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Abstract: The main goal of this paper is to show that Bayesian optimization can be regarded as a
general framework for the data-driven modelling and solution of problems arising in water distribu-
tion systems. Scenario-based hydraulic simulation and Monte Carlo are key tools in modelling in
water distribution systems. The related optimization problems fall into a simulation/optimization
framework in which objectives and constraints are often black box. Bayesian optimization (BO) is
characterized by a surrogate model, usually a Gaussian process but also a random forest, as well
as neural networks and an acquisition function that drives the search for new evaluation points.
These modelling options make BO nonparametric, robust, flexible, and sample efficient, making
it particularly suitable for simulation/optimization problems. A defining characteristic of BO is
its versatility and flexibility, given, for instance, by different probabilistic models, in particular dif-
ferent kernels, different acquisition functions. These characteristics of the Bayesian optimization
approach are exemplified by two problems: cost/energy optimization in pump scheduling and
optimal sensor placement for early detection of contaminant intrusion. Different surrogate models
have been used both in explicit and implicit control schemes, showing that BO can drive the process
of learning control rules directly from operational data. BO can also be extended to multi-objective
optimization. Two algorithms are proposed for multi-objective detection problems using two different
acquisition functions.

Keywords: pump scheduling optimization; Bayesian optimization; optimal sensor placement; Wasser-
stein distance; robustness

1. Introduction

Optimization problems arising in environmental modelling are usually very challeng-
ing. One reason is the presence of several usually conflicting objectives: the financial cost
and resilience in designing a water distribution network, and in general the issue of sus-
tainability. Optimizing the detection time, cost, and probability of detection in designing a
network to monitor water quality is another instance of multi-objective optimization. Multi-
objective (MO) problems do not typically have a single best solution: The goal is to identify
the set of Pareto optimal solutions such that any improvement in one objective means
deteriorating another. Another reason is that we are dealing with simulation–optimization
problems in a reference scenario where the objectives are expensive-to-evaluate black-box
functions with no known analytical expression and no observable gradients. Another
challenge is that the system performance has to be optimized in different conditions, which
adds one more element of computational complexity.

The reference problem is:
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minH(x) = (F1(x), . . . , Fm(x))
x ∈ X ⊂ Rd (1)

where:
Fi(x) =

∫
fi(x, w) p(w)dw in the continuous case (2)

Fi(x) =
n
∑

w=1
fi(x, w)in the discrete case (3)

Here, X is a simple compact (e.g., hyperrectangle, simplex, or a finite collection of
points), w is a vector belonging to a set W, and p is finite, has a known analytical form,
and is inexpensive to evaluate. Regarding fi(x, w) in Equations (2) and (3), we have no
information on linearity or convexity; their evaluation is expensive and does not provide
derivatives, making (2) and (3) black-box global optimization problems.

Contexts in which problems (Equation (2)) and (Equation (3)) naturally arise are:

• Optimizing average case performance of a system where fi(x, w) is the performance
of design x under the environmental condition w and p(w) represents the probability
(or the fraction of time) that condition w occurs.

This is the case of optimal sensor placement in a monitoring network, where x is the
placement of a number of sensors over the nodes, the environmental condition w is the
injection of a contaminant at a node in a water distribution network, fi(x, w) is the detection
time of the contamination event or of the fake news, and Fi is the detection time averaged
over all contamination events.

• Optimizing the expected value of systems modelled by a discrete event simulation
f (x, w), where w is a random variable. In this case, Fi(x, w) = E(Fi(x, w∗|) and the
objective becomes either (Equation (2)) if w is continuous or (3) if w is discrete. We can
obtain noisy evaluations of fi(x, w) by simulating fi(x, w∗), where w∗ is drawn from
its conditional distribution given w.

This is the case, for instance, in the design of a water distribution and transmission
system to maximize several performance metrics subject to stochastic patterns of water
availability and demands.

The problem in Equation (3) arises in hyperparameter optimization in a machine
learning algorithm. In this application, fi(x, w) is the i-metric (predictive accuracy, fairness,
explainability) on fold w using hyperparameter x, and our goal is to minimize ∑ fi(x, w). In
this paper we do not consider this problem, but it has some water specific applications—for
instance, water demand forecasting [1].

Even if the basic models (Equations (2) and (3)) share some properties, the compu-
tational strategies are different and, in this paper, we focus on the discrete case. The
resulting combinatorial problems are typically NP-hard and cannot be solved in reasonable
computing time. Approximation methods have been found to be very efficient in finding
near-optimal solutions to a wide range of problem settings. In the following, the main
types of methods are described.

Metaheuristics, in particular those that incorporate randomization and simulation and
can be characterized as simheuristics.

Multi-objective evolutionary algorithms (MOEA), which offer the advantages of sim-
plicity, applicability, versatility, and robustness. MOEAs can be naturally extended to
multi-objective optimization using either a strategy of non-dominated sorting (NSGA) [2]
that maintains an approximation of the Pareto set or a decomposition/strategy. Zhang
et al. [3] proposed a parametrized aggregation of the objective functions whose optimizers
for various parameter values span the Pareto set. MOEAs usually require a large number of
function evaluations, which might make them unfeasible for very expensive functions. In
order to improve the sample efficiency, many recent versions of EA incorporate a surrogate
model: GP is often chosen as a surrogate since the seminal paper [4] and more recently
in [5].
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Bayesian optimization (BO) methods [6] are based on a surrogate model and offer
unparalleled sample efficiency at the cost of a significant computational overhead, which
makes them the methods of choice for very expensive function evaluations. BO methods
are usually based on GPs whose kernel allows principled uncertainty evaluation, but
random forests are also used, and more recently, neural networks. Multi-objective Bayesian
optimization (MOBO) has recently been the subject of intense research. Rahat et al. [7]
analyzed the two main strategies for generalizing the surrogate model to the multi-objective
context. The first is termed “multi-surrogate”, in which each objective function is modelled
using a GP and the combined models induce a multivariate predictive distribution from
which an acquisition function can be derived [8]. The other approach, “mono-surrogate”,
aggregates the objectives functions to generate a scalarized model. Both modelling options
can be used to derive the acquisition functions to the multi-objective case [9], and more
recently have been given to multi-objective EI [10] and LCB [11]. An analysis of MOBO is
given in Section 2.3.

The main aim of this paper is to show that the flexibility of BO makes it an effective
tool to solve a number of optimization problems in WDNs. This feature is exemplified by
two basic problems in WSNs.

The first topic addressed is the energy optimization of pump scheduling. BO can be
used to model explicit control, where the decision variables are the status of the pumps, and
implicit control, where the optimization variables are the trigger thresholds in learning the
pressure-based control rules. The Bayesian approach can also be used when only SCADA
data are available. The problem of black-box constraints can also be handled in Bayesian
optimization.

The second topic specifically addressed is the design of a sensor network for the detec-
tion of intruding contaminants in a WDN. It is shown that the optimal sensor placement in
the presence of different contamination scenarios can be formulated as a sample average
approximation (SAA) multi-objective optimization problem and is shown to be amenable
to BO with specific acquisition functions based on hypervolume improvement. This is,
to the authors’ knowledge, the first case in which hypervolume improvement has been
used in an optimal sensor problem. The focus of this paper is not on the computational
performance per se, but rather on the analysis of a benchmark problem.

1.1. Related Works

The literature on energy optimization of pump scheduling is extremely broad.
A recent survey [12] under the evocative title of “Lost in optimisation of water distri-

bution systems?” presented a wide-ranging literature review. MOEA algorithms have been
widely used since the seminal paper by [13]. Castro-Gama et al. [14] gave an application of
NSGA-II for a large scale WDN. Bayesian optimization was first considered in [15]. The BO
approach was subsequently applied in [16] in order to learn implicit control strategies in
water distribution networks. A further step was outlined in [17], where optimal controls
for pump scheduling optimization are learned based only on SCADA data. A particularly
relevant issue in the optimization of WDS is that the objective function may be undefined
outside the feasible set: The EPANET simulator in the case of the violation of some con-
straints does not yield any results, making the application of penalty methods difficult.
A specific method for this problem, also called “crash constraints”, was proposed in [18]
and was generalized in [16], which addresses the issue in general terms, modelling it as a
classification/optimization problem.

The literature on optimal sensor placement is extremely broad.
This is also a key problem in water research literature that has been published in

the last two decades following different approaches. Early contributions are [19], which
used Gaussian processes, and [20], which defined “the battle of the water sensor networks
(BWSN)”. An early application of BO for sensor set selection is [21], in which the metric
to be optimized was the predictive accuracy of the air temperature across the UK. The
use of BO for contaminant source localization given information at each monitoring well
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was been proposed in [22]. A related management problem is ground water remediation,
in which the pumping rates of “pump and treat” wells were fine-tuned using Bayesian
optimization [23]. Recent contributions to optimal sensor placement used several method-
ological approaches. He et al. [24] proposed a multi-objective optimization method for
sensor placement, allowing for contamination probability variations. Naserizade et al. [25]
proposed a multi-objective model that includes risk directly in the objective functions.
Zhang et al. [26] proposed an assessment of the quality of sensor placement strategies by a
resilience index with respect to sensor failures. A new approach to optimal sensors was
proposed in [27]. The novelty of this approach is that a sensor placement is represented as
a histogram, which captures better than the sample average all the information gathered
during the simulation. The Wasserstein (WST) distance between histograms enabled the
design of a new multi-objective evolutionary algorithm (MOEA/WST), which has shown
remarkable performance in solving the optimal sensor placement problem.

1.2. Our Contributions

• An analysis of the constraints in pump scheduling optimization, focusing on the
black-box case and when the objective function cannot be computed at some points
outside the feasible region.

• Embedding hydraulic simulation in a Bayesian optimization framework, exploiting its
sample efficiency to deal with expensive function evaluation.

• BO can drive the learning process of the pressure control rules in implicit models of
pump scheduling.

• The sample efficiency is carried over to a multi-objective case, where a hyper-volume-
based acquisition function is shown to outperform the approach based on Chebyshev
scalarization and expected improvement.

2. Bayesian Optimization

This section contains a basic description of the key components of Bayesian opti-
mization (BO) for the single objective case (Sections 2.1 and 2.2) and the outline of its
generalization to the multi-objective problem (Section 2.3).

Although BO can work for any kind of optimization problem, its substantial com-
putational overhead makes it suitable when the evaluation of the objective functions is
expensive (as in the case of the execution of a simulation model), for the analytical form of
objectives, and constraints and derivatives are not available. These features of BO, along
with its versatility, make it a de-facto standard in black-box situations (Figure 1). BO gener-
ates a sequence of points at which to evaluate the objectives, with the aim of determining a
near-optimal approximation of the global minimizer after a small number of evaluations,
which can also be noisy.
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Bayesian optimization is a statistically principled approach to adaptively and sequen-
tially select these query points (or batches of query points), which enables an effective
trade-off between evaluating f in regions of good observed performance and regions of
high uncertainty.

In order to be sample efficient—that is, optimize f within a small number of
evaluations—we need a way of extrapolating our belief about what f looks like at points
not yet evaluated. In Bayesian optimization (Figure 2), this is enabled by a surrogate model,
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which should also be able to quantify the uncertainty of its predictions in the form of a
posterior distribution over function values f (x) at points x. Posteriors represent the belief a
model has about the function values about points not yet observed. Therefore, the posterior
is the distribution over the outputs conditioned on the data observed so far. When using
the Gaussian process model, the posterior is given explicitly as a multivariate distribution.
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2.1. Probabilistic Model

A Gaussian process (GP) is a probability distribution over functions denoted as f (x) ∼
GP(µ(x), k(x, x′)), where µ(x) is the mean function of the GP and k(x, x′) is the covariance
function (a.k.a., kernel). Therefore, GP is a collection of random variables, any finite number
of which have a joint Gaussian distribution, and f (x) can be considered a sample from a
multivariate normal distribution [28].

Let X1:n =
{

x(i)
}

i=1,...,n
with a set of n points in Ω ⊂ <d and y1:n =

{
f
(

x(i)
)
+ ε
}

i=1,...,n
denote the associated function values, possibly noisy with ε being a zero-mean Gaussian
noise ε ∼ N

(
0, λ2). Then the posterior predictive mean µ(x) and standard deviation σ2(x),

conditioned on X1:n and y1:n, are given by the following equations:

µ(x) = k(x, X1:n)
[
K + λ2 I

]−1 y1:n (4)

σ2(x) = k(x, x)− k(x, X1:n)
[
K + λ2 I

]−1 k(X1:n, x) (5)

where k(x, X1:n) =
{

k
(

x, x(i)
)}

i=1,...,n
and K ∈ <n×n with entries Kij = k

(
x(i), x(j)

)
.

The choice of kernel should reflect prior beliefs over the structural properties of f (x),
specifically its smoothness. Almost every kernel has its own hyperparameters to tune—
usually via maximum log-likelihood estimation (MLE) or maximum a posteriori probability
(MAP)—for reducing the potential mismatches between prior smoothness assumptions
and the observed data. Common kernels for GP regression are:

• Squared exponential: kSE(x, x′) = e−
||x−x′ ||2

2`2

• Exponential: kEXP(x, x′) = e−
||x−x′ ||

`

• Power exponential: kPE(x, x′) = e−
||x−x′ ||p

`p

• Matérn3/2: kM3/2(x, x′) =
(

1 +
√

3 ||x−x′ ||
`

)
e−
√

3 ||x−x′ ||
`

• Matérn5/2: kM5/2(x, x′) =
[

1 +
√

5 ||x−x′ ||
` + 5

3

(
||x−x′ ||

`

)2
]

e−
√

5 ||x−x′ ||
`

2.2. Acquisition Functions

The acquisition function is the mechanism behind the sample efficiency of the Bayesian
optimization method. It manages the balance between exploration and exploitation. It
drives the search of the new evaluation points towards points with potential high values of
objective function either because the value of µ(x) is high or the uncertainty represented by
σ2(x) is high (or both). This is also called the exploitation/exploration dilemma: Exploiting
means considering the area that provides a higher chance of improving over the best value
observed so far, and exploring pushes the search towards less explored regions of the search
space in order to acquire new knowledge moving. Acquisition functions have been widely
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studied in the Bayesian optimization and machine learning community, as has artificial
intelligence, in general. They are the basis of the learning process itself, and many different
approaches have been proposed [6,29]. The two considered in this paper are detailed in
Appendix A.

2.3. Multi-Objective Bayesian Optimization

As far as the surrogate model is concerned, there are two main strategies for gen-
eralizing BO to the multi-objective context [7]. The first is termed “multi-surrogate”, in
which each objective function is modelled using a GP, and the combination of these models
induces a multivariate predictive distribution from which an acquisition function can be
derived. The second, “mono-surrogate”, aggregates the objectives into a scalarized model
that is used to compute the acquisition function. The weight of the m objectives are sampled
from a uniform distribution to construct a single objective function whose optimizers can
be shown to span, under wide conditions, the whole Pareto set [30]. As far as the acquisi-
tion functions are concerned, a survey of multi-objective versions is given in [9]. Specific
versions have been more recently given to multi-objective expected improvement [10] and
lower confidence bound [11].

The hypervolume is an indicator of the solution quality that measures the objective
space between a non-dominated set and a predefined reference vector. Figure 3 displays
the mechanism of hypervolume improvement in the case of maxF(x) = ( f (1)(x), f (2)(x)).
Figure 3a displays four points li, where i = 1, . . . , 4 non-dominated in the objective space
(the dominated space is in red), a new point x1 dominates the previous ls but l1 brings about
an improvement of the dominate hypervolume (in blue, Figure 3b), and x2 dominates l1,l2,l3
and is not dominated by l4, bringing about a further improvement (in green, Figure 3c).
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Indeed, it can be shown that the maximization of the dominated hypervolume is
equivalent to locating the optimal Pareto set and gives approximate Pareto fronts with
excellent coverage [31].

As such, the expected hypervolume improvement (EHVI) is also a natural acquisi-
tion function. A drawback of the hypervolume is its computational cost, an even more
critical factor if it is to be repeatedly optimized as in acquisition functions. A number of
computational improvements focused on efficient methods for approximating EHVI have
been suggested [32–34], but its computation is still very expensive. Very recently, the issue
of MOBO was analyzed also in connection with multi-fidelity and multiple information
sources [8,35].

The situation is further complicated when constraints are also black box or even
undefined outside the feasible set. In this case, MOEA algorithms are not easily made
suitable for this kind of problem. A general solution is proposed in [36].

2.4. BoTorch

Two libraries were used in this paper: mlrMBO for pump scheduling optimization
(Section 5) and Ax-BoTorch [33,37] for the optimal sensor placement (Section 6).
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BoTorch is a library for Bayesian optimization built on top of PyTorch and is part of
the PyTorch ecosystem. In this section, we present a short analysis of its main features.
The reader is referred to [33] for a detailed exposition. BoTorch is particularly suitable to
exploiting the defining characteristic of BO as its versatility and flexibility, given by different
probabilistic models—in particular, different kernels and different acquisition functions.
BoTorch supports a wider set of kernels than the basic set in Section 2.1 and therefore a
wider set of surrogate models. Beyond the acquisition functions EI and L/U confidence
bounds in Section 2.2, BoTorch supports the knowledge gradient and max volume entropy
search. The knowledge gradient is also available in its multi-fidelity version. BoTorch
allows novel approaches that do not admit analytic solutions, including batch acquisition
functions and multi-output models with multiple correlated outcomes. In particular,
BoTorch utilizes Monte-Carlo methods in the computation of acquisition functions, lifting
the restrictive assumptions about the underlying model. It also supports the optimization
of acquisition functions over any kind of posterior distribution, as long as it can be sampled
from. BoTorch supports batch versions of EI and UCB. In batch BO, q design points are
selected for parallel evaluation. BoTorch also supports black-box constraints using variants
of the expected improvement, in which the improvement of the objective is weighted by
the probability of feasibility [38]. BoTorch supports the computation of the Pareto front and
of the expected hypervolume improvement (EHVI) as acquisition function, computing its
gradients by auto-differentiation.

3. Data and Software Resources
3.1. Data Resources

Net1 is a toy network provided in WNTR. Hanoi [27] is a benchmark used in the
literature whose associated graph consists of 32 nodes and 34 edges (Figure 4).
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The case study used for learning the pressure control rules is a WDN in the greater
Milan, Italy, area, which supplies water to three municipalities: Bresso (around 20,000 in-
habitants), Cormano (around 26,000 inhabitants), and Cusano-Milanino (around 19,000 in-
habitants). The network consists of 7418 pipes, 8493 junctions, 14 reservoirs, 1381 valves,
and 9 pumping stations, with 14 pumps overall. The piezometric level of the WDN ranges
from 136 to 174 m (average: 148 m). A schematic representation of the WDN is reported in
Figure 5.
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3.2. Software Resources

The pump scheduling optimization problem was solved using the R package named
“mlrMBO”. A toolbox for model-based optimization (MBO). mlrMBO can handle both
single- and multi-objective optimization with mixed continuous, categorical, and condi-
tional decision variables. It also offers different acquisition functions and methods for their
optimization.

The optimal sensor placement problem was solved using the BoTorch library for
Bayesian optimization as part of the PyTorch ecosystem. BoTorch provides an easy-to-use
interface for defining, managing, and running sequential experiments and a modular inter-
face for composing Bayesian optimization primitives as probabilistic models, acquisition
functions, and optimizers. BoTorch organizes the computations in batches of size q.

EPANET 2.0 is the most well-known and largely adopted open-source software for
simulating WDN. More recently, WNTR was proposed: It is coded in Python, based on
EPANET, and provides a larger set of functionalities, especially for structural and resilience
analysis of a WDN.

4. Pump Scheduling Optimization

The commonly used approach (pump scheduling optimization) is explicit control: The
pump’s status and speed are decided at prefixed times. Thus, the problem is to efficiently
search among all the possible schedules (i.e., configurations of the decision variables) to
optimize the objective function with a constraint of hydraulic feasibility. Many methods
have been proposed from domains such as mathematical programming, meta-heuristics,
and evolutionary and nature-inspired algorithms. Explicit control models require many
decision variables for real-world water distribution networks, increasing with the number
of pumps and the number of time intervals.

Another approach is the implicit control model: The pumps’ status/speeds is con-
trolled by pressure-related rules—a pump is activated if pressure (at specific locations)
is lower than a minimum threshold, or it is deactivated if pressure exceeds a maximum
threshold. Otherwise, the status/speed of the pump is not changed. These thresholds
become the decision variables of the optimal implicit control problem. The search space for
the implicit control has a lower dimensionality than in the explicit case. For instance, if one
has to control n pumps, by deciding to simply switch them on/off on an hourly basis over
H hours, the entire search space for finding an optimal explicit control (i.e., optimal pump
schedule) consists of 2nH possible pump schedules within an -dimensional space. In con-
trast, the search space associated with implicit control, for instance, consisting of min–max
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ranges on the pumps’ pressures, has just 2n dimensions. On the other hand, the structure
of the associated search space is typically more complex due to the constraints/conditions
among values of the decision variables.

The section demonstrates the versatility of the Bayesian optimization paradigm which,
through different surrogate models and acquisition functions, can handle both explicit
(Section 4.1) and implicit (Section 4.2) models.

4.1. Pump Scheduling Optimization through Bayesian Optimization

The reference paper is [15], which proposes a BO approach for the PSO problem by
also comparing two different probabilistic surrogate models to approximate the black-box
objective function, which are a Gaussian process (GP) regression and a random forest (RF).

The approach considers a simulation–optimization setting, where a simulation run
of the software hydraulic model of the WDN, given a certain pump schedule, provides
the associated value of the objective function (i.e., energy cost to be minimized) or its
non-computability, meaning that some hydraulic constraints have been violated, leading to
the impossibility of computing the objective function associated with a hydraulic feasible
schedule. More precisely, hydraulic feasibility refers to “basic” computational constraints
(e.g., the impossibility of having a negative pressure at some location, lack of convergence
in the simulation, impossibility of satisfying water demand, etc.) as well as operational con-
straints that can be set by the user, such as specific min–max operating ranges for pressure
at each node. Finally, feasibility also depends on the specific simulated scenario, such as
the water demand patterns the user associates with each node according to historical data.

Although “penalizing” infeasible (aka non-computable) schedules proved to be a suffi-
ciently workaround [15], the estimation of the unknown feasibility region was successively
addressed in [18] in the case of PSO and in [17] in the case of a generic problem with a
potentially non-computable black-box objective function.

4.2. Learning Optimal Control Rules as a Black-Box Optimization Problem

In implicit control, the pumps are controlled depending on pressure at some locations,
usually their associated pressures. For the sake of simplicity, one can consider the easiest
case, where the control rule is based on two thresholds: τ1 and τ2, the lowest threshold,
implying to switch the pump on, and the highest threshold, implying to switch the pump
off, respectively:

IF (p < τ1 AND S = OFF) THEN S← ON
ELSE
IF (p > τ2 AND S = ON) THEN S← OFF

where p is the current pressure value at the pump and S is the status of the pump (i.e.,
ON/OFF).

Figure 6 shows an example of this simple control rule for a single pump.
Thus, τ1 and τ2 are the decision variables to be optimized in the implicit control case,

with the aim of minimizing the associated energy cost while constrained to the satisfaction
of the water demand.

The possibility of generating infeasible (aka non-computable) control strategies can
also be taken into account, leading to a simulation–optimization problem with a black-box
objective function.

Bayesian optimization has been shown to also be able to handle unknown and crash
constraints, which would make a penalty-based approach impossible, but can be handled
by BO. Implicit control strategies learned through the BO approach proposed in [16] were
not only optimal and efficient in terms of the number of simulation runs required to identify
them, but also “hydraulically” robust with respect to perturbations in the water demand.

One further step was taken in the paper “Active learning of pressure control rules of
water distribution networks” [17], in which it was shown that an accurate approximation
of the outputs of the hydraulic simulation can be obtained by training a deep neural
network on SCADA data. The main result was that the hydraulic simulation model can
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be “replaced” by a deep neural network (DNN): The knowledge hidden in the data can be
leveraged into a low-cost source using SCADA data to train a DNN to predict the relevant
outputs (i.e., energy and hydraulic feasibility), avoiding costs for the design, development,
validation, and execution of a “virtual twin” provided by the hydraulic simulation of the
water distribution network. Computational results in [17] showed that threshold-based
rules can be learned through an active learning approach: The lower dimensionality of the
search space, compared to explicit control, substantially reduces the computational cost.
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5. Optimal Sensor Placement
5.1. The Basic Model

Let G = (V, E) be the graph underlying the water distribution network and L ⊆ V
the set of possible locations for deploying sensors. That is, a sensor placement (SP) is a
subset o f L, with the subset’s size less or equal to p depending on the available budget,
represented by a binary vector s ∈ {0, 1}|L| whose components are si = 1 if a sensor is
located at node i, si = 0. Otherwise, let A ⊆ V be the set of contamination events a ∈ A
and dai the detection time of a sensor placed in node i of event a. A probability distribution
is placed over possible contamination events a ∈ A. The “fitness” of a sensor placement is
given by two metrics: the detection time and its standard deviation.

This brings about the following model of sensor placement:

P =



min f1(s) = ∑
a∈A

αa ∑
i=1,...,|L|

daixai

s.t.
∑

i=1,...,|L|
si ≤ p

si ∈ {0, 1}

(6)

• αa is the probability of event a.
• xai = 1 if si = 1, where i is the first sensor detecting event a, and 0 otherwise.

In our study, we assumed that all the events had the same chance of happening, that
is, αa = 1/|A|; therefore, f1(s) is:

f1(s) = 1
|A| ∑

a∈A
t̂a (7)

where t̂a = ∑
i=1,...,|L|

daixai is the MDT of event a. General discrete distributions over

A ⊆ V can be also used. For each event a and sensor placement s the minimum detection
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time is defined as MDTa = min
i: si=1

dai, with t̂a being the minimum time step at which

concentration exceeds a given threshold τ for event a. f1 is the average over the events of
the detection time.

As a measure of risk, we considered f2 as the standard deviation of the sample average
approximation of f1.

f2(s) = STD f1(s) =
√

1
|A| ∑

a∈A

(
t̂a − f1(s)

)2
(8)

5.2. Multi-Objective Bayesian Optimization for Sensor Placement

Two Bayesian optimization algorithms, A1 and A2, were used in this paper for optimal
sensor placement.

A1 was the mono-surrogate, based on Chebyshev scalarization of the objectives of
f (1) and f (2). A GP of the aggregate function and the expected improvement (EI) were
the acquisition function. A2 was the multi-surrogate based on GP models of the single
objectives and the expected hypervolume improvement was the acquisition function.

The authors implemented them using software components from BoTorch. Both
organized the computations in batches of size q = 5.

The “helper” function created the outcomes required for the scalarized objective and
applied the scalarization and the constraints. The helper function initialized A1 and A2 and
returned the batch

(
x1, x2, . . . , xq

)
along with the observed values. In A1, each candidate

was optimized in a sequential greedy fashion using a different random scalarization.
The BO loop for a batch of size q iterated the following steps:

• Given a surrogate, choose a batch of q points.
• Observe f (x) for each x.
• Update the surrogate model.

A1 could also be extended to the constrained case by weighting the EI by the probabil-
ity of feasibility.

In A2, a list of acquisition functions was created, each with different scalarization
weights. This list generated one candidate for each acquisition and conditioned the next
candidate (and acquisition) on the previously selected candidates.

5.3. Computational Results

The plot below (Figure 7) shows, for Net 1 (left) and the Hanoi network (right), the
difference in the hypervolume between the feasible true Pareto front and hypervolume of
the observed Pareto front for algorithms A1 and A2.
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An effective way to visualize the optimization process is to represent the observations
by a color associated with the iteration count of A1 and A2. It is apparent from Figure 8
that A2 (right plot) was much quicker than A1 (left plot) at identifying the Pareto front.
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An example of the sensor placement given by the algorithms is reported in Figures 9
and 10.
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6. Conclusions

The main conclusion is that Bayesian optimization offers a versatile and comprehensive
framework for the solution of a wide range of problems both for the design and operation
of water distribution networks and other environmental domains. The key argument is
that Bayesian optimization is sample efficient method, and this is particularly important in
black-box problems when the optimization is driven by the output of a simulation model.

The evaluation of the objective functions is largely based on the simulation of the un-
derlying system in different contexts and can result in computationally expensive black-box
problems. The probabilistic surrogate model enables a quantification of predictive uncer-
tainty, which is fed into an acquisition function that drives the selection of the next evalu-
ation point. It was shown how this feature can be exploited in multi-objective problems
by incorporating into the acquisition function the concept of hypervolume improvement.
Evolutionary algorithms are often used for these problems, as well as in multi-objective
cases, but they are not nearly as sample efficient as BO, despite their performance being
improved by incorporating a surrogate model. Sample efficiency in BO is particularly
important when the data and computational resources are severely constrained by the high
computational cost of simulation experiments encompassing several different scenarios or
Monte Carlo simulation.

BO libraries, as exemplified in this paper, allow for quick development of a first
prototype requiring a negligible amount of coding and allow both the data scientist and
the domain expert to choose those components (in particular, probabilistic models and
acquisition functions) that best fit the target application and the available resources.

Specifically, the most relevant achievements were showing (a) that Bayesian optimiza-
tion enables the optimal learning of pressure-based control rules for pump scheduling from
the SCADA system, and (b) that the optimal placement of sensors for the early detection of
contaminants can also be efficiently solved through Bayesian optimization.

The value of data hidden in the SCADA systems in order to approximate the hydraulic
behavior and develop data-driven strategies for a number of operational problems is an
interesting lesson that water utilities can draw from the results of this paper.
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Appendix A

Acquisition Functions

A widely used acquisition function is the expected improvement (EI), given by the
expected improvement on f (x) with respect to the predictive distribution of the surrogate
model. The parameter ξ is related to the trade-off between exploitation and exploration. Ξ
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should be adjusted dynamically to decrease as the optimization moves along, biasing the
search toward exploitation in later stages of the optimization process:

EI(x) =
{

(µ(x)− f (x+)− ξ)Φ(Z) + σ(x)φ(Z) i f σ(x) > 0
0 i f σ(x) = 0

(A1)

where φ and Φ are the probability and the cumulative distribution functions, respectively,
and

Z =

{
µ(x)− f (x+)−ξ

σ(x) i f σ(x) > 0
0 i f σ(x) = 0

(A2)

Another common acquisition is based on the confidence bound concept (lower con-
fidence bound (LCB) and upper confidence bound (UCB) in the minimization and maxi-
mization case, respectively). The next point to evaluate is given by the minimizer of:

LCB(x) = µ(x)− kσ(x) (A3)

where k ≥ 0 is the parameter to manage the exploration/exploitation trade-off (k = 0
means pure exploitation).
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