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Abstract: The groundwater (GW) and surface water (SW) interaction (SW-GW) through the hyporheic
zone is a significant component in sustainable water resource management. The complexities
in SW-GW interactions increase from a local to a regional scale and are affected by variation in
hydraulic, hydrologic, and hydrogeologic (3H) processes. Controlling factors and their upscaling
of these processes to assess SW-GW interaction have not been addressed sufficiently in previous
studies. Additionally, it is unclear what the effective factors are at different scales during the
upscaling. Therefore, the present review focused on controlling factors of 3H processes in SW-
GW interaction and their upscaling techniques. Relevancy of controlling factors was identified at
different scales. Applications of different approaches and their uncertainties were also discussed
for the characterization of SW-GW interactions. The study revealed that the improved data from
different approaches is crucial for machine learning training and its application in the SW and GW
assessment at local, sub-catchment, and catchment scales. Based on the outcomes, a framework
has been proposed to execute modalities of controlling factors using remote sensing, geophysics,
and artificial intelligence. The proposed framework could help in handling big data and accurate
upscaling for water resource management.

Keywords: surface water; groundwater; hyporheic exchange; hyporheic zone; upscaling

1. Introduction

The surface and subsurface hydrological exchanges through sediments between near-
channel and in-channel water are known as a hyporheic zone (HZ) [1]. The HZ plays a
crucial role in the depletion of dissolved contaminants in channel water, supply nutrients,
and energy cycle to river ecology. It provides food for biological communities and controls
Spatio-temporal pollutant transport in river water [2]. Understanding complex processes
in the HZ due to variation in climate, topography, and geology are necessary to under-
stand surface water-groundwater (SW-GW) interaction and their controlling factors for
sustainable water resource management.

SW-GW interaction in the HZ is associated with different spatial scales, which do not
have any universally accepted definition [3]. For instance, the hyporheic scale varies from
1 to 100 m refers to the transition zone of hyporheic flow (HF). The reach or local scale,
dominated by GW flow conditions, varies between 100 and 1000 m or slightly greater than
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1000 m. The sub-catchment scale, dominated by GW flow conditions of several streams,
lies between the local scale and the catchment scale. The catchment scale is more than
several kilometers, dominated by regional flows [3–5]. Due to complexities in SW-GW
interaction, smaller-scale factors become irrelevant or less relevant at a larger scale [5].
Determination of a Spatio-temporal SW-GW interaction for a particular setting is a challeng-
ing task that is controlled by several factors such as type of SW body, geomorphological,
hydrological, topographical, geological, chemical, biological, ecological, and climatolog-
ical factors [6]. Interpolation of these factors from a small scale to a large scale is also a
challenging task [7].

Recent studies focused on the upscaling of various controlling factors of SW-GW
interaction from a point or local scale to a regional scale [8–12]. The key findings of some
studies are summarized in Table 1.

Table 1. Summary of recent studies for upscaling of various controlling factors of surface water-
groundwater (SW-GW) interaction.

Reference Key Findings

Vermeulen et al. [13] Upscaled hydraulic conductivity and transmissivity in fine and
coarse resolution mesh using different techniques.

Jana & Mohanty [14] Upscaled soil hydraulic parameters and topographic conditions
in a fine mesh.

Pryshlak et al. [15] Upscaled hydraulic conductivity, channel morphology, and soil
heterogeneity

Schmadel et al. [16] Developed a framework to assess diel hydrologic fluctuations to
hyporheic exchange in the absence of geomorphic complexity.

Di Ciacca et al. [8]
Used hydraulic conductivity of an aquifer and streambed

properties to assess SW-GW interaction in a regional
hydrogeological model.

Glose et al. [10] Upscaled hydraulic conductivity using a different parameter
termed vertically integrated hydraulic conductivity.

Magliozzi et al. [17]
Applied a statistical method in several factors of catchment scale,
sub-catchment scale, and reach scale to identify potential areas of

hyporheic exchange for river restoration planning.

Snowdon et al. [11]
Used topographic indices, hydraulic heads, and hyporheic

exchange flux for groundwater resource management at different
spatial scales.

Bastani & Harter [12]
Worked on the impact of temporal resolution upscaling of

groundwater flow stresses and transport boundary conditions on
the long-term prediction of nitrate transport at the regional scale.

However, these studies have not covered all controlling factors of the fundamental
processes associated with SW-GW interaction. It showed that a framework to execute
modalities of fundamental processes of SW-GW interaction and their impact on water
resource management is limited. Additionally, there is a lack of a holistic approach that
considers upscaling techniques for all controlling factors of the fundamental processes
with their associated uncertainties. These research gaps motivated this study to review
fundamental processes of SW-GW interaction and their upscaling techniques.

In this review, the fundamental processes are categorized as hydraulic, hydrological,
hydrogeological, and hydro-geochemical processes. Hydro-geochemical processes are
excluded because of their common approach for data collection and processing associated
with field surveys and laboratory experiments [18–22]. Additionally, the location of sample
collection, type of chemical analysis, and interpretation vary with the purpose of a study.
Therefore, the focus of this study was to identify 3H processes in HZ, their impact on water
resource management, upscaling techniques, and uncertainties. The purpose of separating
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the 3H processes is to understand their controlling factors and their upscaling, even though
3H processes may be naturally overlapped between some of these processes.

The review has been structured into three main parts (Figure 1). The first part has
been divided into three steps. Step 1 explains the literature review on controlling factors of
3H processes and their uncertainties. Thereafter, the importance of upscaling and the role
of effective factors at different scales are discussed in step 2. Lastly, a brief discussion on
framework development focused on the modalities of factors that are difficult to measure
spatially and temporally. The second part comprises the proposed framework at different
scales for upscaling controlling factors of 3H processes using remote sensing, geophysics,
and artificial intelligence. The third part refers to the conclusion of this review followed by
general challenges of the proposed framework.
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The purpose of the proposed framework is to handle big data, improve in upscaling
uncertainties, and acquisition of accurate results. The proposed framework would be useful
to understand the dynamic distribution of controlling factors of SW-GW interactions and
their applications. Additionally, it would be helpful in better understanding applications
of different upscaling techniques. Furthermore, it could be a guide to understand system
dynamics and their use in water resource management.

2. Literature Review
2.1. 3H Processes

Hydraulic processes in SW and GW systems are referred to as the movement of water
volume and their associated pressure and energy. These processes depend on streambed
pressure and water surface profile, which sequentially influences hydraulic head gradient
and hyporheic exchange (HE) [23]. HE is primarily controlled by energy head gradients,
alluvium volume, and hydraulic conductivity [24].

Hydrological processes in SW-GW interaction are referred to as in-channel pre-infiltrated
water and their effect on changes in channel morphologies, transportation and deposition of
sediments, development of in-channel geomorphic structures, and spanning of in-channel
obstructions. The intensity of hydrological processes depends mainly on the spatio-temporal
precipitation, heterogeneous topography, and floodplain anthropogenic activities.

Hydrogeological processes in SW-GW interactions can be divided into an HF and GW
flow. The HF is bidirectional and travels a short distance, while GW flow is unidirectional
and travels over much longer distances [7]. The HE due to hydrogeological processes
mainly depends on streambed heterogeneity, subsurface geology, local topography, precipi-
tation, and GW level position. Streambed heterogeneity depends on the bed composition,
primarily controlled by channel slope and river sinuosity [25]. Bed composition includes
alluvial beds composed of higher silt and clay, sandy bed, a mixture of both alluvial and
sandy beds, unconsolidated materials, boulder bed, and bedrock with limited alluvial
materials.

2.2. Controlling Factors of 3H Processes and Their Uncertainties
2.2.1. Hydraulic Head Gradient

Hydraulic head is the sum of pressure head, elevation head, and kinetic energy. It is
used to characterize the mechanical energy of the fluid in SW and GW systems. At a point
scale, hydrostatic components lead by the height and slope of SW cause the hydraulic
head gradient changes. At a local or regional scale, the hydraulic head changes due to
hydrodynamic components lead by stream velocity flowing over submerged bedforms,
which results in momentum transfer to the bed [7]. Hydraulic head changes are also
controlled by bed shear stress, bed roughness, and low and high-velocity zones in in-
channel geomorphic structures such as spanning logs, pool-riffle, or riffle-pool sequences [7].
Controlling factors of hydraulic processes are shown in Figure 2.
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and hyporheic exchange due to streambed pressure, alluvium volume, hydraulic conductivity,
and geomorphic structures, such as pool riffle sequences and logjams [24,26].

The hydraulic head gradient in mountain streams is mainly controlled by in-channel
obstructions, where high and low-pressure zones developed upstream and downstream of
obstruction, which improves hyporheic circulation under the obstruction [24]. Uncertainties
are associated with the identification of in-channel obstructions at a local to regional scale
due to the distribution of in-channel geomorphology. Recent studies tried to identify in-
channel geomorphic structures with different methodologies. Mahdade et al. [26] identified
pool-riffle sequences at a spatial scale using wavelet and index methods, limited for low
discharge rivers and large-scale undulation in the streambed. An increment in hydraulic
resistance and SW-GW interaction due to the presence of in-channel logjams creates varia-
tions in the hydraulic head along the streambed. In this case, SW-GW interaction has been
affected due to limited or generalized streambed leakage coefficient and hydrogeological
properties. Spatial complexity has also increased along the streambed due to in-channel
logjams. The reason for the spatial complexity is the presence of a control site both up
and downstream. The upstream control site affects the downstream control site and hence
impacts the results [27]. The spacing between individual geomorphic structures impacts
the HE. For example, pool-step-riffle produced 60% downwelling and 40% upwelling,
while riffle-pool-step reverses the percentages [28,29]. It showed the importance of accurate
identification of in-channel geomorphic structures.

2.2.2. Hydrogeological Parameters (Hydraulic Conductivity, Permeability, Transmissivity,
Porosity, Specific Storage, and Specific Yield)

Hydraulic conductivity is one of the leading factors in estimating and controlling HE
flux across streambed spatially and temporally. Brunner et al. [3] and Naganna et al. [30]
reviewed in detail several hydraulic conductivity measuring methods of in-situ, laboratory,
and numerical modeling with some of their advantages and disadvantages. All techniques
of determining hydraulic conductivity have uncertainties that are highly dependent upon
the conditions under which the tests have been conducted [31]. Hydraulic conductivity
of streambed is affected mainly by the heterogeneity of streambed, where its estimation is
the most challenging task. The range of average error between measured and estimated
hydraulic conductivity values with different methods and locations is of several orders of
magnitude [3,31].

At point scale, field permeameter tests using the Darcy equation and the coupled
seepage/hydraulic gradient method are not suitable techniques in estimating vertical
hydraulic conductivity due to test design and logistics. However, the seepage meter is
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limited to a low-energy flowing stream and immobile bed [31]. Slug tests have generally
been performed in wells (installed with filter packs) for water sampling. Uncertainty in the
slug test is due to the borehole radius and the porosity of filter packs. Uncertainty in grain
size distribution analysis leads to overestimation in hydraulic conductivity values precludes
streambed anisotropy and is unable to consider preferential pathways [3]. Pumping tests
have also been used for decades in hydraulic conductivity measurement. It also provides
subsurface heterogeneity through the hydraulic tomography approach [3]. There are
numerous challenges to overcome to conduct groundwater systems using a pumping test,
such as coastal aquifer systems, fractured rock aquifer systems, shallow alluvial aquifer
systems, determining aquifer properties, and well performance.

From the local to regional scale, statistical and geostatistical methods can be used
to estimate heterogeneous hydraulic conductivity. However, these methods also have
uncertainties and limitations as discussed by Naganna et al. [30]. For example, inaccuracies
due to the density of in-situ point measurement in geostatistical technique [32]. The geo-
statistical methods usually do interpolation using the kriging method. The interpolated
values at unknown locations depend upon the variance of in-situ point measurement.
This variance shows the spatial dependency between the estimated points. If the nugget
(related to short-range variability in the data) and sill (total variance where the empirical
variogram appears to level off) ratio is <0.25, there will be a strong spatial dependency
between the in-situ measured points [33]. With an increase in the nugget/sill (a component
of the variogram), the error would increase in the estimated heterogeneous hydraulic
conductivity. Uncertainties in other spatial measurement methods like geophysical and
remote sensing have been discussed in the following sections.

Intrinsic permeability in alluvial beds increases with increasing particle size, while
in an unconsolidated bed, it is affected by particle shape, particle packing, and degree of
compaction [34]. Laboratory methods for the determination of permeability have some
issues. First, it is less suitable for a mixture of silt and clay deposits [35]. Second, the packing
and density of deposits are compromised during sample data collection. Third, if the sample
is collected correctly, the core can provide only vertical permeability [34]. Chappell and
Lancaster [36] studied the spatio-temporal uncertainties in the measurement of permeability
in several field methods. MacDonald et al. [34] showed the importance of d10 cover in
the variation of hydraulic conductivity in a catchment. Measurement of permeability and
hydraulic conductivity values using repeated Guelph permeameter showed a good method
in determining permeability, where large-scale permeability testing is not feasible.

Subsurface rock could be sedimentary or igneous, or metamorphic at or below the HZ.
Permeability developed due to secondary porosity of rocks such as faults, joints, shear lin-
eaments, facies, bedding plane partings, crossbedding, dipping beds, axial plane cleavage,
and other fractures [30]. Hydraulic conductivity values vary vertically and laterally following
the direction of the above-mentioned secondary porosities. Bi-directional flow in fractures and
the bedding system recharges the aquifer, at a local or regional scale, either from downward
seepage or lateral/upward seepage. Water flow through subsurface geological settings is
controlled by aquifer characteristics (transmissivity, storativity, specific storage, and specific
yield), compressibility, and effective stress of the aquifer. The movement of water is either
SW to GW or within the aquifer. The magnitude of the SW-GW interaction in the ground-
water system depends upon the effective porosity (specific yield; Sy) of the crystalline rock
aquifers. Dewandel et al. [37] proposed an upscaling method based on the double water table
fluctuation for the estimation of hydraulic conductivity and Sy. This information is useful as
input parameters for the GW numerical modeling. However, this proposed method required
a significant amount of borehole information that discourages in cases of limited information
and shows the inability to estimate spatial heterogeneity.

2.2.3. Bed Shear Stress and Bed Roughness

Bed shear stress is mainly controlled by bed roughness such as stream metabolism,
drag coefficient, and velocity generated due to the dynamic pressure [38]. Bed roughness
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varies according to hydraulics, geomorphology, and sediment condition in a river. Un-
certainties in streambed mobilization are due to the generalization of roughness factors,
visual identification of sediment texture, and several discharge-related conditions [38].
The presence of roughness factors such as streambed vegetation and gravel bed (gener-
ally in mountain streams) affect flow velocities, shear stress, and turbulence intensities.
For example, streambed anisotropy enhanced by vegetation generates strong secondary
currents and develops a new boundary layer by changing bed roughness from gravel
bed to vegetated bed [39]. Ignoring these factors or imprecise estimation/identification
of roughness factors develop uncertainties in hydraulic processes. The drag coefficient
varies due to blockages in a river either by in-channel obstruction or geomorphic structures,
the flow area of a cross-section, local velocity, and local water depth. At a local scale, an in-
crement in bed roughness, due to in-channel obstruction can modify the transportation and
deposition of sediment [40]. Modification of channel morphology causes changes in flow
velocity, and momentum affects dynamic pressure head distribution [24]. Therefore, in the
drag coefficient estimation, the ignorance of in-channel obstruction causes uncertainties in
hydraulic processes. For example, Hygelund and Manga [41] investigate the effect of wood
logs on the drag coefficient with the orientation, size, depth, and leafless log branches.

2.2.4. Channel Morphology and Hyporehic Exchange

Three factors have controlled the modification in channel morphology [42]. First,
the effect of soil and climatic conditions on the discharge regime; second, variation in
channel slope according to heterogeneous topography from local to regional scale; third,
the impact of sediment properties on streambed erodibility. All these factors in different
types of channels were discussed in detail by Montgomery and Buffington [43]. Further
discussion is not required because the focus is on the rate and spatial extent of HE. Buff-
ington and Tonina [25] showed different relationships between magnitude, spatial extent,
the length scale of HE, and river discharge. In this review, these relationships are com-
bined to show the heterogeneity of hydrological control on HE in different channel types
(Figure 3).
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Schmadel et al. [44] analyzed the spatial heterogeneity of hydrological control on
HE in steep-pool morphology. They found that GW inflow was the primary controlling
factor rather than discharge in morphologically driven HE. Whereas, spanning of a channel
structure such as natural debris dams, stream restoration log dams, and boulder weirs
cause dominancy of hydrostatically derived HE and reduction in hydrodynamic forces [45].
The significance of hydrological processes is limited to examining variation in channel
morphology and its effect on HE. Mostly, uncertainties of hydrological processes in SW-GW
interactions are due to hydrological modeling that has been discussed in the later section.

2.2.5. Topographic Condition

The relationship between topographic conditions and GW level position is responsible
for controlling GW flow, infiltration, and exfiltration in the HZ. Sophocleous [46] mentioned
the extension of GW discharge from the discharge area to the downgradient from the basin
hinge line (an imaginary line separating discharging and recharging areas). Dahl et al. [4]
classified riparian flow paths based on the type of flow and contact time between water
and riparian deposits with an organic content as diffused, overland, direct, and drainage
flow path. The mechanism of these flow paths is helpful in understanding the recharging
and discharging of GW, mainly derived by precipitation. The extent of the HZ due to these
flow paths varied spatially and temporally. For instance, during the GW upwelling, the HZ
depth is constant across the stream’s width due to a diffused flow path than the direct flow
path. Whereas, during the GW downwelling, the HE occurs in shallow sediments of the
stream’s central part [47].

2.2.6. Residence Time

Another effect of flow paths (mentioned above) is on residence time, controlled by the
flow path scale and hydraulic conductivity heterogeneity. High residence time (from weeks
to years) is associated with a diffused flow path, while short residence time (for a few hours)
is associated with a drainage flow path [4]. Heterogeneous hydraulic conductivity increases
the tortuosity of flow lines causing uncertainty in measured residence time. Whereas, in the
homogeneous case, the increment in residence time is due to the compression of the HZ.
The overall effect of heterogeneity and homogeneity of residence time is due to variation
in the HZ and HE, which influence reactive transportation [48]. Additionally, the HZ
extent in a floodplain is controlled by lateral flow paths that follow paleo-channels across
a floodplain or the head difference between meanders in the stream path [49]. Meander-
driven lateral flows are the greatest from hinge points, controlled by channel sinuosity and
settings with large GW discharge rates [49].

Summary of controlling factors of 3H processes and their uncertainties are given in
Table 2.

Table 2. Summary of 3H processes controlling factors, their sub-factors, and uncertainties.

Processes Controlling Factors Scale Sub-Factors Uncertainties

Hydraulic Hydraulic head
gradient

Point Affected by height and
slope of SW

Coarse-resolution and
inaccurate measurement of

SW height.

Local or regional

Affected by bed
roughness, stream
velocity, and bed

topography

Use of constant bed
roughness and streambed

leakage coefficient.
Ignorance of geomorphic

structures.
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Table 2. Cont.

Processes Controlling Factors Scale Sub-Factors Uncertainties

Hydrogeological

Hydraulic conductivity

Point Affected by streambed
heterogeneity

Inaccurate grain size
distribution

Local or regional
Affected by streambed

heterogeneity and
secondary porosity

Low-density point
measurement and ignorance

of secondary porosities.

Permeability Point, local or regional
Particle size, shape,

packing, and degree of
compaction

Lab-based measurements

Hydrological

Bed roughness Local or regional
Streambed vegetation,

gravel bed, and channel
morphology

Selection of wrong bed
roughness or ignorance of

bed roughness factors.

Drag Coefficient Local or regional

In-channel obstruction
or geomorphic

structures, and river
geometry.

Ignorance of in-channel
obstruction

Channel morphology Local or regional

Soil and climatic
condition,

heterogeneous
topography,

and sediment
properties

Ignorance of key factors and
hydrological modeling

limitations.

2.3. Upscaling and Role of Effective Factors at Different Scales

In SW-GW interactions, scales vary from point to regional and their selection depends
on the type of study. For example, water quality assessment due to anthropogenic activities
is generally studied at specific locations, while water resource management is at a regional
scale/watershed scale. Mostly in-situ measurements are at point scales, which can inter-
polate to a larger scale for precise assessment of SW-GW interactions. The importance of
upscaling is explained by Boano et al. [7] while dominating characteristics and factors of
different scales are briefly discussed by Barthel and Banzhaf [5]. Effective factors in SW-GW
interactions are variable at different scales. How the effective factors change from one
scale to another scale, and how they can interpolate during the transition is not addressed
correctly in the literature. It needs to be comprehensively classified to understand upscaling
and downscaling between different scales. Furthermore, the role of integrated techniques
needs to assess in the above scenarios.

2.3.1. Effective Factors at Different Scales

At the point scale, very detailed observations are possible in describing elementary and
fundamental concepts of 3H processes [5]. Upscaling of the elementary and fundamental
concepts is challenging due to (i) heterogeneity and complexity, which gives inaccurate
results when low-density point scale measurements are interpolated and (ii) restriction in
high-density point measurements on the field due to high cost, high labor, and impractically
high measurement times. As discussed, in upscaling, some factors become less important
with increment in the heterogeneity and complexity from point scale to a larger scale,
whereas the importance of other factors becomes more relevant than at the point scale.
However, the influence of insignificant factors at a point scale continues to exist at a larger
scale but lies outside the area of interest. For example, at the point scale, SW-GW interaction
is due to changes in pressure gradient between GW and SW bodies affected by pore
geometry, size, distribution, and connectivity of streambed with an aquifer [5]. While at a
larger scale, the effects of pressure gradient are studied in terms of exchange flux between
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in-channel geomorphic structures, unsaturated zones, hydrostatic and hydrodynamic
processes.

Several authors have mentioned different criteria for the relevancy and irrelevancy
of processes and parameters at different scales which are summarized by Barthel and
Banzhaf [5]. In this study, the relevancy and irrelevancy of all possible processes and pa-
rameters were identified based on different criteria. The criterion to simplify the descriptive
comparison of the effective parameters from small to large scale are summarized as follows:

• Processes and their parameters in HZ can be observed in detail at a small scale, while
these have strong practical limits at a larger scale. However, nature and magnitude
are unchanged at a larger scale. Therefore, parameters are irrelevant at a larger scale
and relevant at a smaller scale for study purposes.

• There are some processes and parameters which give detailed observation at a small
scale but can only be observed at a large scale. Therefore, for study purposes, large-
scale assessment of those processes and parameters is the only option.

• However, for some parameters at larger-scale studies, observations at low resolution
will suffice. Therefore, some detailed observations at a small scale become irrelevant.

Based on the criterion obtained from the literature, variations of effective factors at
different scales are shown in Table 3.

Table 3. Relevancy of effective factors at different spatial scale.

Processes Factors Sub-Factors Point Local Intermediate Regional

Hyd 1 Pressure gradients R R IR IR

Hyd 1 Hyporheic flow R R PR IR

Hyd, Hyg 1, 2 Streambed leakage coefficient R PR IR IR

Hyd 1 Turbulence intensities IR R IR IR

Hyd, Hy 1, 3 Stream velocity IR R PR IR

Hyd, Hy 1, 3, 4 Stream’s water surface slope IR PR R R

Hyd, Hyg 1, 2 Geomorphic structure, its size and spacing IR PR R R

Hyd 1 Channel obstructions IR PR R R

Hyg 2 Pore size and distribution R IR IR IR

Hyg 2 Pore geometry R IR IR IR

Hyg 2 Streambed porosity R R IR IR

Hyg 2 Connectivity of the aquifer substratum and riverbed R R PR IR

Hyg 2 Hydraulic conductivity R R IR IR

Hyg 2 Permeability R R IR IR

Hyg 2 Transmissivity R R IR IR

Hyg 2 Streambed composition R R IR IR

Hyg 2 Infiltration rate R R IR IR

Hyg 2 Thickness of sediment layers R R IR IR

Hyg 2 Grain size distribution R R IR IR

Hyg 2 Groundwater level R R R R

Hyg 2 Intrinsic permeability R R IR IR

Hyg 2 Biological activities R R IR IR

Hyg 2 Groundwater chemistry R R PR IR

Hyg 2 Groundwater discharge rate IR PR R R
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Table 3. Cont.

Processes Factors Sub-Factors Point Local Intermediate Regional

Hyg 2 Clogging layer of streambed IR IR R IR

Hyg 2 Groundwater flow IR IR R R

Hyg 2 Aquifer characteristics IR IR R R

Hyg 2 Aquifer compressibility IR IR R R

Hyg 2 Parent-rock type IR IR R R

Hy 3, 4 Depth to bedrock R R IR IR

Hy 3 Streambed motion IR R IR IR

Hyd, Hy 1, 3 Bed shear stress IR R IR IR

Hy 3 Streambed vegetation IR R PR IR

Hy 3 Roughness features IR R R R

Hy 3, 4, 6 Channel slope IR PR R R

Hy 3, 4 Drag coefficient IR PR R R

Hy 4 Channel morphologies IR PR R R

Hy 4, 5 Precipitation IR PR R R

Hy 5 Surface topography IR PR R R

Hy 5 Floodplain anthropogenic activities IR PR R R

Hy 5 Evaporation IR IR IR IR

Hy 5 Soil heterogeneity PR PR PR PR

Hy 5 Climate R R R R

Hy 5 Geological structures IR IR IR IR

Hy 6 Residence time IR IR IR IR

Hy 5 Evapotranspiration R R R R

Hy 1, 4 Environmental tracers R R R R

Hy 4 Water chemical characteristics IR IR IR IR

Hy 4 Channel geometry IR IR IR IR

Hy 4 Bank storage R R R R

Hy 5 Soil moisture R R R R

Hy 3, 4 Hydraulic structures IR IR IR IR

Hyg, Hy 2, 4 Pumping IR IR IR IR

Hy 4 River network R R R R

Hy 5 Land use changes R R R R

R is relevance, IR is irrelevance, PR is partially relevant, Hyd = hydraulic, Hyg = hydrogeology, Hy = hydrology,
Factor 1 = Hydraulic head gradient, Factor 2 = hydrogeological parameters, Factor 3 = Bed share stress and
bed roughness, Factor 4 = Channel morphology and Hyporehic exchange, Factor 5 = Topographic condition,
and Factor 6 = Residence time.

The table summarizes that the effectiveness of factors changes from a small scale to a
larger size [5]. For example, at a point and local scale, channel slope is ineffective while it is
effective at a larger scale due to lateral variations in streambed elevations. The streambed
leakage coefficient is effective at point scale while it is less effective at a larger scale due
to heterogeneous streambed composition and changes in streambed thickness, where
the spatial determination of the coefficient is not possible. The role of geomorphological
structures and channel obstruction in SW-GW interactions is effective at a larger scale, while
these are ineffective at a point and local scale due to their heterogeneous spatial extent
and processes responsible for their formations. However, these structures are responsible
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for increasing intensities of HE at a point and local scale, which indicates relationships
between effective and ineffective factors at different scales. Although, factors at a larger
scale can be determined by inverse modeling with other factors that required some form of
generalization and hence create uncertainties in effective GW resource management.

2.3.2. Integration of Effective Factors during Upscaling

For accurate integration of effective factors, a large number of in-situ data is required.
It could be from high-density point measurements, which is impractical as discussed
above. It could be from a large number of borehole data in the study area, which provides
detailed vertical information and can interpolate spatially. However, the availability of
high-density borehole data is also rare. It could also be from environmental tracers that
provide an average measurement but are unable to characterize spatial heterogeneity.
Alternatively, geophysical methods can be used to identify SW-GW interactions at both
vertical (centimeters to hundreds of meters) and horizontal scales (meters to hundreds of
meters). Remote sensing provides a synoptic view of large areas, coupled with geophysics
and geographic information system plays a crucial role in enhancing the characterization
of SW-GW interactions.

2.3.3. Uncertainties in Geophysical Data for Characterization of SW-GW Interactions

McLachlan et al. [50] reviewed geophysical methods that provide geological, hydro-
logical, and biogeochemical information spatially and temporally. McLachlan et al. [50]
mentioned three primary uncertainties of the geophysical approach. First is the uncertainty
in geophysical data and modeling methods. Several under and overestimation measure-
ments caused a misinterpretation of subsurface information. The accuracy of subsurface
information is affected due to errors in a model structure like the limitation of software
and algorithms of image processing and interpolation. Various approaches to solve and
formulate inversion problems for the interpretation of subsurface geology are reviewed by
Linde et al. [51]. Second is the resolution of geophysical data, which is affected due to the
number and spacing of electrodes. A large number and small spacing of electrodes are used
to obtained detailed subsurface information, whereas a lesser number and wide spacing
of electrodes are used to obtain deep but also some generalized subsurface information.
The third is the extraction of quantitative information from geophysical and petro-physical
data, which is inconsistent due to different resolutions.

Improvement in these uncertainties can be a good calibration of geophysical data
with other in-situ data such as solute transport, point scale measurements, and borehole
data. Multiple geophysical methods such as coupling of resistivity and seismic data with
anomalies obtained from magnetic and gravity surveys are also useful for the improvement.
Moreover, the selection of the best methods based on the objectives of a study is crucial.
It requires the proper arrangement of an instrument such as straight and well-spread
lines, adequate current input, strong input signals, no external noise, and many more [52].
Furthermore, the fence diagram of geophysical data used for validation where the crossing
point of 2D subsurface images must be of the same values [53].

Improved geophysical data will play an important role in the characterization of
SW-GW interaction. Randomly collected geophysical data such as streambed heterogeneity,
subsurface porosity, geomorphic structures, and subsurface aquifer characteristics can be
interpolated for sub-catchment and catchment scale assessments. These data will also be
helpful during the training of machine learning processes.

2.3.4. Use of Remote Sensing and Their Uncertainties for Characterization of
SW-GW Interactions

The extraction of river bathymetry is one of the most challenging tasks during field
surveys, especially at wide rivers. Accurate spatial measurement of river bathymetry is
necessary, which leads to a variety of hyporheic processes (as discussed above). Remote
sensing data is crucial for the spatio-temporal estimation of river bathymetry, changes
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in river morphologies, identification of geomorphological features, evapotranspiration,
land-use changes, and extent of wetlands. High resolution (≤2.5 m) LiDAR-based Digital
Elevation Models (DEM) are useful for accurate floodplain topography and river geome-
try [54,55]. Further limitations of DEM and the use of other satellite images for in-depth
estimation were reviewed by Brunner et al. [3]. Several approaches have been developed
for submerged topography of a river, based on the spectral reflectance of satellite im-
ages [56,57]. However, these still need to be improved. Remote sensing data coupled with
geophysical data is constructive for better spatial estimation of rainfall recharge, GW table,
GW volumes, fluxes, and flows from a local scale to a regional scale [58].

Thermal infrared imaging (TIR) remote sensing is another technique for mapping
temperature patterns and thermal anomalies in water bodies. Diurnal and annual variations
in SW temperature and relatively stable GW temperature were used to identify hydraulic
connections between aquifers and rivers. Additionally, it is useful in mapping spatial
surface temperature patterns along rivers from a local to regional scale. Generally, hydro-
geochemical (stable isotopes) data coupled with the TIR is used to validate the TIR-based
SW-GW interaction [59–61].

Uncertainties in remote sensing data are primarily due to satellite image resolution,
cloud cover, spectral characteristics, and noises. Publicly available remote sensing data
have a coarse resolution (15 m), which can be used to estimate evapotranspiration. Fine res-
olution (≤2.5 m) is constructive to obtain other surface information precisely. In the cloud
cover case, the use of multiple images of different temporal resolutions of that particular
area is useful. Uncertainty due to spectral characteristics causes misinterpretation of differ-
ent objects. It can be improved by coupling with either field survey data or information
from higher resolution images [62]. Spatio-temporal surface temperature patterns, from lo-
cal to sub-catchment scale, are mapped with low altimeter TIR mounted on Unmanned
Aerial Vehicle (UAV). For accurate characterization of SW-GW interaction at a catchment
scale, it provides precise spatio-temporal surface temperature patterns.

2.3.5. Uncertainties in Statistical and Geostatistical Techniques for Interpolation of
Effective Factors

The application of statistical and geostatistical techniques is used to generate spatio-
temporal maps and predictions of effective factors at unknown locations. Generally, interpo-
lation required point measurements, which effects due to low-density point measurements
and model structure. The 2D and 3D subsurface measurements using hydro-geophysics
and remote sensing are useful for improving the interpolation accuracies. For example,
the relationship between precipitation, runoff, and infiltration rate is necessary to under-
stand accurate water balance. The relationship is affected primarily by the spatio-temporal
measurements of precipitation due to low-density gauge stations. This uncertainty is
addressed in the literature using pixel-based spatio-temporal estimation coupled with
geostatistical techniques and factors affecting precipitation [63–65]. Additionally, 2D and
3D geophysical data are interpolated using several interpolation methods such as model-
driven or based on wave-equation, and data-driven or based on signal processing [66].
However, for precise interpolation, these methods are coupled with a local variogram,
which represents local structural anisotropies [66]. Naganna et al. [30] reviewed several
statistical and geostatistical models with their application and implications. Furthermore,
geophysical data coupled with TIR and hydro-geochemical data could provide accurate
SW-GW interaction maps at a catchment scale.

2.3.6. Use of Artificial Intelligence and Fuzzy Logic for Characterization of
SW-GW Interactions

Artificial Neural Network (ANN), inspired by biological neural networks, proves to be
a powerful tool that can be structured to perform multiple complex tasks like classification,
forecasting, pattern recognition, and process modeling. The ANN is an effective tool in
inferring a factor via other factors without any specific relationship. An ANN requires
training by searching an optimal value of biases and weights to obtain an accurate relation
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between input and output. This training process minimizes the error between the estimated
and the observed output values step by step.

As shown in Figure 4, using ANN, the SW-GW interaction can estimate at a regional
scale, where the effecting factors at a point or local scale are used to train the ANN,
and estimate the factors corresponding to the regional scale. This estimation can be done
using an optimally structured ANN employing one hidden layer and inputs corresponding
to the number of affecting factors incorporated in the study.
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SW-GW interaction.

The ANN posed with more training data, allows the process to converge the network
towards more accurate values. A major concern during the training is network over-fitting,
which can be avoided by dividing the data into three sets such as training, validation,
and test.

Chang et al. [67] investigated SW-GW interaction by correlating GW level variation,
rainfall, and streamflow using the ANN approach. Rajaee et al. [68] reviewed AI methods
in GW level modeling in which they explained the widely used AI methods and their
modalities and algorithms [69–73]. They mentioned uncertainties of AI methods such as
overtraining, low generalizability, risk of using unrelated data, and incorrect modeling.
Almost all previous studies used ANN in GW level estimation and water quality modeling.
A few studies used ANN in the characterization of SW-GW interactions. Spatio-temporal
data collection for GW level and water quality modeling is challenging due to limited
boreholes from where data are easily collected. Accurate SW-GW interaction modeling
using ANNs can be possible with big data obtained from geophysical and remote sens-
ing techniques. A discussion on the possible modalities of SW-GW interaction is in the
following sections.

The fuzzy logic approach is like a human decision-making methodology, which deals
with uncertainties due to vagueness in input data, factors, and model structure. It works
by solving possibility theory using fuzzy numbers instead of crisp numbers to minimize
uncertainties and complexities of hydrological models [74,75]. There are several fuzzy
logic operations such as fuzzification, fuzzy logic operators, fuzzy inference system (FIS),
and defuzzification based on appropriate membership functions (MFs) from the specified
input-output pairs. Multiple techniques coupled with combined ANN and FIS in GW level
modeling with Mamdani and Sugeno approaches have been used [68,76]. Milan et al. [77]
used FIS in SW and GW resource management to reduce GW modeling uncertainties using
MODFLOW. Other studies used fuzzy logic coupled with remote sensing and GIS for
potential GW mapping [78,79]. None of the studies used a fuzzy approach to reduce uncer-
tainties in SW-GW interaction modeling. It would be an accurate approach in upscaling
SW-GW interactions.

2.4. Framework Development

Based on the above discussion of the 3H processes, this section focused on modalities
of those factors which are difficult to measure spatially and temporally. These factors
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are geomorphic structures and streambed heterogeneity in hydraulic processes; channel
morphology, which includes sediment deposition and floodplain HZ in hydrological
processes; subsurface geology, streambed composition, secondary porosity, and aquifer
characteristics in hydrogeological processes. Some factors are not discussed in detail
because their methodologies are common. For instance, channel morphology can be
easily identified by visual interpretation techniques using remote sensing data. Spatio-
temporal sediment deposition can be estimated through hydrological modeling using
in-situ sediment grain size distribution data. Floodplain HZ can be identified by mapping
temperature patterns and thermal anomalies in water bodies using TIR remote sensing
technique (as discussed in Section 2.3.4). Furthermore, subsurface geology, secondary
porosity, and aquifer characteristics are generally measured using geophysical surveys.

2.4.1. Identification of In-Channel Geomorphic Structures

The mapping of log jams in a natural channel is studied by Doughty et al. [27], while
others used artificial logjams in laboratory experiments. Doughty et al. [27] analyzed HE
flow variation due to log jams at a local scale using tracer injection, electrical resistivity
imaging, numerical modeling, and statistical methods. The general approach is the data
collected from tracer injection and electrical resistivity is used in numerical modeling to
simulate HE flow and solute transport (Figure 5).
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Small-scale HE flows, both vertically and laterally, are derived by changes in longitu-
dinal gradients due to the presence of pool-riffle and steep-pool sequences. At a local to
regional scale, visible in-channel geomorphic structures in shallow water can be identified
using high-resolution satellite images and aerial photographs [56,57]. For geomorphic
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structures in deep water, geophysical surveys or sound navigation ranging (SONAR)
could be useful. Mostly, previous studies identified pool-riffle sequences from in-situ data,
while some used idealized pool-riffle structure and laboratory-based pool-riffle topogra-
phy [28,80–84]. The combined methodology of these studies to analyze HE flows are shown
in Figure 6.
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2.4.2. Measurement of Streambed Heterogeneity

Measurement of streambed heterogeneity is a challenging task because it is affected
by channel morphology and topographic factors. For instance, in the meandering river,
streambed features are more variable than a straight channel. Increases the streambed
thickness due to the deposition of sediments with increasing river sinuosity. While in the
straight channel, the thickness varies due to changes in channel slope and sedimentation
rate. Several studies analyzed the effect of streambed heterogeneity on a HE through four
types of approaches at a local scale. First is the laboratory-based, in which an experimental
setup of the streambed with the composition of different materials [24,85]. The second
is using spatial in-situ data, in which the data is either collected at river cross-section or
random sampling [86].

The third is using thermal time series data, in which temperature sensors have been
installed for data collection, interpolated through geostatistical methods, and modeled
using empirical equations and numerical modeling [87,88]. Fourth is using geophysical
methods, either across the river or along the river, depending on the water depth [89,90].
The combined methodology of these studies and their effect on HE flows are shown in
Figure 7.
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3. Proposed Framework

The framework is proposed based on this review. The purposes of the framework
are accurate upscaling of 3H processes and big data assessment. Effective factors and
uncertainties have been discussed in the above sections. Figure 8 shows the general layout
of the proposed framework. Brief explanations of the proposed framework are as follows:
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Figure 8. General layout of the proposed framework.



Water 2022, 14, 647 18 of 23

3.1. Local Scale Measurement

The local scale is referred to as a river cross-section with floodplain and adjacent
geologic units [5]. Along the cross-section, three types of measurements are proposed.

First is point scale measurement covering the center of the river and left and right side
from the center, including riverbanks [86]. Point scale measurement is mainly for calibration
and validation purposes. The second is remote sensing data for bathymetry estimation and
river-aquifer interaction. The third is geo-electrical methods such as electrical resistivity
tomography (ERT), induced polarization (IP), and transient electromagnetic (TEM). Geo-
electrical methods can accurately map streambed heterogeneity across as well as along the
flowing river, which is one of the most important factors in SW-GW modeling [91,92]. Along
the river, log jams may alter the measurement. In that case, across the river measurement at
close intervals would be useful. Additionally, spatio-temporal mapping with geo-electrical
methods is possible, which helps upscale streambed heterogeneity, rather than assuming
homogenous streambed, as done by previous studies mentioned above. Furthermore,
an in-channel geomorphic structure can accurately map with geo-electrical methods, which
is crucial in hyporheic exchanges.

3.2. Intermediate Scale Measurement

The drainage area connected by several streams and tributaries is an intermediate
scale [5]. At this scale, point scale and geo-electrical measurements covering all streams
and tributaries are practically not possible. Therefore, geo-electrical surveys, remote
sensing, and GIS are suitable for measuring variable channel morphology, and topographic
characteristics. For example, low-density geophysical profiles are for a straight channel,
while high-density profiles are for a meandering river. A high resolution (≤2.5 m) LiDAR-
based digital elevation model (DEM) can capture accurate topographic characteristics of
floodplain and dry parts of the river (means up to river water surface level). Limited in-
situ water depth measurement can estimate the submerged river topography [56,57,93,94].
Additionally, spatio-temporal anthropogenic activities and land use land cover changes can
accurately be determined using satellite images. Overall, for selected places using remote
sensing, geo-electrical surveys can provide accurate floodplain soil heterogeneity, hydraulic
properties of soil, and aquifer characteristics. Furthermore, the role of environmental
tracers is crucial in understanding the spatio-temporal SW and GW quality, and pollution
assessment.

3.3. Regional Scale Measurement

The regional scale in the proposed framework refers to the whole catchment. At this
scale, the complexity is very high due to combined spatio-temporal variations of climate,
geomorphology, geology, landscape types, and biological factors [5]. Upscaling at a regional
scale is a tough and challenging task because of the size and heterogeneity of the catchment.
In data collection at this scale, remote sensing, in-situ gauge stations, and borehole data
played a primary role. Geoelectrical measurements are only practically possible and useful
at prioritized areas at the regional scale, which depends on the objective of a particular
study. However, the prioritization criteria depend on the types of analysis and investiga-
tions [95,96]. Extensively, inverse modeling is used to estimate hydraulic, hydrogeologic,
and hydrologic factors for physical or numerical modeling of SW and GW. In inverse mod-
eling, GW level data from a borehole and in-situ gauge stations of precipitation, river water
level, discharge, and evaporation are crucial for calibration and validation purposes. Based
on the topography, suitable statistical and geostatistical techniques would be accurate for
the interpolation of scattered in-situ data. Overall, upscaling of 3H processes at a regional
scale using multiple approaches with precise calibration and validation can provide an
accurate assessment of SW-GW interactions.
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4. Conclusions

This review presents the hydraulic, hydrological, and hydrogeological process (3H)
and its controlling factors in the quantification of SW-GW interaction separately at local
to regional scale, which has brought all aspects in one place. Additionally, the limita-
tions, uncertainties, and challenges in controlling factors measurement of 3H processes at
different scales are also discussed. The upscaling methods of effective factors and their
associated uncertainties in 3H processes at different scales are not well understood. As well,
the modalities for the characterization of SW-GW interaction at different scales are also
missing in the available literature.

Based on peer-reviewed journal literature, the effective factors of 3H processes in
the characterization of SW-GW interaction from local to regional scale are identified and
emphasized on their upscaling and associated uncertainties. Upscaling techniques men-
tioned in the literature are lacking on how the effective factors from a local scale to regional
scale could be accurately estimated. The role of electrical geophysics methods and remote
sensing techniques in upscaling could be crucial, but presently, these are limited in use.
The role of fuzzy logic in uncertainty improvement and artificial intelligence, especially
artificial neural networks in analyzing big data, are widely applicable but very sparse in
SW-GW interaction-related studies. Big data is crucial in upscaling from local to regional
scale. However, the procedure of accurate big data collection is a primary concern of
some authors in the literature. Therefore, based on the literature, this review proposed
a framework, and the procedure of big data collection is explained briefly. Furthermore,
the challenges of the proposed framework are mentioned in the following section.

The following points are the general challenges in the proposed framework from local
to regional scale, which need to be addressed in future research:

• Estimation of river bathymetry using remote sensing and geo-electrical techniques
at the intermediate and RS is one of the most crucial challenges, especially for deep,
wide, braided, and high-velocity rivers. The use of high-resolution (≤2.5 m) satellite
images for a catchment are rare due to financial constrain. Whereas, the application of
geo-electrical methods is not practically possible at a larger scale. Generalization of
river bathymetry in upscaling would affect streambed heterogeneity, and hence HE.

• Due to anthropogenic activities, variation in estimating controlling factors of 3H
processes, and their influence on SW-GW interaction is a challenging task. For ex-
ample, heterogeneous deposition of sediment on streambed increases streambed
heterogeneity, which results in an inaccurate assessment of SW-GW interaction using
physics-based modeling. The identification of pollutant sources is also challenging at
a larger scale due to the extensive analysis of water sampled in the laboratory.

• Another challenge is the availability of data and the selection of prioritization criteria
of sub-watersheds to do a geophysical survey and in-situ measurements. Prioritization
should be accurate, which deals with the heterogeneous SW-GW interactions at an
intermediate and regional scale.

• Shifting from a conceptual model to a physics-based model smaller scale to a larger
scale is also challenging. Complex modeling should be accurate due to the extensive
use of inverse modeling at a regional scale. Inaccurate modeling would affect the
precision of controlling factors of 3H processes and hence HE.

• Is the fuzzy logic dealing with uncertainties and artificial intelligence techniques able
to give a precise output of 3H processes? It is indicating a significant challenge in
the proposed framework as fuzzy logic and artificial intelligence have proved to be
important tools for the analysis of big data in the literature for other applications and
groundwater level modeling.
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