Wastewater Reclamation in Chile

According to INE [67], the Chilean population is around 17.5 million, of which 88% is
urban and 12% rural. In urban areas, private concession companies provide water supply,
sewage, and treatment. Potable water supply has reached 99.9% [68]. In the case of sewage,
97.2% is already covered, and in the case of wastewater treatment, the coverage was 99.8%
(including only the population connected to the sewage system) [68]. This treatment cover-
age suggests the possibility of producing treated wastewater to be recycled in productive
activities. Chile has better wastewater treatment conditions than other Latin-American
countries, for example, Colombia, Brazil, or Argentina, where coverage of treatment is
below 50% [69]. In Chile, wastewater treatment plants (WWTPs) established in urban areas
have been designed mainly to provide secondary treatment (organic matter removal) plus
disinfection. Figure 3 shows the percentage of the main treatment technologies (primary
and/or secondary treatment) used by each macrozone of the country. It is important to
mention that marine outfall with only solids removal is considered a treatment alternative
according to Chilean regulations.
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Figure 3. Municipal wastewater treatment technologies applied by macrozone in Chile. North:
49 WWTP; Central: 209 WWTP; South: 33 WWTP; Extremely South: 11 WWTP; Total: 302 WWTP.

Figure 3 shows three important issues: first, marine outfalls are a more common
treatment in the north of the country with a usage rate of around 25%; second, activated
sludge represents the most employed technology with a usage rate above 35% in each of
the four macrozones of the country; and three, aerobic technologies, including activated
sludge, aerated lagoons and oxidation ditches, represent more than 60% in each of the four
macrozones of the country. For aerobic technologies, Vera et al. [70] reported for WWTPs
based in the central macrozone a solid (TSS) and organic matter (BOD5, COD) removal
higher than 80% and reclaimed wastewater with concentrations below 20 mg/L for BOD5
and TSS and below 60 mg/L for COD. Nitrogen and phosphorus removal varied between
20% and 60%, with concentrations in recycled wastewater below 25 mg/L and 8 mg/L,
respectively. With these effluent concentrations, a good portion (above 60%) of Chilean
WWTPs generate reclaimed wastewater with the potential to be reused in the irrigation of
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agricultural products [34]. However, another part of the WWTPs’ production, including
marine outfalls and primary treatments, does not have the possibility to be reused.

Regarding flows, Superintendencia de Servicios Sanitarios (SISS) [68] reports for 2019
a countrywide production of 1.26 million m3 of treated wastewater, which represents a
production level of around 40 m3/s. The distribution of this reclaimed wastewater is
correlated with the distribution of the Chilean population concentrated in the central
macrozone (with a Mediterranean climate), where 79% live [67]. In addition, 22% of the
reclaimed wastewater is discharged through marine outfalls [68]. Villamar et al. [34] and
SISS [68] established that only 0.8% of the total reclaimed wastewater (in terms of flow) is
directly reused in agricultural activities. In terms of quantity of WWTPs, less than 4% of
their effluents is reused in irrigation [68]. All these data show that in the country, at the
urban level, reclaimed wastewater has a high potential to be reused for irrigation.

In rural areas, water supply, sewage, and treatment are provided by cooperatives and
rural drinking water committees, most of them (around 1900) part of the Rural Drinking
program of the Ministry of Public Works [68,71]. This organization, with support from
the Ministry of Public Works, opposes organization at the urban level, which is based on
private companies. Fifty percent of the rural sanitation systems are located in the central
macrozone (with a Mediterranean climate). In the case of water supply, these systems
provide up to 99% coverage to concentrated rural communities (this includes communities
with between 150 and 3000 inhabitants and at least 15 houses by kilometer of network) and
53% coverage to semi-concentrated rural communities (this includes communities with at
least 80 inhabitants and eight houses by kilometer of network). In the case of dispersed
rural areas (this includes communities with below 80 inhabitants and fewer than eight
houses by kilometer of network) no official data are available [71]. Regarding sewerage, a
coverage around 25% has been estimated by governmental institutions, while wastewater
treatment coverage has been calculated as less than 10% [72,73].

Subdere [74] published a report that includes information related to wastewater
treatment technologies in decentralized WWTPs (this includes rural areas). More than
500 WWTPs were identified as being in operation in Chile. Figure 4 shows different wastew-
ater treatment technologies employed in decentralized areas divided by each macrozone.
Just like in urban areas, the most commonly employed wastewater treatment technology is
activated sludge. However, the performance of and information on recycled wastewater
from these WWTPs has not been reported and the possibilities for reusing its effluents
cannot be established at this point in time. In addition, no data about reuse of recycled
wastewater is available at the rural level.
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3.1.5. Regulations Related to Treated Wastewater and Its Reclamation

In both areas (urban or rural), Chile has two main regulations regarding effluents
(treated wastewater) coming from WWTPs: Supreme Decree 90 [65] and Supreme Decree
46 [75]. Table 3 shows some important parameters of water quality included in Chilean
discharge regulations. According to SISS [68], 71% of Chilean WWTPs have to accomplish
the discharge into Streamflow 3 (no dilution capacity) (Table 2). In April 2021, discharge
limits by WWTPs in Chile achieved 94%, which means that 283 WWTPs had effluents
that fulfilled the discharge regulation [76]. This data confirms the potential to use treated
wastewater as a new water source for irrigation.

Table 3. Selected water quality standards include in Chilean regulations for discharge (DS 90 [77]
and DS 46 [75]. (Modified from Vera et al. [32].).

Water Quality
Parameter

Units
Discharge Place

Stream-Flow 2 Stream-Flow 3 Lakes Sea 1 Sea 2 Aquifer

pH Uni. 6.0–8.5 6.0–8.5 6.0–8.5 6.0–9.0 5.5–9.0 6.0–8.5
Total Suspended

Solids (TSS) mg/L 300 80 80 100 300

Total Nitrogen (TN) a mg/L 75 50 10 b 50 10 d–15 e

Total Phosphorus (TP) mg/L 15 10 2 5
Fecal Coliforms (FC) NMP/100 mL 1000 1000 1000–70 c 1000–70 c

5-day Biological
Oxygen Demand

(BOD5)
mg/L 300 35 35 60

Streamflow 2: streams with dilution capacity; Streamflow 3: streams without dilution capacity. Sea 1: within
the coastal protection zone; Sea 2: outside the coastal protection zone. a Total Kjeldahl Nitrogen (TKN) in the
regulation. b TKN plus nitrite and nitrate. c The value of 70 must be applied only in areas suitable for aquaculture
and exploitation of benthic resources. d Aquifer with high vulnerability. e Aquifer with low vulnerability.

For water reuse, the practice in Chile has been to follow the guideline NCh 1333/87 [78].
However, NCh 1333/87 is a guideline focused on different water uses, including irrigation
regardless of the source. This guideline is not specific to the reclamation of wastewater
and, at present, despite around 40% of the territory being classified as semi-arid and desert
(Figure 1), Chile has not produced a specific regulation focused on this new water source.
This lack of specific regulations for reusing recycled wastewater could partially explain the
low development (below 0.8% in terms of flow [34,68]) of this practice in the country. Only
in the last five years have several guidelines and various regulations been enacted. These
will be discussed in the section on challenges.

3.2. Challenges for Improving Reclamation of Wastewater in Chile
3.2.1. Institutional

Chile faces several challenges related specifically to institutions and regulations which
must be solved soon due to the necessity to improve the management of water resources,
including the management of recycled wastewater, especially in the central macrozone
where agricultural activities are mainly developed. It is important to mention that when
the regulatory framework was implemented for the sanitary system, only wastewater
at the urban level was included and recycling of wastewater was not the focus. The
main objective of the Chilean legal framework, and therefore its associated institutions
during the first decade of the 21st century was to extend the coverage of water supply and
treatment, reduce health risk, and protect water resources. Now, the country has to move
to a second step and search for a way to safely reuse treated wastewater as a new source
for irrigation as part of the concept of the circular economy. Recently, MOP [79] and Segura
et al. [31] established that reclamation of treated wastewater is an important issue for the
Chilean population.
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Related to recycled wastewater, SISS is the governmental institution assigned to the
inspection of treated wastewater at the urban level. Furthermore, during the next few years,
SISS will also be the institution responsible at the rural level (Law 20,998 [80]). With respect
to recycled wastewater reuse, SISS has explained that, in Chile, the action of disposal for
a WWTP is defined as “action to leave,” meaning for example, in a natural or artificial
water body (Table 2). Therefore, following this concept, the reuse of recycling wastewater
would be possible after this “action to leave.” However, at the present time, in urban
areas, water supply, sewage, and treatment are provided by private concession companies,
who are responsible for fulfilling the Decree of Sanitary Concession. The decree applies
to the discharge point (related to action to leave) and the quality of the water, and any
modification of that, for example, as carried out by a new agricultural project for recycling
wastewater, must receive governmental authorizations and permissions. According to
SISS, the responsibility for authorizations and permissions is relegated entirely to these
companies, who at the time have no economic incentives to promote the reuse of treated
wastewater nor even the support of a governmental institution that by law is dedicated
to promoting the reuse of treated wastewater. The previously explained situation shows
the necessity for an institutional framework to support and encourage the development
of reclamation of recycled wastewater in reuse projects. Alongside this framework, it is
necessary to develop national studies to be undertaken by universities, research centers,
and stakeholders, to provide a safe alternative using recycled wastewater, and for the
government to develop economic incentives to encourage water reclamation.

According to MOP [79], in Chile, water, including recycling wastewater reuse, is
a complex issue. There are more than forty governmental institutions involved in its
management and the multiplicity of agencies and a lack of intersectoral coordination and
collaboration is evident. Thus, in the next few years it will be essential to create a unique
governmental institution at the national level with the capacity to articulate all the activities
and questions related to water (including recycled wastewater) if the situation is to improve.
In this institution, one part would be dedicated to promoting the use of new water sources
with a defined program and strategy that should include different alternatives for the reuse
of treated wastewater. The national goal for 2030 is that 30% of wastewater discharge into
the sea and 20% of the recycled wastewater discharged into surface waters bodies will be
available for reuse [81]. In addition, one important task for the new institution would be
to guarantee autonomy and the decision-making capacity to manage the watershed level,
since Chile’s geography and length mean that water issues in the north of the country are
very different from those in the extreme south (Figure 1). At present, the Mesa Nacional
del Agua (an intersectoral space for discussion of the future of water in the country) has
made several recommendations along these lines for this new institutional framework for
water management [61,72,79].

3.2.2. The Necessity of Regulations

For all the importance of an institutional framework, an institution related to water
management needs guidelines and laws to promote and regulate the reuse of recycled
wastewater. The challenge for the country is enacting these regulations. Recently, one
important step was the law 21,075 [82] which regulates collection, reuse, and disposal
of greywater. This law has an important aspect related to the economic possibility of
negotiating the prices charged by water companies relating to sewerage and treatment. In
addition, the law established five uses for recycled greywater: (a) urban, including use for
the irrigation of gardens or recycling water for toilets; (b) recreation, including irrigation of
green spaces, sports fields, and other places with free access to the public; (c) ornamental,
including green areas with no access to the public; (d) industrial, including restriction
for use in food products or for non-evaporative cooling purposes; and (e) environmental,
including irrigation of forestry species, wetland maintenance, and other uses relating to
environmental conservation and sustainability. However, the law does not include water
quality standards. These water quality standards will be defined by the Ministry of Health
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when a specific regulation is passed. Still, today, after almost four years of work, this has
not been promulgated, but a proposal (Resolution 404 Exempt) was published in 2021 for
public consultation [83]. Table 4 shows the five water quality parameters with the limits
proposed for each category by Resolution 404 Exempt in comparison with standards for
greywater reuse in Israel and the United Kingdom.

Table 4. Water quality standards proposed for greywater reuse, Resolution 404 Exempt, and compari-
son with Israel and United Kingdom [83].

Climate Condition Arid–Mediterranean–Temperate Arid Temperate

Guideline or
Regulation

Chile
(Resolution 404 Exempt; 2021)

Israel
(SI 6147; 2012)

United Kingdom
(BS 8525; 2011)

Classification
1 2 3 4 A B C D 1 2 3 4

Parameter Units

pH Unit 5.0–9.5
Total Suspended
Solids (TSS) mg/L 10 140 (SSI)

30 (SI) 70 30

5-day Biological
Oxygen Demand
(BOD5)

mg/L 10 240 (SSI)
30 (SI) 70 20

Turbidity UNT 5 - (SSI)
10 (SI) 30 10 5 10 10 10

Fecal Coliforms
(FC) Log UFC/100 ml 1 3 (SSI)

2.3 (SI) 3 2 1

E. coli Log MPN/100 ml N.D. 2.4 2.4 N.D.

Residual
Chlorine mg/L 0.5 < × < 2.0

- (SSI)
0.5 < × < 2.0

(SI)
2.0 2.0 0.5 2.0

For Chile: 1, urban uses; 2, recreational uses, SSI: subsurface irrigation, SI: surface irrigation; 3, ornamental uses; 4,
industrial uses. Industrial uses do not include standards because these will be defined by local authorities. Data
extracted from BCN [83] and INN [84]. For Israel: Up to 1 m3 per day; A, subsurface drip irrigation for irrigation
of ornamental plants and fruit trees; B, irrigation of ornamental plants and fruit trees; C, toilet flushing; above
1 m3 per day, C, irrigation of ornamental areas, waterfalls, green wetlands, green grass and ornamental ponds,
toilet flushing; D, Irrigation of ornamental areas, waterfalls, green wetlands, green grass, lawn, and ornamental
ponds. Data extracted from Oron et al. [85] considering only annual mean. For UK: 1, spray application, pressure
washing, garden sprinkler use, and car. N.D.: not detected; 2, non-spray application, WC flushing; 3, non-spray
application, garden watering; 4, non-spray application, washing machine use. Data extracted from Albalawneh
and Chang [86].

Table 4 shows the similarity between the regulations proposed in Chile and interna-
tional standards. However, it is clear that only one list of standards was defined for the
whole country and that it does not consider the climatic particularities shown in Figure 2.
This information would be useful for controlling future greywater treatment systems in
the country but other water quality parameters should be followed (for example, electrical
conductivity in arid conditions), especially when treated greywater will be employed for
irrigation, considering the climatic variations along the length of Chile (Figure 2). The
selection of these water quality parameters should be locally defined, considering the
kind of plants that are to be irrigated. Recent interest in this new water source in Chile
has motivated several research articles and the implementation of small projects in the
country [87–91]. In addition, recently, the obligation to include greywater reuse systems
in edifices of more than 5000 m2 has been included in Chilean regulations [92], show-
ing the interest of the country in employing this new water source and the challenge in
implementing it.

In the case of municipal wastewater, the National Institute of Standardization (initials
in Spanish INN, Instituto Nacional de Normalización) between 2020 and 2021 has been
working on a new guideline package focused on recycled wastewater reuse as irrigation
water for agricultural activities: NCh 3456, Parts 1, 2, 3 and 4 [84] (approved on May
2021). This guideline package includes aspects related to agricultural practices, water
quality standards, monitoring, and sampling. In the case of water quality standards, the
package includes four categories in Part 2. The four categories were defined taking into
account the Chilean discharge regulations described previously (Table 3), and the package
is similar to the recent EU 2020/741 regulation on minimum requirements for water reuse
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in Europe [93]. Table 5 shows the water quality limits included in NCh 3456, Part 2 in
comparison with the recent EU 2020/74 regulation setting out the minimum requirements
for water reuse in Europe [93], two Latin-American countries, and two countries with arid
and Mediterranean climatic conditions.

Table 5. Comparison of some water quality parameters relevant to the reclamation of wastewater
including parameters for Chile, two Latin-America countries and countries with arid and Mediter-
rannean climates.

Climatic Conditions Arid–Mediterranean–Temperate Mediterranean–Temperate Tropical Arid Mediterranean

Guideline or
Regulation

Chile
(NCh

1333 [78])

Chile
(NCh 3456, Part 2 [84])

Europe
(EU 2020/741 [93])

Mexico
(NOM-003-
ECOL-1997

[94])

Costa Rica
(Decree

33601/2007 [95])

Israel (National
Standards for
Water Reuse

[21,96])

Italy (GAB/
DEC/93/06

[23,97])

Classification Water for
Irrigation I II III IV A B C D Reclaimed

Wastewater
Reclaimed
Wastewater

Reclaimed
Wastewater

Reclaimed
Wastewater

Parameter Units

Electrical Conductivity (EC) µS/cm <750 1

pH Unit 5.5–9.0 6.0–9.0 7.0–8.5 6.0–9.5
Total Suspended Solids (TSS) mg/L 10 25 50 80 10 35 35 35 20 50 10 10

5-day Biological Oxygen
Demand (BOD5) mg/L 10 20 35 35 10 25 25 25 20 50 10 20

Chemical Oxygen Demand
(COD) mg/L 100 100

Total Nitrogen (TN) mg/L 50 10 15
Total Phosphorus (TP) mg/L 25 1 2

Fecal Coliforms (FC) Log MPN/100
mL 3 1 2 2.3

2 3 2 3 2 2.4 3 1

E. coli Log MPN/100
mL 1 2 3 4 2 4

Helmints Eggs/L 5 1 3 1 3 1 3 1 3 1 1

1 EC value is the limit for no effects on crops. 2 Limits for FC in 95% of the samples. 3 Irrigation of grasses and
forage. 4 Eighty percent of the samples, employing unit measure UFC/100mL. For Chile, I: treated wastewater
with very high quality; II: treated wastewater with high quality; III: treated wastewater with good quality; IV:
treated wastewater with medium quality [84]. For Europe, A: all food crops consumed raw where the edible part
is in direct contact with reclaimed water and root crops consumed raw; B: food crops consumed raw where the
edible part is produced above ground and is not in direct contact with reclaimed water, processed food crops,
and non-food crops, including crops used to feed milk- or meat-producing animals; C: food crops consumed raw
where the edible part is produced above ground and is not in direct contact with reclaimed water, processed food
crops, and non-food crops, including crops used to feed milk- or meat-producing animals; D: industrial, energy,
and seeded crops [93]. For Mexico were included water quality parameters for direct contact, which includes
reuse for irrigation of parks and gardens. For Costa Rica were included water quality criteria for reuse type 3,
which includes irrigation for crops which are not processed previous to commercialization, and wastewater from
different sources than domestic.

The values of treated wastewater for discharge in streamflow 3, shown in Table 3,
have similar values to Category C included in the recent EU 2020/741 regulation [93] and
NCh 3456, Category D (Table 5). This is important because it suggests that effluents to
Chilean WWTPs have great potential to be reused (as previously discussed). In addition,
the water quality standards included in NCh 3456, Part 2 and shown in Table 5 have higher
values in comparison to Israel and Italy. In this way, the country can start with the values
proposed in the guideline but with intention to review in the next few years. However,
despite the advance of having a Chilean guideline set out, at present, no specific mandatory
regulation concerning the reclamation of wastewater has been enacted. One challenge for
the future will be precisely the discussion of a new regulation. The first step will be to
discuss the list of standards to guarantee the safe reclamation of treated wastewater. In
addition, what option would be better, one unique list of standards for the whole country
or specific standards for each macrozone, as proposed in this work? This discussion has to
consider the climatic variation along the length of the country (Figure 2) because the water
necessities among populations are different when you compare conditions in the northern,
central or southern parts. In Table 5, water quality standards for reclamation of treated
wastewater in arid and Mediterranean countries are very similar, suggesting similar water
quality standards for the whole country as in the proposed regulation for greywater [83].

3.2.3. Rural Communities

The previous discussion about the institutional and regulatory framework challenges
for the reclamation of treated wastewater will be important for the future of sanitation
in the country, especially for rural populations. At present, for rural communities, the
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specific regulatory framework for this sector has been updated in Law 20,998 and Decree
50/2020 [80,98], which of course, is a general framework, not specific to treatment and
reuse. Thus, the implementation of treatment and reuse projects and the necessity to
innovate treatment technologies with a focus on the circular economy, of which reclama-
tion of treated wastewater is a part, will be an important challenge for the country. The
previous consideration must be included in discussion of the new WWTPs for this part
of the population. This will be crucial to modify the present focus of treatment in rural
sectors, as more than 70% of decentralized WWTPs (including rural sectors) are based
on activated sludge systems [32], without focus on resource recovery. Under this new
scenario, moving toward the use of technologies that are easier to build and operate in
the rural sector, nature-based solutions, e.g., treatment wetlands, would be sanitary solu-
tions to be considered. Treatment wetlands have been recommended for this part of the
population, this a technology in which natural processes are optimized to improve water
quality and which has the possibility to produce treated wastewater of high enough quality
to be reused as irrigation water in agricultural activities, following the circular economy
concept [99–103]. However, at a national level, it has the lowest usage rate—below 2%
in the rural sector [32]—despite several studies based on local experiences showing the
potential for its use across the country [104–108].

3.2.4. Emerging Compounds

The term emerging compounds (ECs) includes a wide range of compounds with
relevant biological activities, such as pharmaceutical and personal care products (PPCPs),
endocrine disrupting compounds (EDs), and their transformation products and/or metabo-
lites [109]. In nature, wastewater is the most common source of these compounds, and
therefore generates concerns among scientists and policy makers in the context of water use
or reuse [17]. On account of their toxicity and potential adverse effects on the environment
and humans, their release into effluents must be minimized, particularly when wastewater
reuse for crops irrigation is expected [110]. In the case of PPCPs, irrigation with treated
wastewater can contribute to the dissemination of antibiotic resistance due to the low
effectiveness of conventional and non-conventional WWTPs for removing antibiotics [109].
Antibiotics have been detected in treated wastewater in concentrations ranging from 55 to
22,000 ng/L [18]. Therefore, irrigation with treated wastewater can affect soil and plant
microbial communities and can contribute to this global concern endangering human
health and the environment [109].

ECs, such as diclofenac, ibuprofen, naproxen, carbamazepine, fluoxetine, caffeine,
sulfamethoxazole, bisphenol A, atenolol, triclosan, tonalide, among others, have been
reported in effluents to WWTPs in Chile [111,112]. Thus, ECs in Chilean treated wastewater
present a challenge to universities and research centers looking to understand, under local
conditions, the effects of ECs on crops and the potential human and animal health risks
when treated wastewater is employed as water for irrigation. Crops irrigated with treated
wastewater can bear ECs accumulated in roots and aerial organs, which can affect plant
physiology [17]. In this way, further specific studies in the country must be established.
In addition, supplementary local research on ECs can provide insights into the need for
improvements to current wastewater treatment systems to ensure the quality and safety of
new water sources.

4. Conclusions

Chile is a country with a length that provides different climates along its territory.
This variety of climates is an important advantage for agricultural production, but it also
introduces complexity when it comes to water sources for irrigation. Forty percent of
Chile’s territory has been classified as semiarid and desert, while twenty percent has been
classified as Mediterranean. The Mediterranean part was identified as the place where
more agricultural production is developed, mainly focused on fruit production, and it is
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where 79% of the country’s population lives, putting a strain on water resources, further
aggravated by a megadrought extending over the last ten years.

The previously described situation has imposed the necessity to find new water
sources. In this regard, the country has made an important advance in wastewater treatment
coverage, achieving almost 100% in urban areas. This important achievement included
the establishment of technologies with the possibility of producing recycled wastewater
as a new water source for irrigation. However, due to a lack of regulations (specific
guidelines and laws for reclamation) and inadequate institutional frameworks (more than
forty governmental institutions interfere in water issues), management of this resource has
not developed at the same pace as the water necessities of the country, which can partially
explain the fact that direct reuse of treated wastewater across the country is still below 1%
of the total national flow.

During the last twenty years, reuse has emerged in the country’s discourse and only
during the last five years has the regulatory framework been partially updated to match the
new reality. The challenges to increase the use of recycled wastewater in the 21st century
will require the development of adequate institutional and regulatory frameworks which
must include or solve the particularities for each macrozone and confront the realities of
Chilean rural populations. In this way, the implementation of treatment and reuse projects
and innovation in treatment technologies will be needed at the rural level. Additionally,
more research into recycled wastewater reuse has to be carried out across the country by
universities, research centers, and stakeholders, studying traditional compounds but espe-
cially focusing on emerging compounds and their effect on the irrigation of crops, especially
the crops needed to feed the growing national population and supply international markets.
Based on the challenges discussed and the national water scarcity situation presented in
this manuscript, it is expected that the reuse of safe, treated wastewater will increase in the
coming years in the country, making a new water source available for irrigation to cover
the agricultural necessities and mitigate the new climate challenge (megadrought) imposed
by climate change.
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