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Abstract: The need for water supply companies to exercise control over the operating conditions
of water supply networks has contributed to the development of a number of methods for their
diagnosis. The diagnostics of technical infrastructure is a constantly developing field, and therefore,
over the years, we have observed the development of various methods of diagnosing network
operating conditions and their classification. The article presents, in a synthetic way, the division
and review of the previously used methods of diagnosing the operating conditions of water supply
networks. The authors also classified and assessed the usefulness of the methods of diagnosis in
specific operating conditions. The review carried out by the authors shows that there is a need for
research on the detection of operating conditions of water supply networks under the operating
conditions of real systems. The results of our deep analysis allow for the understanding of the most
important areas of research, as well as the existing worldwide trends in the development of methods
for leak diagnosis and detection in water distribution networks. This review is a compendium of
knowledge on the detection and diagnosis of water supply networks.

Keywords: burst; detection methods; failures; leakage; water distribution system

1. Introduction

The conditions of water distribution systems depend on many deterministic and
random factors [1]. Due to the complexity of the processes affecting the achieved values of
the operating condition parameters of the water supply network, their diagnosis is a multi-
faceted issue. Moreover, the cyclicity observed in the time series of flow rate and pressure
makes these data non-stationary [2]. The need to solve problems concerning the accurate
assessment of the state of operation of water supply infrastructure has contributed to the
development of a number of diagnostic methods. In order to speak unambiguously about
the conditions of water supply network operations, the issue should not be considered
only in the category of typical emergency situations [3]. Addressing the problem in
a comprehensive way, that is, analysis of the shape of the parameters of the network
operating conditions (flow rate or pressure) during abnormal water intake (public holidays,
game break, New Year’s Eve, vacation season), and under specific operating conditions of
pressure management, forced the development of appropriate methods and mathematical
procedures [4]. To be able to unequivocally determine the operating conditions of a water
supply network, it must be considered both technically and operationally. Technical
condition assessment employs, among other things, risk analysis to reduce the level of
threats to the operation of a technical system or enterprise [5]. Risk is understood as the
likelihood of the occurrence of events that generate economic, technical, or environmental
hazards or contribute to material, social, or environmental losses. The operational condition
of a system, object, or technical device is a momentary phase of exploitation, which is
described by the results of measurements of physical quantities that characterize the
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operational features of the system or its individual components. It should be noted that
in technical systems, in a given moment, there are many operating conditions within
individual devices and objects, and in the case of linear systems, such as water supply
networks, they are also within different points of water supply systems. Water supply
networks are subject to measurements of flow and pressure at various control points,
water consumption by consumers and selected indications of water quality. Parameters of
water supply network conditions are defined as a set or elements of a set of measurements
of the water volume flow rate or pressure at the analyzed point. Most contemporary
scientific studies place the greatest emphasis on diagnosing the operating conditions of
a water supply network but mainly in the context of its failure rate and potential water
leakage [6], while they are less related to the detection of abnormal conditions related to its
operation. Such situations may also include the outbreak of the COVID-19 pandemic, as
studies indicate a significant increase in residential water use following the introduction of
government restrictions [7]. The random nature of water consumption, and the hydraulic
parameters achieved as a result, presents a serious barrier to assessing whether or not the
operating condition of a network can be considered relatively normal.

In order to be able to speak unambiguously about the state of operation of the water
supply network, this issue should be treated in a comprehensive manner. Due to parame-
ters constantly changing in water supply systems (roughness coefficients of pipes, water
levels in reservoirs, and water demand), the assessment of their operating conditions is
a complicated and multi-criteria task. The need to solve the above-described problems
concerning the assessment of the operating conditions of water supply infrastructure has
contributed to the development of a number of diagnostic methods. For the first time,
most of these methods were applied to gas and oil pipelines, mainly for safety reasons and
awareness of the toxicity of the transmitted medium and the consequences that failures can
bring. Although this aspect also applies to other linear infrastructure, it is in the case of
water supply systems that the greatest number of deterministic and random factors can be
observed that influence the complex character of phenomena occurring inside the pipes.

This paper presents a synthetic overview and a breakdown of methods for the detec-
tion of water supply network operating conditions, for which a growing interest has been
observed in the last two decades. Due to the methodology based on different parameters of
water network operating conditions and the diversity in implementation possibilities, the
authors’ classification is proposed. The aim of this study was not only to systematize the
existing knowledge on the methods used for the detection of operating conditions of water
distribution systems but also to analyze the range of possibilities of implementation of par-
ticular methods in selected operating conditions of water supply networks. The gathered
knowledge, presented as a review of selected studies and experiences from over 20 years, is
a source of information on the detection of operating conditions of water supply networks,
which can be useful not only for the scientific community but also for the managers and
operators of water supply networks.

2. Materials and Methods

With the rapid increase in the volume and diversity of research and the availability
of metadata about research from different literature databases, existing worldwide trends
in the development of methods for leak diagnosis and detection in water distribution
networks have been examined. Scopus was one database selected for this study since it is
the largest database of peer-reviewed documents delivering a comprehensive overview of
the world’s research output in the fields of engineering. Scopus is the largest abstract and
citation database of peer-reviewed literature, including scientific journals (over 22,000 of
them), books, and conference proceedings. Another database used for the review was Web
of Science (Web of Knowledge) maintained by Clarivate Analytics. This database covers
more than 8500 notable journals encompassing 150 disciplines. This paper describes the
results of the analysis of the almost 80 documents found and selected from almost 300,
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which were read at the stage of preliminary research. The database of publications finally
selected for the article includes works published from 1992 through 2021.

In the first part of the analysis, the popularity of keywords in the search engines of
the Scopus and Web of Sciences databases in relation to the detection of water network
operating conditions was reviewed. Selected keywords (detection techniques, detection
in water distribution systems, water leakage, water leak detection, failure water supply,
condition water supply system) were related to leakage in water distribution systems,
detection methods, and failures of water supply systems. Next, based on literature reports
since 2000, the approaches to dividing the methods of water supply system operating
condition diagnosis proposed by authors in the last two decades were reviewed and an
attempt was made to systematize this knowledge. The last part of the research was the
authors’ classification of existing methods, clearly separating the analysis of acoustic data
from the hydraulic parameters (flow rate and pressure), which are the basis of the diagnostic
methods. The scheme of the methodical actions taken is presented in Figure 1.
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3. Results

The diagnostics of technical infrastructure is a young and constantly developing
field. As a result, over the years, we have observed a variety of ways to classify methods
of detection of the working conditions of water supply networks. The development of
methods has been influenced by such factors as, among others, the progress of technology,
the development of mathematical algorithms, and increased awareness of the need for
diagnostic teams in water supply companies.

It is evident that there is an ever-increasing interest in the topic of the detection of
water supply network operating conditions, including the failure rate [8]. Figure 2 shows
the number of publications related to sequentially searched keywords that fall within the
scope of water supply network operating condition diagnosis.
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Both Scopus and Web of Science show an increase in the number of publications,
indicating a growing interest in these issues after 2005. In spite of the COVID-19 pandemic,
or perhaps especially because of it (due to changes in the conditions of water consumption
by residents who switched to a remote mode of work, the closure of service points, and a
reduction in the working hours of some of the industrial plants [9]), the diagnosis of water
supply networks is a very current scientific research problem and there is a high probability
it can be assumed that in the following years, there will be a continuing upward trend in
the number of publications in this area.

Some of the methods of detecting the operating conditions of the water supply net-
work are commonly used in the operating conditions of the water supply network and
some in laboratory conditions. The approaches to classification of the methods of water
supply infrastructure diagnosis used so far are varied. Many authors have undertaken
the classification of methods used for water supply network diagnostics, but due to their
multiplicity, the methods of division are not identical.

A word cloud chart (Figure 3) was created from the literature selected for analysis
and categorization of methods presented therein for the detection of water supply system
operating conditions. In Figure 3, some types of methods, which are mentioned most often
in the literature, are clearly distinguished. Authors have most often included acoustic and
balance methods, as well as those based on pressure parameter analyses. Typically, these
methods are classified into hardware and software methods as well as into measurement-
and model-based methods.

More details about the methods for diagnosing the operating conditions of water
supply systems, based on works from the last 20 years presented by specifically selected
authors [10–27], are illustrated in Figure 4. In spite of the various divisions of methods for
detecting the operating conditions of water supply networks found in the literature, the
most common classification distinguishes acoustic methods from the others. Undoubtedly,
the direct localization of failures by means of physical diagnostic tools should be distin-
guished from the methods used to diagnose the conditions of water supply networks by
means of analyses of hydraulic parameters. Solutions based on the analyses of recorded
time series include not only the knowledge of failures but also abnormal water intake
resulting from other factors, including anthropogenic ones. One of the reasons for the rapid
development of methods for detecting the operating states of a water supply network in the
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last two decades is the fact that real-time monitoring alone is not a sufficient diagnostic tool.
More important is the analysis and interpretation of measurement data. For this reason,
many new methods have implemented advanced computational algorithms to analyze the
recorded parameters.
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4. New Classification of Methods for the Detection of Water Network
Operating Conditions

Having analyzed the existing methods of categorizing the techniques of water network
operating conditions assessment, the authors’ proposed their own modification (Figure 5).
The general concept is similar to the one presented in the scientific literature; however,
according to the authors, within the framework of software methods, the interpretation
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of acoustic signals should be explicitly separated from the processing of time series of
water network operating parameters (pressure and flow rate). This decision is based on
the different nature of analytical procedures for these quantities and the use of a different
type of equipment for their measurement and recording. In Sections 4.1 and 4.2, methods
of detection of water supply system operating conditions are characterized according to
their proposed classification.
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4.1. Hardware Methods (Direct)
4.1.1. Acoustic Methods

Acoustic methods are among the oldest methods for identifying leaks in the water
supply system. Initially, listening sticks and microphones were used to detect pipeline
leaks [28]. This method involves listening to sounds along the route of the pipe and finding
areas where the acoustic band has changed due to leaking water.

Today, leak detectors are widely used for condition surveillance of linear facilities
around the world [17,29]. Surveillance is very often carried out using satellite communi-
cations. Modern devices allow for leak detection with an accuracy of up to 1 m in up to
15 min [30]. The premise of microphone-based line leak detection was originally developed
for gas pipeline operations by Richardson in 1935 (after [31]). Sound analyzers for leak
detection in water supply networks began to be used in the late 1970s [32]. According
to [33], during failure, the frequency of sounds increases to above 200 Hz and is usually
contained in the 400–500 Hz band.

Leak noise correlators (LNC) are used to process the sounds recorded by a pair of
serially mounted microphones. Sound correlators use computational techniques of signal
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analysis. Therefore, this method can be classified as a hardware–software method. The
sound signals are usually sampled using a Hanning window, and then, using fast Fourier
transform (FFT), periodograms are calculated in the form of a signal power spectrum as
a function of frequency. A cross-correlation is calculated for the discrete signal power
spectra from the two microphones, which is a measure of the similarity between the
two signals [34].

Another acoustic method has its origins in mechanical scrubbers used to remove
sediment from pipelines. These are known in the literature as pipeline inspection gauges
(PIGs) [35,36]. With the development of sensors called hydrophones, which allow for the
recording of sounds propagating in water, floats equipped with these sensors began to
be introduced into water pipes in place of scrubbers. Methods using this technique are
known as pipe-mounted acoustic (PMA). An example of a PMA method is the so-called
smart ball used since 2007 [37]. Before testing, the device should be calibrated each time.
The ball is equipped with sound detectors and a GPS receiver to locate it in the water pipe.
Simultaneously with the measurements carried out by the ball as it moves along the water
pipe, the recording of acoustic waves is carried out by sensors mounted on the outer walls
of the pipe in order to eliminate ambient sounds reaching up to 70 dB [38].

4.1.2. Non-Acoustic Methods

Non-acoustic methods use changes in environmental properties that occur near leaks
to locate them. Pipeline leaks can be detected by the tracer gas technique (TGT), that is,
tracer gas injection. A non-toxic, lighter-than-air gas, most commonly helium and less
commonly hydrogen, is added to the tap water. At the point of leakage from the water into
the soil air and then into the atmosphere, the gas travels by diffusion. The presence of gas
is detected using sensitive detectors.

Water leakage sites can be located using thermal imaging cameras, which locate
temperature differences between the pipeline and its surroundings. The ground in the
vicinity of a damaged water pipe, due to increased moisture content, has a different thermal
conductivity, which causes a different temperature distribution in the vicinity of the leak
compared to the surrounding area. Thermal imaging scanning is performed by cameras
installed on drones or helicopters [39].

In water supply companies, ground-penetrating radar (GRP) is often used to detect
water leaks. The working principle is based on sending electromagnetic waves with
frequencies ranging from short to ultra-short radio waves to the ground medium and
analyzing the spectrum of reflected waves using specialized software. This method can be
classified as an instrumental–software method.

In recent years, hybrid methods using both GPR and high-precision acoustic devices
have also been applied for leak detection [40]. The operation of these devices must be
synchronized over time. This solution improves leak localization, but in urban conditions,
due to noise and the previously mentioned disadvantages of geophones, it has not found
much use in water supply companies so far.

4.2. Software Methods (Indirect)
4.2.1. Mass/Volume Balance Methods

The implementation of balance methods in water supply companies results mainly
from economic needs [41]. Water losses and related network failure rates are measures of
the quality of the water distribution system management. Water losses are commonly un-
derstood as the difference between the amount of water injected into the water distribution
network and the sum of water used for the system’s technological purposes and sold to
customers. According to the traditional methodology, water losses are given as an index
defining the percentage of the sum of the annual volume of water sold and used out of the
annual volume of water injected into the water network. The value of the water loss index,
according to the classic method of their estimation, should not be greater than 10%.
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In 1999, the International Water Association (IWA) appointed a task force to develop
guidelines for standardizing the methodology of tap water loss control. Since 2002, con-
ferences have been organized by this team to present lessons learned from implemented
procedures. The water balance framework defines, among others, the Infrastructure Leak-
age Index (ILI), the Unavoidable Annual Real Losses (UARL), the Real Loss Basic (RLB),
and the Non-Revenue Water Basic (NRWB) volume index [42].

Balance methods, as common solutions, have already been implemented in many
water supply companies but should find wider application. This is possible provided that
the calculations are automated, which reduces the time consumption and increases the
reliability of the performed balances. Knobloch et al. [43] developed a water balance system
according to IWA standards based on geographic information system GIS) software. Silva
et al. [44] showed that significant drawbacks of balance methods for the diagnostic purposes
of anomalous distributions are very often too little data and their low reliability. In order to
improve the diagnoses based on the balance method, simulations were performed using the
Monte Carlo method of generating pseudo-random numbers and the high-density regions
(HDR) method of probability distribution. A more advanced solution [45] implemented
multi-criteria decision analysis (MCDA) to support water supply network management
and anomalous condition detection. The mass and volume methods are widely used in
management at the decision-making stage.

4.2.2. Acoustic Signal Processing

There are many modern methods of acoustic signal interpretation in the context of
detecting failures of technical networks using the phenomenon of sound wave propagation.
They require the additional use of bandpass filters, which remove the noise generated by
the external environment surrounding the pipes.

According to the methods based on acoustic signal interpretation, the aim is to learn
the spatial distribution of the sound effect accompanying the failure by rendering it using
modern signal processing techniques. The main parameter subjected to analysis is the
amplitude of the sound wave, defined by sound pressure (expressed in Pa) [46].

Depending on the acoustic signal processing and interpretation techniques used, the
related methods are divided into three subcategories. The first one, and the most compre-
hensive, uses wireless sensor networks (WNSs) along with built-in algorithms for signal
processing at the site of registration. The second type of method that interprets acoustic
signals is based on the wavelet transform (WT) of the signal recorded by traditional acoustic
sensors acoustic emission (AE). The last type of method has implemented algorithms for
the cross-correlation of two time series recorded by AE before and after the leakage site.

The application of acoustic sensors is easy to use, operate, and locate, and is flexible,
efficient, and relatively cheap [47]. In addition, the sensors can be placed at quite consider-
able distances from each other outside or inside of the pipeline. Acoustic sensors combined
with machine learning are currently state-of-the-art in detecting water supply network
operating conditions [48].

4.2.3. Flow Rate and Pressure Signal Processing

The limitations of methods analyzing acoustic signals mobilize the scientific commu-
nity to select newer techniques of the processing and use of time series of parameters of the
state of network operations—the flow rate and/or pressure. One of them is flow rate and
pressure signal processing. The analyses performed under laboratory and field conditions
are presented in Appendix A. Tables A1 and A2 summarize the more important publica-
tions presenting the results of studies in which software analyses of controlled signals were
applied for the purpose of assessing the operating conditions of water supply networks.

Water Demand Forecasting

The methods based on forecasting consist of predicting the water demand of the water
supply network customers based on historical water consumption and flow rates. Due
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to the influence of hourly, daily, weekly, and seasonal variability of water consumption,
these solutions require long-term measurements. Methods that use archival measurements
to estimate their future distributions are called autoregressive integrated moving average
(ARIMA) [49] or autoregressive integrated moving average with exogenous variables
ARIMAX) models. The significant role of seasonal variability in the application of predictive
methods was demonstrated by Eliades and Polycarpou [50] in their analyses of water flow
rates. It was proved that the omission of seasonal variation can generate false alarms. The
main disadvantages of the developed failure detection method are the omission of already
existing leaks in the network and the initial assumption of their absence. Moreover, the
failure information is provided to the network manager with a time delay.

The CUSUM algorithm, compared to heuristic methods, was also implemented in the
study of Bakker et al. [19]. The created solution was tested with nine real water supply
network failures and compared to the results obtained by heuristic methods. The model
created by the authors was able to forecast water consumption volumes for the next 48 h
with a 15 min time step. Each difference between the predicted value and the observed one
was treated as a failure (taking into account the 5% error boundary).

The future of anomalous condition detection combined with predictive methods is
the water demand forecasting model (WDFM) based on the hydraulic model of the water
supply network and parameter estimation through, among others, the Kalman Filter [51].
The WDFM is updated with actual inventoried measurements with a 15 min time step and
is subject to multiple linear regression (MLR) [52]. The results show that the WDFM system
identified the most leakage (80–100%) for the largest failures.

There are also a number of solutions based on historical water flow rates recorded
during real failures. Cluster analysis is used to interpret them [53]. By knowing the coordi-
nates of the position of hydraulic parameters during failures in space, the level of risk of
uncontrolled leaks in the future can be determined. Sun et al. [53] demonstrated that cluster
analysis can be applied to pre-process data and locate them in two-dimensional space.

Wu et al. [54] investigated the flow rates of a selected DMA zone to detect the failure
of a water supply network. The methodology used, cluster analysis, allowed for the
determination of the distance between the means of the measurements, the Euclidean
distance, and the density of the distribution. The results indicated that false positive alarms
accounted for 0.41–0.76% of the measurements and true positives accounted for 71.43%.

Time Domain Analysis

When a water pipe bursts as a result of a failure, there is a rapid drop in the pressure at
a given control point and an increase in flow velocity. The consequence is the phenomenon
of hydraulic shock, accompanied by the formation of a wave propagating in both directions
from the place of failure, the so-called negative pressure wave NPW). This forms the basis
for methods based on the analysis of short-term transients in the time domain.

Depending on the pipeline material, foundation conditions, and soil, the propagation
velocity of the NPW is between 250–1500 m/s [55]. The wavefront may be well-defined
for large faults, or weaker for smaller faults. Solutions based on the analysis of short-term
transients (transient phenomenon) include transient analysis TA). Short-term transients
are events within the water supply network that are transmitted as a pressure wave or
hydraulic shock, resulting in a sudden change in flow velocity. The TA approach is based
on the comparison of the pressure distribution under normal network operating conditions
with the signal recorded during a failure, which contains information about the transition
wave. The methods are implemented by analyzing a forced, short-lived hydraulic shock
created by the sudden closing or opening of a valve on an example network installed
(typically) under laboratory conditions. The point of the proposed solutions is the detection
and localization of failures based on the analysis of the sequence of the passage of the
hydraulic shock wavefront, the so-called pressure wavefront tracking. The biggest problem
concerns the calibration of the unknown roughness coefficient of the ducts, which reveals
the range of the wave attenuation generated by the short transient. The procedure is
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supposed to lead to the minimization of the objective function, that is, the difference
between the measured and estimated values of the hydraulic parameters.

Initially, attempts were made to determine the internal roughness of a conduit based on
network analysis under steady-state flow conditions, but the significant limitations of this
approach did not yield the expected results. Pioneers in this field, Pudar and Liggett [56],
were the first to implement the inverse transient analysis (ITA) method, which consists in
estimating the roughness coefficient on the basis of recording pressure values at selected
points in the water supply network. Subsequently, Liggett and Chen [57] incorporated
the formation of short-term transients into the above methodology. TA, in contrast to ITA,
consists of estimating the hydraulic parameters of the water supply network based on its
characteristics (known roughness coefficients, material and length of pipes). Liggett, Pudar,
and Chen reversed the meaning of TA; based on known recorded pressures and flow rates,
they attempted to determine the internal roughness of the pipelines by implementing an
algorithm that minimizes the Levenberg–Marquardt objective function (LM) [58].

Covas et al. [59] were among the first to implement methods based on hydraulic shock
transition wave analysis at a semi-technical (rather than laboratory) scale. The propagation
speed of the hydraulic shock wave between two sensors was analyzed. The authors
implemented the inverse transient solver (ITS), which is an optimization algorithm that
minimizes the sum of the squares of the differences between the observed and simulated
hydraulic parameter values.

The study also used a system for the detection of water main failures along with
the estimation of the magnitude of uncontrolled discharge using a machine learning
process [60]. The phenomenon of the appearance of the negative pressure wave (NPW)
was interpreted using methods such as support vector (SVM), k-nearest neighbors (k-
NN), Gaussian mixture model (GMM), and naive Bayes classifier (NBC). They pointed
out the problem that too much data is created by traditional methods and is not properly
interpreted later because its time-consuming analysis is too expensive. Therefore, they
focused on processing the information at the point of acquisition. The machine learning
and inference module is “asleep” under normal network operating conditions and is only
stimulated when a potential failure occurs. The naive NBC had the highest accuracy (94.8%)
in the failure detection situation. This study debuted the combination of WNS sensors with
optimization methods and classifiers that process data in situ.

Frequency Domain Analysis

Methods based on the analysis of short-term transients in the frequency domain,
that is, the frequency response method (FRM), consist of the analysis of the pressure
transition waveform distribution in the frequency domain. These solutions are reduced
to the observation of dominant frequencies, which are included in the failure time series.
Results obtained via FRM depend largely on the shape of the generated waveform and the
location of the sensor.

The need to remove measurement noise from signals recorded during short transients
was demonstrated by Guo et al. [61]. In their study, the authors determined the so-called
adaptive threshold, which defines the boundary between the normal and failure operation
of the water supply network. To obtain the de-noised time series, wavelet transform was
used, which gives satisfactory results when processing a signal loaded with the white
noise of Gaussian distribution. The mean squared error (MSE) between the estimated
values and the estimators was analyzed. The TSWA algorithm was compared with the
back-propagation neural network BPNN) method based on the LM algorithm. Finally, the
smallest MSE error was obtained for the proposed solution (at 0.01097).

Ghazali [16] demonstrated the usefulness of analyzing the pressure signal in the
frequency domain using Hilbert transform (HT) and Hilbert–Huang transform (HHT).
The process of locating the failure was done using the decomposition of the signal into
empirical modes, known as empirical mode decomposition (EMD). HT and HHT allowed
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for the analysis of the instantaneous nature of the pressure wave for experimental and
model data. Successively, the data were filtered through EMD.

The signal analysis approach of an artificially created transition wave in the FRM
frequency domain was implemented in the study by Srirangarajan et al. [62]. They mainly
interpreted the wavelet coefficient and Lipschitz exponent, which contain information about
the nature of the signal and can be useful for classification processes. When a leakage occurs,
the analysis of the extremes of the wavelet of the hydraulic shock transition can be detected
by applying a bandpass filter. It is observable when it is possible to change the frequency
of a given signal. However, this methodology is effectively applicable when the signal is
isolated and free of noise. Identification of a failure signal allows for the observation of
changes in the values of the wavelet coefficients at each step of its decomposition.

The feature extraction (FE) method for evaluating the occurrence of a water supply
network failure from a pressure signal was applied by Gamboa-Medina et al. [63]. The
time series were clustered into two groups—failure measurements (LEAK) and normal
measurements (NOLEAK). The results showed that during uncontrolled water outflow, a
more frequent occurrence of low frequencies for energy and high frequencies for enthalpy
can be observed. The zero crossing count (ZCC) for the emergency signal is characterized
by fewer transitions through zero. In analyzing the distribution of the decomposed signal,
it can be seen that low frequencies reach samples mainly in the absence of leakage.

Bergant et al. [64] dealt with factors affecting the shape and weakening of pressure
transition waves, thus proving that dynamic friction and gas cavitation phenomena are the
most common causes. Modeling transition wave processes is a complex activity, even for
simple duct sections. It was also shown that the wave dispersion and energy dissipation
are higher for plastic than for copper pipelines, thus raising the issue of material elasticity.

Hydraulic Modeling and Hybrid Algorithms

Solutions based on hydraulic modeling, in the procedures of which clustering algo-
rithms are implemented, are aimed at minimizing erroneous indications from measuring
devices and supplementing missing data forming time series. The results are simulations
of a faithfully calibrated model of the water supply network, which reflects the real con-
ditions of its operation. Modern computer software allows for analyses to be performed
under steady-state (SS), dynamic extended period simulation (EPS), or short-term transient
analysis (TA) [11].

Brown [65] and Misiunas [11] implemented TA and ITA methodologies in their studies
analyzing hydraulic models calibrated from pressure measurements. They interpreted the
relationship between the operating pressure maintained in the zone and the amount of
uncontrolled discharge. The simulations were conducted with WaterCAD software. The
conclusions made by the authors indicate that the detection of an anomalous state of water
network operations by means of analyses of a calibrated hydraulic model is possible.

A system based on fuzzy clustering (FC) analysis [66] is also a support for water
network managers, minimizing the time of failure detection. Li et al. [67] developed a
solution for the detection, prediction, and warning of the occurrence of an emergency
condition. It was based on GIS and the measurements of acoustic phenomena occurring
inside the ducts. At the stage of creating prognostic tools, the naive Bayes classifier (NBC),
statistical regression, artificial neural networks (ANNs), and the genetic algorithm (GA)
were used.

The usefulness of using hydraulic modeling in detecting and reducing the failure rate
of a water supply network was also demonstrated by Karadirek et al. [68]. Based on real
data on reservoir water levels, flow rates, and pressures, they developed procedures to
reduce uncontrolled leaks. Simulations conducted in EPANET led to the identification of
DMA zones where the ILI was too high and the optimal (lower than the current) operating
pressure was selected for each area.
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5. Discussion

An accurate water supply condition detection system should be based on efficient
and fast leakage diagnosis as well as the prediction and estimation of the probability of
future events of this type. The problematic issues are the drawbacks of specific methods
for the detection of water supply network operating conditions, which cannot always be
meaningfully implemented in every water supply system.

Non-acoustic methods, such as tracer injection, are characterized by high costs but have
the advantage of high leak detection and the possibility of locating leaks in pipes of deeper
locations. The thermal imaging method can only be used to locate leaks at times when the
temperature of the water flowing in the water supply system is higher than the ambient
temperature. This method is particularly suitable for detecting pre-failure conditions in
water supply networks during winter and spring. Temperature drops and ground freezing
in winter are causes of water supply failures that become apparent after the frost has
subsided. Fittings installed on water supply lines, such as gate valves and hydrants, are
particularly vulnerable to this type of failure [39]. The strengths of the GPR method are
the ability to detect water leaks in pipes not only made of metal and the possibility of
performing tests at a speed of up to 15–30 km of network per hour. The main disadvantage
is the difficulty of selecting the appropriate wave frequency, which depends primarily on
the composition and structure of the ground medium. In urban agglomerations, the amount
of underground infrastructure and the variability of the structure of the topsoil, due to the
fact that it is anthropogenic soil, is the cause of numerous false alarms of leaks in places
where they do not occur [69,70]. On the other hand, acoustic methods are time-consuming
and costly and do not produce satisfactory results for heavily corroded or sediment-covered
pipelines. The resulting turbulence due to the increase in the roughness of the inner walls
of the pipelines strongly affects the recorded sound intensity levels [38].

Due to the severe limitations of the aforementioned hardware methods, the scientific
community is focusing more attention on the implementation capabilities of software
methods. Acoustic signal analysis, due to the novelty it represents, is mainly implemented
on a semi-technical scale (small-scale prototype). This solution is expensive because to
achieve a satisfactory effect, it requires the installation of multiple sensors located across
short distances. Moreover, it is necessary to apply signal filtering, which will get rid of
noise masking the leakage. The biggest inconvenience of using, for example, wavelet trans-
form for the detection of abnormal operating conditions of technical infrastructure is the
necessity of fitting an appropriate wavelet function to the vibration distribution of acoustic
waves. Its shape is a key issue in the later reconstruction of the signal in a time-frequency
domain. Another disadvantage is the selection of the number of signal decompositions.
The more of them there are, the better measurement noise is eliminated, but at the same
time, more individual and local signal characteristics can be lost. Moreover, the filtering
of measurement data alone is not sufficient; it is necessary to use a classifier of network
operating states. Noise extraction using wavelet transform can result in the attenuation of
acoustic phenomena accompanying a pipeline being torn apart as a result of a failure [33].
This implies the loss of relevant information about the event along with noise separation
and rejection. However, when combined with computational intelligence methods, acoustic
signal analysis allows for the accurate diagnosis of the operating conditions of a water
supply network [48]. All acoustic methods are affected by noise from the external (urban)
environment [38]. It is, therefore, required to know the acoustic background and noise
level maps before analyzing such signals and to look at the noise level maps for the area.
An additional disadvantage is that plastic pipelines transmit sound waves less than metal
pipelines. Satisfactory results of this type of method are achieved only when a dense
network of sensors is used, which increases costs, and the selection of an appropriate sensor
placement technique can be a key issue in the subsequent analysis of the signals coming
from them [67]. The interpretation of sound wave parameters gives satisfactory results
most often when straight sections of ducts are considered. Any changes in the direction
cause the attenuation of acoustic phenomena, making the signals weaker [71].
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All the above-mentioned limitations of the methods analyzing acoustic signals mo-
bilize the scientific community to select more modern techniques of the processing and
use of time series of network operating parameters, such as flow rate and/or pressure [72].
Despite the fact that attempts are made to test more advanced methods (e.g., based on the
analysis of the hydraulic shock transition wave) in the conditions of an exploited water
supply network, these methods are rarely implemented permanently into professional
(operational) practice. Rashid et al. [20] highlighted the problem of too much data being
produced by traditional methods and not being properly interpreted afterwards because
their time-consuming analyses are too expensive. A shortcoming of the methods based
on short-term transients is the need to determine the roughness coefficient, which is the
primary cause of attenuation of the hydraulic shock wave. The estimation of its value
is a very complicated task under real operating conditions. Most methods work much
better for large outflows from water supply systems because the effect on flow or pressure
parameters is more noticeable. Research results suggest that large outflows are much easier
to detect because the “bending” of the curve showing pressure and pressure drops are
more visible [20]. One of the most frequently cited drawbacks of transient analysis is the
limited number of experiments conducted in operational conditions of network operations
and only on laboratory systems, which reduces the implementation reliability of these
methods and idealizes the test conditions [13,25]. The reason for this is the inability to
simulate short-term transients on an operational, real-world network due to the safety
of these systems. Such experiments could cause duct damage and water contamination
resulting from backflow [73,74].

Another issue with measurement methods is the proper location of the sensor so
that a transition wave of significant power is recorded [15,51]. Too much distance causes
attenuation of the wave along its length due to friction (roughness of the duct), so that its
energy is dissipated and, consequently, it may not be captured by the sensor. Perelman
et al. [75] showed that the main disadvantage of measurement indirect methods is the
dependence of their effectiveness on the location and number of measurement devices.

The best effect of detecting the operating conditions of a water supply network using
hydraulic modeling can only be obtained by properly calibrating it and using machine
learning methods simultaneously [76]. This is evidenced by the results obtained by com-
bining hydraulic modeling with deep neural networks, during which 90% leak detection
accuracy was obtained. Although methods based on hydraulic modeling are among the
cheapest, they require faithful calibration to obtain reliable results. This requires the use of
a densely deployed sensor monitoring network, which is a guarantee of good model quality.
Another issue is the use of emergency historical data to create algorithms for warning
against abnormal conditions in the future; each uncontrolled water leak has its own specific
distribution that affects the characteristics of the pipeline. It does not always generate an
unambiguous response in time series. It is also important to estimate the size of the water
demand for individual consumers. Only simultaneous water meter readings would allow
for an accurate calibration of the model in real time.

6. Conclusions

Previous research that was carried out in the last two decades of the 21st century was
focused on trying to solve the problem of failure detection, its localization, the most effective
locations of measuring sensors, and minimizing their number. Many authors have also
touched upon the issue of appropriate time intervals of the performed measurements. Due
to the time-consuming and costly methods of the direct detection of water supply network
failures, the world’s research focuses mainly on software solutions based on the analysis
of time series of parameters of the water supply network operating status—hydraulic or
acoustic phenomena. Devices used in the hardware approach are the domain of commercial
companies, which compete in patents for tools for precise leak localization.

None of the methods currently used to detect water main failures are universal. This is
due to the specific characteristics of water supply systems. Various methods have numerous
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advantages and disadvantages and are diverse in terms of implementation costs, speed of
failure detection, and the possibility of assessing the amount of water outflow due to an
uncontrolled leak.

For these reasons, in the authors’ opinion, failure detection processes should be carried
out in two stages. The first one consists of a global detection of failures and the initial
selection of their localization by means of software solutions, using the analysis of hydraulic
measurements made with high-precision sensors. Next, it is necessary to implement tools
for the precise localization of the method in order to detect the place of leakage. These
issues are a new field that is subject to continuous scientific and technological development,
which gives hope for the application of increasingly recognized advanced methods on a
wider scale in the practice of operating water supply networks.
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Appendix A

Table A1. Overview of experiments carried out in the laboratory for the development of methods of
identifying operating conditions (own elaboration).

Source Material and Methods, Results

Covas et al. (2004) [59]

Type of signal: flow rate, pressure
Number of sensors: 1 flow meter, 8 pressure transducers
Measurement time step: no data
Pipeline characteristics: pipe material—PE, pipe length—277 m, internal diameter—50.6 mm
Leak size: 0.10–0.55 dm3/s
Methods: optimization techniques Levenberg–Marquart (LM), genetic algorithm (GA), hydraulic
transient solver (HTS)
Error of leak location: 0.3–13.0%

Bratek and Turkowski
(2012) [77]

Type of signal: pressure
Number of sensors: 2
Measurement time step: 1 s
Pipeline characteristics: pipe material—PE, pipe length—380 m, nominal diameter—34 mm
Leak size: 2–5% QN
Methods: low-pass filter (LPF), gradient method (GM)
Error of leak location: 0.09–1.45%

Gamboa-Medina et al.
(2014) [63]

Type of signal: pressure
Number of sensors: 15
Measurement time step: 0.25 s
Pipeline characteristics: pipe material—PVC, pipe length—200 m, nominal diameter—53–101 mm
Leak size: <3% and >11% QN
Methods: wavelet transform (WT)—Daubechies wavelet, feature extraction (FE)



Water 2022, 14, 786 15 of 19

Table A1. Cont.

Source Material and Methods, Results

Rashid et al. (2014) [20]

Type of signal: pressure
Number of sensors: 6
Measurement time step: 0.1 s
Pipeline characteristics: pipe material—galvanized steel, pipe length—14.2 m, nominal
diameter—50.80 mm
Leak size: area 6.35–38.10 mm2

Methods: wavelet transform (WT)—Daubechies, Haar, Symlet wavelet

Zhang et al. (2015) [22]

Type of signal: flow rate, pressure
Number of sensors: 2 flow meters, 2 pressure transducers
Measurement time step: <0.001 s
Pipeline characteristics: pipe material—steel, pipe length—14 m, internal diameter—500 mm
Leak size: opening of valve from 30◦ to 60◦

Methods: hybrid technique (the stimulus response method)
Error of leak location: 5–8%

Rashid et al. (2015) [60]

Type of signal: pressure
Number of sensors: 5 pressure transducers
Measurement time step: 0.1 s
Pipeline characteristics: pipe material—galvanized steel, pipe length—14.2 m, nominal
diameter—50.80 mm
Leak size: area 6.35–38.10 mm2

Methods: wavelet transform (WT)—Daubechies, support vector machine (SVM), k-nearest neighbors
algorithm (k-NN), naive Bayes classifier (NBC), Gaussian mixture model (GMM)

Ostapkowicz (2016) [78]

Type of signal: pressure
Number of sensors: 2 pressure transducers, 2 membrane correctors
Measurement time step: 1 s
Pipeline characteristics: pipe material—HDPE, pipe length—380 m, internal diameter—34 mm
Leak size: 1–10% QN
Methods: gradient method (GM), analysis of weak inter-object interaction signals
Error of leak location: 2.4–65.5%

Pan et al. (2021) [79]

Type of signal: pressure
Sensors: pressure transducers
Sampling frequency: 1024 Hz
Pipeline characteristics: pipe material—HDPE, pipe length—166.28 m, internal diameter—0.0933 m
Leak size: 0.327 L/s
Methods: frequency response function (FRF)-based transient wave analysis method (TWAM)

Table A2. Overview of experiments carried out in field conditions for the development of methods
of identifying operating conditions (own elaboration).

Source Material and Methods, Results

Misiunas et al. (2005) [11]

Type of signal: pressure
Number of sensors: 3
Measurement time step: 0.005 s
Pipeline characteristics: 108 pipes, pipe material—asbestos cement, pipe length—70–210 m, nominal
diameter—100–250 mm
Leak size: area 2.0 mm2

Methods: recursive least squares (RLS), cumulative sum control chart (CUSUM)

Ye and Fenner (2011) [80]

Type of signal: flow rate, pressure
Number of sensors: 1 flow meter, 1 pressure transducer
Measurement time step: 15 min.
Pipeline characteristics: DMA, pipe length—17.8 km, 897 house connections,
28 industrial connections
Leak size: 6.2 dm3/s
Methods: Kalman filter (KF)
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Table A2. Cont.

Source Material and Methods, Results

Eliades and Polycarpou
(2012) [50]

Type of signal: flow rate
Number of sensors: 1
Measurement time step: 5 min
Pipeline characteristics: DMA
Leak size: 0.14 dm3/s
Methods: Fourier transform (FT), cumulative sum control chart (CUSUM)

Srirangarajan et al.
(2013) [62]

Type of signal: pressure
Number of sensors: 3
Measurement time step: 0.004 s
Pipeline characteristics: pipe material—steel, nominal diameter—500 mm, pipe material—ductile
iron, nominal diameter—300 mm, research area 1 km2

Leak size: 5 dm3/s, 9 dm3/s
Methods: wavelet transform (WT), graph-based localization algorithm, cumulative sum control
chart (CUSUM)

Okeya et al. (2014) [52]

Type of signal: flow rate, pressure
Number of sensors: 3 flow meters, 1 pressure transducer
Measurement time step: 15 min
Pipeline characteristics: DMA, 238 pipes, 305 junctions
Methods: Kalman filter (KF)

Kim et al. (2015,
2016) [21,24]

Type of signal: pressure
Number of sensors: 3 and 6
Measurement time step: 0.04 s
Pipeline characteristics: first DMA: pipe length—7267 m, 861 junctions; second DMA: pipe
length—10,168 m, 1154 junctions
Leak size: 3 dm3/s
Methods: Kalman filter (KF), statistical analysis
Error of leak location: 55 m and 161 m

Wu et al. (2016) [54]

Type of signal: flow rate
Number of sensors: 5
Measurement time step: 5 min
Pipeline characteristics: DMA, research area—6.5 km2, nominal diameter—400–1000 mm
Leak size: 60–120 dm3/s
Methods: cluster analysis (CA)
Accuracy of leak location: 71.43%

Silva et al. (2018) [44]
Type of signal: flow rate
Case study: 87,383 customers, 66,648 customers
Methods: water balance, high-density regions (HDR), delta method, Monte Carlo simulations
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