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Abstract: Hydrological changes combined with earthquakes easily trigger secondary disasters, in-
cluding geological hazards. The secondary hazard of precipitation is the main disaster type in the
Longmenshan Area (China). The 2008 Wenchuan earthquake caused more than 60,000 landslides,
severely affecting rural households. This study aimed to answer two questions: (1) How did house-
holds adapt to the landslide-prone post-earthquake environment? (2) How will the households’
adaptation strategies change if landslide frequency changes? Different post-disaster adaptation strate-
gies of households in Longmenshan Town, Sichuan, China were identified through a questionnaire
survey and then clustered into groups based on similarity using a K-means algorithm. Afterward,
a gradient boosting decision tree (GBDT) was used to predict change in adaptation strategies if
there was a change in the frequency of landslides. The results show that there are three types of
landslide adaptation strategies in the study area: (1) autonomous adaptation; (2) policy-dependent
adaptation; and (3) hybrid adaptation, which is a mixture of the first two types. If the frequency of
landslides is increased, then around 5% of households previously under the autonomous adaptation
type would be converted to policy-dependent and hybrid adaptation types. If the frequency of
landslides is reduced, then around 5% of households with policy-dependent adaptation strategies
would be converted to the autonomous adaptation type. This exploratory study provides a glimpse
of how machine learning can be utilized to predict how adaptation strategies would be modified if
hazard frequency changed. A follow-up long-term study in Longmenshan Town is needed to confirm
whether the predictions are indeed correct.

Keywords: landslide; adaptation strategy; GBDT; machine learning; mountain hazards

1. Introduction

Geological hazards occur frequently in China and are driven by many factors, in-
cluding hydrological conditions, geological conditions, climate change, etc. From 2009
to 2019, about 133,899 geological hazards occurred in China, including 94,321 landslides,
24,981 mudslides, 10,284 debris flows, and 3209 surface collapses [1]. Landslides account
for 71% of the total geological hazards in China and are mainly due to changes in geological
and hydrological conditions. Water-related factors, such as heavy rainfall and ground water
change, easily trigger landslides, especially after an earthquake. The 2008 Wenchuan earth-
quake along the Longmenshan fault and the change in hydrological conditions triggered
more than 60,000 landslides, which resulted in about 20,000 fatalities [2]. Xu et al. reported
an even higher estimate: almost 200,000 landslides distributed over an area of more than
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110,000 square kilometers [3]. Among the recent strong earthquakes around the world,
the 2008 Wenchuan earthquake set off the largest number of landslides [4], which caused
extensive damage to houses, factories, offices, schools, farms, highways, bridges, irrigation
channels, power plants, and lifeline infrastructure. More than 30 dammed lakes were also
created by the landslides, threatening the residents living downstream of those lakes [5–9].

Strong earthquakes, like the MS 8.0 Wenchuan earthquake, can lead to increased slope
instability, which can persist for a long period of time [5,10]. After the 2008 Wenchuan
earthquake, abundant loose landslide debris remained on slopes; this debris can later
serve as source material for rainfall-induced landslides and endanger reconstructed settle-
ments [5,9,11]. Post-earthquake landslides will continue to be a significant concern in the
future [10,12]. Without vegetation cover, the topsoil and sediment in denuded areas and
other high-risk areas will continue to be unstable in the coming years. Previous researchers
have mainly concentrated on how long it will take for the landslide activity to stabilize
after the 2008 Wenchuan earthquake [4]. In previous studies, researchers have noted that
there was a high level of landslide activity for more than 15 years after the 1923 Kanto
earthquake (with comparable magnitude of MS 7.9) in Japan, and it took more than 40 years
for landslide activity to dwindle to a stable condition. According to Chen et al. [13], it will
take about 81 years for the denudation rate in the area affected by the 2008 Wenchuan
earthquake to return to the pre-earthquake rate. Debris-flow disasters can only be expected
to become infrequent 22 years after the earthquake, or around 2030.

Whether by choice or by necessity, people in earthquake-affected areas must adapt
to new landscape that has become vulnerable to landslides. However, rare studies focus
on community-based approaches related to landslide risk reduction, and even fewer on
household-scale interventions. Anderson et al. [14] enumerated some factors that limit
the capacity of communities to manage landslide risk in the Caribbean: lack of technical
awareness related to landslides (e.g., what mechanisms trigger landslides); lack of access to
finance; lack of organization for the provision of public good; and high levels of poverty
and unemployment. As a consequence, homeowners built retaining walls based on the
perception that it was best to address immediate and visible threats (soil erosion and
slope failures) rather than invisible causes (surface water infiltration). The construction of
retaining walls was rarely effective without addressing inadequate drainage first.

In the case of the areas affected by the 2008 Wenchuan earthquake, some studies have
examined the recovery strategies of communities and households after the earthquake and
the secondary hazard events that followed [15–18]. Han [16] focused on five livelihood
assets: human capital, social capital, financial capital, natural capital, and physical capital.
Jin et al. [17] reported that households adjusted their income-generating strategies through
crop diversification, non-agricultural self-employment, and increased working time of male
household members. Feng et al. [18] examined the effectiveness of government aid and
concluded that financial aid for housing reconstruction accounted for less than 60% of the
total cost. Song et al. [12] reviewed local recovery plans created in response to the 2008
Wenchuan earthquake, which suggested ways for planners to incorporate sustainability
into the recovery process. According to Peng et al. [19], the risk perception of farmers
affected their post-disaster reconstruction strategies and, eventually, the sustainability of
the overall disaster recovery of their area. Andersson-Sköld et al. [20] provided an overview
of the analytical steps in systematic landslide risk management: risk identification; risk
inventory; risk assessment and risk mitigation requirements; defining risk management
strategy; and implementation, follow-up, control, and monitoring.

Machine learning techniques are widely utilized to scientifically predict the location
and timing of disaster developments and potential impacts [21]. Chen et al. utilized six
machine learning techniques to investigate the development of floods based on flood risk
evaluation: support vector machine (SVM), random forest (RF), gradient boosting decision
tree (GBDT), eXtreme gradient boosting (XGBoost), multi-layer perceptron (MLP), and
convolutional neural network (CNN) [22]. The GBDT model is a widely used approach
in machine learning based on establishing various weak classifiers for accumulation to a
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strong classifier with diverse iterations that improve the accuracy of predictions [23]. It has
advantages in forecasting, which are strongly predictive abilities, and it is insensitive to
outliners, flexible for processing multiple types of data, and does not pre-determine the
correlation between predictor variables and predicted variables [22,24]. Yang et al. applied
GBDT to study the non-linear impacts between bus rapid transit and traffic accidents [25].
In terms of landslides, an increasing amount of research has applied machine learning tech-
niques to assess landslide susceptibility and predict changes due to landslides, providing a
feasible outcome for decision making. Pourghasemi and Rahmati [26] gave examples of
previous studies published between 2004 and 2017 and used machine learning for landslide
susceptibility mapping. They identified 14 commonly used machine learning techniques
and utilized 10 techniques in their own comparative study. The output landslide suscep-
tibility maps are very useful for planners and decision makers in formulating land use,
developing landslide early warning systems, and prioritizing areas for mitigating landslide
risks [21,26]. Shirzadi et al. [27] mentioned several other studies applying machine learning
to landslide research, especially in risk analyses. In a quantitative assessment of landslide
susceptibility, machine learning approaches performed better and were regarded as more
efficient than expert opinion-based and analytic approaches [28]. He et al. compared the
performances of two methods, gradient boosting decision tree (GBDT) and AdaBoost, in
vulnerability appraisals of landslides and wildfires in Southeast Asia, which showed that
GBDT had outstanding performances in assessment processes, offering precise assessment
results by combining several weak classifiers [24,29]. Rong et al. also applied GBDT to
assess the susceptibility of landslides and produce landslide susceptibility mappings [30].

At present, little is known about bottom-up recovery strategies of households in areas
exposed to post-earthquake mountain hazards. This study aims to address this knowledge
gap by using machine learning, which has been increasingly employed in disaster risk
management related to landslides. Most machine learning studies related to landslides
deal with the first two steps (e.g., gaining knowledge of triggering factors and landslide
susceptibility mapping), but very few machine learning studies deal with subsequent steps.
Landslides are the most frequent geological hazards in the Longmenshan area. This study
will focus on the landslide adaptation strategies of households. The two objectives of this
study are: (1) to investigate how households adapt to the landslide-prone post-earthquake
environment and (2) to predict using machine learning how the adaptation strategies of
households change if landslide frequency changes.

2. Methodology

This study followed the methodology flowchart shown in Figure 1. The research was di-
vided into three parts: data collection, cluster analysis of adaptation strategies, and prediction
of change in adaptation strategies. Details are provided in the following subsections.

2.1. Study Area

The study area is located along the Jianjiang River in Longmenshan Town, Sichuan,
China, specifically in the section between Xujiagou Town and Dahaizigou Town approxi-
mately 89 km northwest of Pengzhou County (Figure 2). Longmenshan Town is located in
the Longmenshan (Longmen Mountain) area, which geographically lies in the transition
zone between the Tibetan Plateau and the Chengdu Plains. It is a mountainous area with
steep topography, and it has a very complex geology and geomorphology with elevation
ranges from 1073 to 4812 m and a north–south decline. The climate is subtropical with a
mean annual temperature of about 12 ◦C, and the yearly rainfall in the study area ranges
from 635 to 1281 mm, with a large part of the precipitation falling between May and
October [31]. With the 2008 Wenchuan earthquake and the subsequent 2013 Lushan earth-
quake both hitting this region, the households in the area have been under severe threat
of potential landslides. Frequent geological disasters in the area have caused repeated
reconstruction of infrastructure and housing in previous years. Mountain hazards continue
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to occur, especially during the rainy monsoon season, indicating that huge losses are still
likely in the future.
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Figure 2. Maps showing the location in (b) Sichuan Province of (a) China, where (c) the study area is
situated.
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Longmenshan Town has a total area of about 368 km2 and is located at about 30 km
from the epicenter of the 2008 Wenchuan earthquake. The Jianjiang River, which is a
tributary of the Yangtze River, flows through the length of this valley. About 56% of this
mountainous town is covered with forest, and the area is rich in mineral resources (mainly
copper and nickel) and pharmaceutical raw materials. Due to abundant water resources,
there are also many small hydropower stations. The Yin-bai Highway (a province-level
road) is the main connection between the area and the rest of the country. At the end of
2020, Longmenshan Town had a population of 24,912 distributed in 8629 households [32].

According to the disaster information data from detailed investigations and zoning
reports of geological disasters in Pengzhou in 2009, 2012, 2013, and 2020 by the Sichuan
Geological Engineering Investigation Institute, a total of 159 potential geohazards were
identified in Longmenshan Town (Table 1). Based on the 1978 Varnes classification system,
the identified potential geohazards included 51 debris flows, 66 landslides, 40 debris falls,
and 2 slope failures. The geohazards were classified according to their impact radius into
four levels: small (500 m), medium (1000 m), large (1500 m), and extra-large (2000 m). For
the study area of this work, there were 77 potential geohazards, including 34 debris flows,
30 landslides, 12 debris falls, and 1 slope failure. The distribution of potential geohazards
in the study area is visualized in Figure 3a using ArcGIS software.

Table 1. Co-seismic and post-seismic potential geohazards in Longmenshan Town.

Category Levels
Total

Small Medium Large Extra-Large

Debris flow 20 18 11 2 51
Landslide 60 6 0 0 66
Debris fall 26 10 4 0 40

Slope failure 1 1 0 0 2
Total 107 35 15 2 159

Note: Source: Sichuan Geological Engineering Investigation Institute reports.

Figure 3. Distribution of co-seismic and post-seismic potential geohazards (a) and settlements
investigated (b) in the study area.
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2.2. Data Collection
2.2.1. Landslide Adaptation Strategies

Adaptation strategies employed by the households were obtained through face-to-
face questionnaire surveys with a participatory rural appraisal (PRA) that evaluated the
changes in settlement patterns after the 2008 Wenchuan earthquake. The surveys were
conducted with different people during three time periods (October 2012, August 2013,
and July 2014) in six villages of Longmenshan Town: Xujiagou, Donglinsi, Xiangshuidong,
Xiejiadian, Yinchanggou, and Dahaizigou (Figure 3b). The interview with each survey
respondent lasted between 30 to 60 min. The questionnaire covered issues pertaining to
(1) economic adaptability, (2) physical adaptability, (3) dependence on government policies,
(4) information accessibility, and (5) psychological adaptability. These five dimensions were
used to determine the adaptation strategies of the households. The list of indicators under
each dimension is shown in Table 2.

Table 2. List of indicators for each dimension of household adaptation strategies.

Dimensions Indicators Values

Economic adaptability

Living condition Worse = −1; No change = 0; Better = 1
Type of job No change = 0; Changed = 1

Number of jobs Decreased = −1; No change = 0; Increased = 1
Number of household members with job Decreased = −1; No change = 0; Increased = 1

Place of work Contracted = −1; No change = 0; Expanded = 1

Physical adaptability
House floor area Decreased = −1; No change = 0; Increased = 1

House construction material No change = 0; Changed = 1
Relocated Yes = 1; No = 0

Dependence on government policies Government assistance Yes = 1; No = 0
Communal facilities Yes = 1; No = 0

Information accessibility
Information access Yes = 1; No = 0

Understanding degree High = 1; Low = 0
Educational level High = 1; Low = 0

Psychological adaptability Adaptation perception Bad = −1; No change = 0; Good = 1

A total of 112 valid responses were obtained using convenience sampling. Random
sampling was not possible due to the frequent unavailability of target respondents at their
houses during the survey. Verbal informed consent was obtained from each survey participant.

2.2.2. Model Parameter Data

In this study, a variety of data were used in the GBDT model to predict how the
adaptation strategies would change under different landslide frequencies. The GBDT
model considered different parameters, including historical disaster data, terrain data,
vegetation data, landform data, vector data (road, river, and settlement points), and the
adaptation strategies obtained from the questionnaire survey. The historical disaster
data were obtained from investigations and zoning reports on geological disasters by the
Sichuan Geological Engineering Investigation Institute. The terrain data were provided
by the Sichuan Bureau of Surveying, Mapping, and Geoinformation. The vegetation data
were obtained from the United States Geological Survey (USGS). The landform data were
obtained from the Atlas of Mountain Hazards and Soil Erosion in the Upper Yangtze.
The vector data (road, river, and settlement points) are remote sensing images derived
from Google Earth images and photos taken from drones. However, as the type of land
use in the study area was all settlements and the study site spanned a small area (i.e.,
the meteorological data and geological data were the same), the researchers only chose
parameters with obvious differences when selecting the features of the model. Table 3
shows the list of data used in the model for predicting change in household landslide
adaptation strategies.
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Table 3. Data used in the prediction model.

Elements Description Data Source

Historical disaster data The distribution of collapses, landslides, debris
flows, and unstable slopes in the study area

Investigations and zoning reports of geological disasters,
Sichuan Geological Engineering Investigation Institute

Terrain data Digital elevation model, 30 m resolution;
basic topographic map of Sichuan, scale 1:50,000 Sichuan Bureau of Surveying, Mapping, and Geoinformation

Vegetation data
NDVI data of the study area in September and
October of 2011, 2013, and 2015 obtained from

LANDSAT images

LANDSAT satellite digital products from
the USGS (https://earthexplorer.usgs.gov/, accessed at

19 November 2016)

Landform data The landform data in the study area

Atlas of Mountain Hazards and Soil Erosion in the
Upper Yangtze

(http://ir.imde.ac.cn/handle/131551/18263, accessed at
20 September 2016)

River Vector data of the river in the study area (distance
from river in meters) Remote sensing image interpretation

Road Vector data of the road in the study area (distance
from road in meters) Remote sensing image interpretation

Residential area points Vector data of residential points in the study area Remote sensing image interpretation

Questionnaire survey data Survey of landslide adaptation strategies of
households in the study area Questionnaire survey

Remote sensing image QuickBird high resolution picture, 2.4 m resolution;
UAV photographs, 0.6 m resolution

Google Earth images,
unmanned aerial vehicle photography

2.3. Clustering Method of Landslide Adaptation Strategies

As each household implemented different landslide adaptation strategies based on
its situation, it was expected that there would be a large number of distinct adaptation
strategies. To reduce the number of strategies considered in the study, the researchers
clustered similar strategies together.

In the past, researchers have mainly relied on experience and professional knowledge
in classification and clustering processes and have seldom used mathematical methods,
causing many classifications to be subjective and arbitrary. Nowadays, cluster analysis,
which classifies objects in association with their degrees of similarity, is based on multivari-
ate statistical analysis, making the classification results more objective. In machine learning,
clustering is a method of unsupervised learning where a set of inputs is divided into subsets
(called clusters) so that observations within the same cluster are similar according to some
predesignated criterion or criteria, while observations drawn from different clusters are
dissimilar [33]. Unlike classification, the subsets in clustering are not known beforehand.

A K-means algorithm was used to cluster the 112 landslide adaptation strategies col-
lected from the questionnaire survey. A comparison study shows that K-means algorithms
had a much higher operational efficiency in clustering among five clustering algorithms
investigated by Abbas [33]. Based on the Calinski–Harabasz Index, s(k) was used for
clustering model evaluation. The index describes the ratio of the discrete mean between
clusters to the discrete mean within a cluster. The higher index is, the better the clustering
model. The main steps involved were:

(1) Randomly initializing K-cluster centroids based on the data ranges of N data objects;
(2) Assigning each object to the group that had the closest centroid;
(3) Updating the locations of each centroid by calculating the mean value of the objects

assigned to it;
(4) Repeating Steps 2 and 3 until the maximum number of iterations was reached or until

the centroids no longer moved;
(5) Finding the best clustering effect of the model based on the value of s(k);
(6) Conducting computations using scikit-learn and NumPy Python packages.

https://earthexplorer.usgs.gov/
http://ir.imde.ac.cn/handle/131551/18263
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2.4. Prediction Method of Change in Adaptation Strategies

Based on the clustering results, a gradient boosting decision tree (GBDT) machine
learning technique was used to predict change in household adaptation strategies in the
study area (721 households total) with three scenarios of landslide frequency: Scenario 1
(no change in landslide frequency); Scenario 2 (an increase in landslide frequency); and
Scenario 3 (a decrease in landslide frequency). To predict changes in landslide adaptation
strategies, we adopted the GBDT approach due to its superior anticipation ability [34,35].
GBDT yields a predictive model in the form of an ensemble of decision trees and exhibits
strong predictive power with a differentiable loss function [36].

GBDT, as an integrated model, uses a classification and regression trees (CART) model
as a weak learner [34]. Its basic idea is to iteratively build a decision tree with a gradient
of residual reduction and, finally, to obtain a model composed of multiple decision trees.
When comparing 11 state-of-the-art classification algorithms, Zhang et al. [37] observed that
GBDT can achieve impressive classification prediction performance, as it was the fastest in
testing and prediction. Natekin and Knoll [38] noted that gradient boosting machines are
very versatile and can readily be customized to serve different practical purposes.

In performing GBDT in this study, the main steps involved were:

(1) Model features selection;
(2) Data preprocessing;
(3) Model construction and parameter optimization.

The model was constructed with the sample data by taking the following steps:
a. import dependencies; b. import sample data; c. apply the sample data to the GBDT
function; d. use K-fold cross validation score result to optimize parameters; and e. obtain
the best score of the model and related parameters.

(4) Model prediction

We applied the prediction data to the constructed model to predict adaptation strate-
gies with different landslide frequency scenarios. Scenario 1 (no change in frequency)
involved a model frequency that was the same as the historically observed frequency.
Scenario 2 (increase in landslide frequency) was set as double the historically observed
frequency. Scenario 3 (decrease in landslide frequency) was set as half the historically
observed frequency.

A Python code was written to run the model. K-fold cross validation, a technique
of dividing the original sample randomly into K sub-samples, was used to avoid model
overfitting. Then, a single sub-sample was regarded as the validation data to test the model,
and the remaining sub-samples were used as training data. These processes were repeated
K times, and each of the K sub-samples was used exactly once as the validation data. It
was assumed that the higher the result of the cross-validation, the more accurate the model.
In this study, K was set to 10.

3. Results and Discussion
3.1. Clustering of Landslide Adaptation Strategies

Based on 112 survey responses, the Calinski–Harabasz Index was used to evaluate
the results of the K-means clustering analysis. The number of clusters with the highest
Calinski–Harabasz Index was three (Figure 4). In other words, when the number of clusters
was three, the ratio of between-clusters dispersion and within-cluster dispersion was the
largest, resulting in the best partition of the data. This means that the cluster analysis
obtained the best clustering results.
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strategies.

In order to better visualize the clustering results, a t-distributed stochastic neighbor
embedding (t-SNE) algorithm [39] was used to reduce the dimensionality of the data from
five dimensions to two dimensions, which also was implemented in scikit-learn. Figure 4
shows scatter plots with the raw data and the clustered data after dimensionality reduction.
Coordinate overlap existed at different points after dimensionality reduction, so the number
of points seen in Figure 4c is smaller than the actual total number of survey responses,
especially for the green and yellow points.

We then compared the features of each cluster and named each cluster for convenience
as follows:

Type 1: Government-policy-dependent adaptation strategy (39 green points in Figure 4c,
34.8% of the 112 survey responses);

Type 2: Autonomous household-initiated adaptation strategy (52 yellow points in Figure 4c,
46.4% of the 112 survey responses);

Type 3: Hybrid adaptation strategy, which is a mix of Types 1 and 2 (18.8%).

Figure 5 shows the average dimension scores of the three landslide adaptation types
plotted on a spider diagram.
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3.2. Prediction of Change in Landslide Adaptation Strategies

After running the prediction model, Table 4 shows changes in landslide adaptation
strategies depending on changes in landslide frequency. Explanations for each of the three
scenarios are provided below.
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Table 4. Results of the prediction model with 721 households.

Adaptation Types Scenario 1
No Change

Scenario 2
Frequency Increases

Scenario 3
Frequency Decreases

Type 1: Policy-dependent adaptation 72 (10%) 121 (17%) 40 (5%)
Type 2: Autonomous adaptation 551 (76%) 490 (68%) 583 (81%)

Type 3: Hybrid adaptation 98 (14%) 110 (15%) 98 (14%)
Total 721 (100%) 721 (100%) 721 (100%)

3.2.1. Scenario 1: No Change in Landslide Frequency

When the frequency of landslides remained the same, only one in ten of the 721 households
was classified as having adaptation strategies dependent on government policy. Three out of
every four households exercised autonomous adaptation strategies. Around 100 households
had strategies that were split between government-led and household-driven. These
classifications of households were used as the baseline for comparison with the other
two scenarios.

3.2.2. Scenario 2: Increase in Landslide Frequency

There are many natural and human-induced factors that can increase the frequency
of landslides. Logging of trees, irrigation, mining, quarrying, slope cutting, construction
of roads, water impoundment in reservoirs, and increased seismic activity are believed to
cause the incidence of landslides to rise [35,40].

If the frequency of landslides increased, previously Type 1 households increased by
7%, while Type 2 households decreased by 8%. There was a slight increase in the number
of Type 3 households (1%). Some households previously following autonomous adapta-
tion strategies shifted to government-policy-dependent adaptation. Although landslide
disasters can destroy built environment, countries with a strong central government, such
as China, may finance most of the reconstruction of the built environment [41], hence the
increase in government policy dependence. National policies and plans, similar to the
“Regulation on Post-Wenchuan Earthquake Disaster Recovery and Reconstruction” and
the “State Overall Plan for Post-Wenchuan Earthquake Restoration and Reconstruction”,
may be issued to guide recovery and reconstruction after increasing landslides. When a
large number of houses are destroyed by landslides, the government prefers mass housing
construction to take advantage of economies and scale to reduce unit cost [41]. In the
areas seriously impacted by the 2008 Wenchuan earthquake, there was overwhelming
government support for eligible affected households [42]. Subsidies provided in 2008 were
so large that the poverty rate actually declined from 34% to 19%; in contrast to the Chinese
experience, government subsidies to those affected by a tsunami in Aceh, Indonesia in
2004 and by the Kobe earthquake in 2005 were very modest [42]. Chinese government
assistance was so well-targeted to those who suffered great losses that no aid dependency
was observed [42]. State-managed allocation of reconstruction resources was driven by
damage assessments [43]. In China, the government plays an important role in leading
post-disaster reconstruction [8].

Figure 6 shows an example of an area experiencing Scenario 2, or an increase in
the frequency of landslides. The area, called Yingchanggou, is a location where areas
covered only by grass have become denuded. One of the biggest debris flows happened in
Yingchanggou in 2012, as can be seen in the photo for that year. Due to the high frequency
of landslides, recovery and reconstruction in this area were slow, which caused the local
residents to prefer to work in places other than in the living place. The adaptation strategies
depended on local policies to cover the difficulties in life. The prediction results indicated
an increasing number of autonomous adaptation strategies shifting to government policy-
dependent adaptation, which were concentrated in the Yingchangou area.
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3.2.3. Scenario 3: Decrease in Landslide Frequency

Deliberate interventions, such as geotechnical solutions for stabilizing slopes (such
as drainage systems, retention structures, and soil reinforcement), can lower the number
of landslides. Gariano and Guzzetti [44] reviewed the existing literature on the combined
study of landslides and climate change and observed the impacts on the stability of slopes
of changes in temperature, precipitation, wind, and weather systems. Some studies have
reported an expected increase in the number of landslides due to climate change, while
others have reported a deceleration of landslide activity. Disasters in landslide-prone
areas can be avoided by restricting human settlement and activities through land-use
zoning, forced and voluntary relocation, and similar controls. Disasters can only occur
when natural hazards, such as landslides, interact with human vulnerability [45]. This is
best-exemplified by the government’s decision to relocate the entire town of Beichuan to
a new location 23 km away, eliminating the threat of landslides [46]. The old town was
designated as an earthquake memorial site.

If the frequency of landslides decreased, previously Type 1 households decreased
by 5% (from 10% to 5%). Type 2 households increased from 76% to 81%. There was no
change in the number of Type 3 households. When the frequency of landslides reduced,
households previously following the government policy-dependent adaptation strategy
shifted to the autonomous adaptation strategy. There was no change in the proportion
using hybrid adaptation strategy.

With less threat of landslides, people-driven adaptation strategies can take place. With
autonomous adaptation strategies, people can demonstrate self-reliance and decide where
and how their houses are built. To save on cost, construction may be completed by the
family members themselves or with the help of relatives, friends, and neighbors, instead of
hiring carpenters and masons. House reconstruction expenses can substantially increase
debts and add to the financial burden of the household, which may consequently increase
vulnerability to disasters. With fewer landslides, there will also be less house repair or
reconstruction work expected in the future.

Figure 7 shows the distribution of households in the study area under the three types
of landslide adaptation strategies with the three different landslide frequency scenarios;
most of the houses are along rivers and roads. The changes from the baseline scenario
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(Scenario 1) to either Scenario 2 or 3 are not apparent in the maps, as the increase or decrease
in the number of households that shifted to another landslide adaptation strategy was
only 5%.

Figure 7. Results of the predicted changes in landslide adaptation strategies according to the
three scenarios.

According to Alexander [47], those particularly susceptible to landslide disasters are
(1) countries vulnerable to storms or torrential monsoon rains and (2) countries that are
seismically active. Unfortunately, with its huge land area, China is both of these, where
people in rural areas, such as the site of this study, are much more at risk due to their
low or poor knowledge of landslide prevention and mitigation [40]. The role of human
vulnerability in the estimation of landslide risk has consistently been underestimated as
the focus has frequently been on landslide hazards [47]. Disasters and poverty are closely
related. Fang et al. [48] noted that the fertile land used by farmers in their livelihood was
reduced due to landslides, affecting both food security and income. Reducing disaster risks,
mitigating disaster impacts, and enhancing the disaster coping capacity of people will have
to involve poverty reduction [43]. Death tolls and damage to properties due to landslides
are much greater in impoverished communities than in communities with substantially
well-financed and technologically advanced disaster mitigation and preparedness [47].
Although the Chinese government has been trying to reduce landslide risks, more effort is
needed to reach the goal. Currently, Hong Kong is considered to have the “most advanced
slope safety management system in the world”, including effective policies, technical
measures, and corresponding responsible government agencies [40]. The life loss rate
caused by landslides in Hong Kong is 40 per million persons in a year, while the rate is 400
to 500 persons per year in mainland China [40], indicating the wide discrepancy that needs
to be addressed in the coming years to reduce casualties and achieve the Sendai Framework
target of substantially reducing the disaster mortality rate by 2030. In a survey conducted in
2006, the Chinese respondents had significantly lower risk perception related to landslides
compared to the Japanese and Korean respondents [49]. It would be interesting to know
how the landslide risk perception in China has changed since then.

3.3. Analysis of Prediction Results

The landslide adaptation strategies taken by 721 households living in the study area
were forecasted with three scenarios shown in Table 4. There were a total of 233 households
applying policy-dependent adaptation, 1624 households applying autonomous adaptation,
and 306 households applying hybrid adaptation, accounting for 11%, 75%, and 14%,
respectively. This showed that threequarters of the households are utilizing an autonomous
adaptation strategy, which results from enhanced living standards and risk awareness
to which a high quality of reconstruction and experience of disasters contribute [49,50].
Given the fact that the Chinese government was responsible for post-disaster recovery and
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reconstruction in this area after the 2008 Wenchuan earthquake and its secondary disasters,
policies were introduced to benefit those who live there. Therefore, these households
applied policy-dependent adaptation passively when first struck by catastrophic disaster,
which resulted in increasing their recovery and living quality. This elevates the capability of
resisting disaster and increases the number of people choosing an autonomous adaptation
strategy. It also can be a viable example for post-disaster recovery and reconstruction in
other regions.

In light of the prediction results in Figure 7, the landslide adaptation strategies applied
by the 721 households have distinct spatial distributions. In Scenario 1, those who adapted a
hybrid strategy were concentrated in the Xujiagou area along a branch of the Jianjiang river,
while the households applying a policy-dependent adaptation strategy were concentrated
in the upstream area of the Jianjiang river from Yinchanggou to Dahaizigou. Because
of the main traffic connection, the Yin-bai Highway (a province-level road), built along
the Jiangjiang river, people living on the Jianjiang riverside were more likely to adapt
an autonomous strategy. Despite the fact that the Yin-bai Highway passes the upstream
area of the Jianjiang river from Yinchanggou to Dahaizigou, the households there tended
to depend on policies and the government due to being far away from cities that have
rich work opportunities and social resources. Compared to households living in the
upstream area, those who adapted a hybrid strategy lived in Xujiagou, which is along
a branch of a downstream area of the Jianjiang river, resulting from inconvenient traffic
conditions. In Scenario 2 and Scenario 3, the spatial distributions of adapting three strategies
compared to Scenario 1 showed little change. Therefore, distance from cities and road
conditions contributed to the choice of adaptation strategy, and households living in a
place close to cities and with better road conditions showed preference for the autonomous
adaptation strategy.

Post-disaster recovery and reconstruction play a vital role in long-term development
of both regions and individuals, and the choices of the three landslide adaptation strategies
can reflect the risk management ability of Longmenshan Town and the people who live
there [50]. To mitigate the negative effects of disasters and enhance household capability
to manage risks, there are recommendations for local governments and households. In
terms of recovery, projects, such as ecological environment recovery, can be implemented to
bring the potential geohazards under control, and local governments can formulate feasible
plans for disaster management or emergency management. The households can prepare
essential materials for emergencies and actively take part in emergency practice to enhance
risk awareness. Reconstruction should consider infrastructure and housing to avoid areas
with potential geohazards. Convenient traffic connections can serve the majority of people
living there, and those who live in the upstream area of the Jianjiang river can move to
downstream areas in a bid to move toward cities to obtain more social resources.

3.4. Limitations

This study has some limitations. The questionnaire covered five aspects of households
living in the landslide area that basically reflected the adaptation strategies. However, land-
slides may cause huge changes in the environment that some rural households’ livelihoods
highly depend on. This study did not fully consider environment adaptability, as it partly
overlaps with economic or physical adaptability. Moreover, the valid responses obtained
could have been increased by interviewing more households. The machine learning tech-
nique GBDT is believed a feasible method, but it has restrictions when including parallel
processing data due to dependencies between weak classifiers, so other methods could be
utilized to enhance prediction accuracy.

4. Conclusions

It will take decades for the denudation rate in the area affected by the 2008 Wenchuan
earthquake to return to the pre-earthquake rate. People in the earthquake-affected areas
must adapt to a new landscape that has become prone to landslides. This exploratory study
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provides a glimpse of how machine learning can be utilized to predict how adaptation
strategies of households will be modified if landslide frequency changes. The households in
the Yingchangou area of Longmenshan Town cope with various landslides using three main
adaptation strategies, including autonomous adaptation strategies, policy-dependent adap-
tation strategies, and hybrid adaptation strategies. The characteristics of these strategies
are widely distributed, such as policy-dependent, economy-adapted, and the information
accessed. An increase in landslide frequency was expected to induce more households
to adapt a government-policy-dependent landslide adaptation strategy, while a decrease
in landslide frequency led to more households preferring an autonomous adaptation ap-
proach. A follow-up longitudinal study in Longmenshan Town is needed to confirm
whether the predictions of the gradient boosting method employed in this study are indeed
correct. A comparative study in another area may be conducted to investigate whether
the extent of households shifting to another landslide adaptation approach given a change
in landslide frequency that was observed in this study (around 5%) is prevalent or not.
This study investigated the adaptation strategies that could be applied by households that
lived in an area which suffered from disasters, such as landslides, and it can be a viable
basis for decision making in post-disaster recovery and reconstruction and contribute to
the prevention and mitigation of disasters. Countries located in seismic areas, includ-
ing China, are more likely to be affected by earthquakes, as well as secondary disasters,
such as landslides. Therefore, future studies can focus on other regions that have similar
conditions to the research area and utilize diverse machine learning methods to compare
adaptation strategies.
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