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Abstract: Water is an imperative part of the Earth and an essential resource in human life and
production. Under the effects of climate change and human activities, the spatial and temporal
distribution of water bodies has been changing, and the shortage of water resources is becoming
increasingly serious worldwide. Therefore, the monitoring of water bodies is indispensable. Remote
sensing has the advantages of real time, wide coverage, and rich information and has become a
brand-new technical means to quickly obtain water information. This study summarizes the current
common methods of water extraction based on optical and radar images, including the threshold
method, support vector machine, decision tree, object-oriented extraction, and deep learning, as
well as the advantages and disadvantages of each method. These methods were applied to the
Huai River Basin in China and Nam Co on the Qinghai-Tibet Plateau. The extraction results show
that all the aforementioned approaches can obtain reliable results. Among them, the threshold
segmentation method based on normalized difference water index is more robust than others. In the
water extraction process, there are still many problems that restrict the accuracy of the results. In the
future, researchers will continue to search for more automatic, extensive, and high-precision water
extraction methods.

Keywords: water extraction; remote sensing; water body index; classification; machine learning

1. Introduction

Various inland waters, such as rivers, lakes, ponds, reservoirs, and wetlands, are
widely distributed on the Earth’s surface. Water provides invaluable supplies and resources
to support human life, living, and production, such as drinking water, food, transportation,
and recreation [1]. In addition, water information is widely used for many purposes [2–5],
including water resource surveys, environmental protection, land classification, and flood
monitoring. As a result of climate change and human activities, spatial and temporal
distributions of water extents are changing [6,7], and water shortages and water pollution
are becoming progressively more severe [8]. It is imperative to monitor water bodies for
addressing their distribution and subsequent driving factors. Recent scholarly research has
focused on determining how to obtain surface water information in an efficient, accurate,
and timely manner [9,10].

Traditional methods for acquiring water bodies and hydrological information mainly
include manual field surveys and data acquisition based on hydrological monitoring
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stations [11]. Despite the high accuracy, the process is time-consuming and laborious,
and it may be difficult in remote areas. In addition, it is not suitable for the acquisition
and monitoring of real-time water quality information on a large scale and over a long
period. Remote sensing has several advantages, including broad coverage, periodic replay,
real-time solid performance, and rich information. Since the emergence of high-space, high-
time, and high-spectral resolution remote sensing data and the extensive study of remote
sensing quantitative retrieval, extracting water body information has become the focus
of current research in water conservation remote sensing technology [12]. Using satellite
imagery, researchers and institutions have created a large-scale water distribution dataset
(Table 1), which is no longer confined to a single lake or river [13]. Waterbody information
is extracted primarily from optical remote sensing and microwave radar remote sensing
data sources. According to the imaging characteristics of water bodies, various water body
extraction algorithms have been developed, including threshold and machine learning
methods. Among these methods, there are classical water body index and segmentation
methods, including various water body indexes [14] improved in different regions [15,16];
In recent years, a large number of methods based on support vector machine [17], decision
tree [18], and deep learning have also been widely used in water extraction [19].

Table 1. Several typical water remote sensing products.

Name Time Span Research Area Spatial
Resolution References

Global Land 30-water 2000, 2010 Globe 30 m [20]
Global Surface Water Data 1984–2015 Globe 30 m [21]

ASTER Global Water Body Dataset 2000–2013 Globe 30 m [22]
Global surface water dynamics 1999–2018 Globe 30 m [23]

500 m 8-day Water Classification Maps 2000–2015 Globe 500 m [24]
Global Lake/Reservoir Surface Inland Water Extent

Mask Time Series 1992–2018 Globe 500 m [25]

Global Lakes Forel-Ule Index Dataset 2000–2018 Globe 500 m [26]
High Mountain Asia Glacial Lake Inventory database 2008–2017 Asia 30 m [27]

Inland Surface Water Dataset in China 2000–2016 China 500 m [28]
Open-surface Water Body Area in the

contiguous United States 1984–2016 USA 30 m [29]

When water bodies are distinguished from other ground features using spectral
characteristics, other methods can combine multiple characteristics to classify and identify
them. Water body information extraction accuracy varies between algorithms [30,31]. For
a given algorithm based on different data, the water body extraction accuracy will vary;
therefore, using a combination of different algorithms and datasets will produce results
with different accuracies [32]. In order to optimize suitable water extraction methods, many
studies have summarized the progress of water extraction. For example, Huang, et al. [33]
introduced the water extraction method based on optical remote sensing and summarized
the relevant research progress on water monitoring. Yan and Jinwei [32] described the
development of sensors, methods, data processing platform, and water research content in
recent years. Gholizadeh, et al. [34] introduced the qualitative parameters used for water
quality monitoring and evaluated the commonly used methods and sensors for inversion
of water quality parameters. Wang and Yesou [35] reviewed research developments using
state-of-the-art remote sensing technologies for monitoring dynamics of floodpath lakes
and wetlands. Many studies need water boundary as the research basis. Although these
reviews summarized the advantages and disadvantages of various methods, they did not
carry out specific tests. Likewise, the applicability and accuracy of traditional methods and
machine learning in different water extraction are still unknown.
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Recognizing the poor understanding of the applicability of various water body meth-
ods, this study aims to summarize the current methods with respect to the water body
extraction and conduct water body extraction tests in the Huai River Basin and Nam Co
on the Qinghai-Tibet Plateau to evaluate their applicability. The specific purposes are: (1)
to summarize the commonly used sensors in water extraction, including optics and radar;
(2) to introduce the principle of common water extraction methods, including threshold
method and classification method, and to identify the progress of new methods in recent
years; (3) to examine the performance of several state-of-the-art algorithms regarding water
extract, such as water spectral index, support vector machine, cart decision tree, object-
oriented classification, and deep learning, on extracting water bodies in the Huai River
Basin and Nam Co. This review was anticipated to serve as a reference and support for
researchers in related research fields and lay a theoretical foundation for future scientific
studies.

To form a primary literature database with respect to water extraction with satellite, we
searched the publications from the Web of Science database since 2010 (e.g., TI = (Satellite
OR Remote sensing) AND (Water extraction OR Water Extent OR water boundary OR water
body mapping)) and excluded documents with less than 10 citations. By quickly reading
the literature abstracts, we removed the literature with little correlation. The information of
each publication regarding remote sensing dataset, study area, method and accuracy of
water extraction used in that study was extracted.

2. Data Sources

Remote sensing data sources for water extraction and monitoring include optical and
radar data (Table 2). Generally, the Earth observation satellites provide data that can be
used for water extraction. In recent years, data obtained from remote sensing of water
bodies have evolved towards high spatial resolution, high temporal resolution, and high
spectral resolution [32].

Optical imagery is part of passive remote sensing, which obtains the spectrum of
ground objects by receiving the reflected sunlight from ground objects, mainly in the visible
and infrared bands. It is currently the primary data source for extracting water body
information. In comparison to other ground objects, water exhibits a low reflectivity in the
visible and near-infrared ranges [36], as well as an extremely low reflectivity in the near-
infrared and shortwave infrared spectra. These spectral characteristics are the main basis
for identifying water bodies. Remote sensing data can be divided into low-resolution (more
than 200 m) EOS MODIS, NOAA AVHRR, etc. For example, Landsat Multispectral Scanner
(MSS)/Thematic Mapper (TM)/Enhanced Thematic Mapper Plus (ETM+)/Operational
Land Imager (OLI), Sentinel-2 MSI, etc. have a medium-spatial resolution (10–200 m).
IKONOS and Quickbird have a high-spatial resolution (~1 m). Landsat, Sentinel 2, and other
high-resolution images provide more accurate results; therefore, they are commonly used
to identify water bodies in single lakes or small watersheds. However, most high-spatial
resolution data have a low-temporal resolution. When long-term continuous monitoring
of water bodies is required, or the research scale is large, low-resolution data should be
selected more frequently. MODIS data can provide daily images and cover large areas, and
they are mainly used for global research purposes.
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Table 2. The typical data sources for water body extraction.

Satellite Sensor Spatial
Resolution

Time
Resolution Application

Optical Data

Terra/Aqua MODIS 250 m 2 times/day Remote sensing mapping of large-scale water
bodies [24,28]

Landsat 4,5 TM 30 m 16 d Land use and land cover change, water body
monitoring, water color remote sensing [37–39]Landsat 7 ETM+ 30 m 16 d

Landsat 8/9 OLI 15, 30 m 8 d
Sentinel-2 MSI 10, 20, 60 m 5 d High-precision water system map, water body

monitoring [40,41]Sentinel-3 OLCI 300 m 2 d
GF-1 WFV 16 m 2 d Water quality monitoring, water body

extraction [42,43]GF-2 MSS 3.2 m 5 d
HJ-1A/B CCD 30 m 2 d Disaster monitoring and forecasting [44]

IRS-P6 LISS-3 23.5 m 24 d Land use and land cover change [45]

Radar Data

GF-3 SAR 1–500 m 1.5–3 d Water extraction [46]
Sentinel-1 SAR 5 m 12 d Flood monitoring [47,48]

Envisat ASAR 30 m 35 d Lake ice and sea ice detection [49,50]

Radar remote sensing belongs to active remote sensing. It actively emits microwave
radiation and receives electromagnetic waves reflected or scattered by the Earth’s surface.
Synthetic aperture radar (SAR), which is a component of the radar remote sensing system,
can provide high-resolution radar images, increasing the possibilities for water extraction
research. Based on the fact that water backscatters less in the microwave range, radar can
be used to detect and extract water information [51]. SAR remote sensing grew in technical
sophistication with the emergence of high-resolution wide-range SAR, synchronous orbit
SAR, and video SAR. Radar has the characteristics of ignoring the weather and having
certain penetrating power [52].

Various sensors provide different advantages when acquiring ground information, and,
when extracting water bodies, two or more sources may be selected. Optical images have
high spatial resolution and rich spectral information, but they are greatly affected by clouds
and shadows during water recognition; SAR images can provide information on shallow
water and shadow areas, but coherent speckle noise cannot be avoided. Combining textural
features can reduce the impact of noise, but the calculation takes considerable time and
requires continuous experimentation to obtain the optimal feature combination [53,54]. In
addition, digital elevation models (DEMs) and digital surface models (DSMs) are often used
to aid in water body estimation by calculating terrain factors [55] or modeling terrain [48,56]
to eliminate missed water bodies and reduce shadow interference. Two methods are
available for extracting water body information from multisource data: optical remote
sensing for rough water extraction and, on the basis of rough extraction, radar images or
combined DEM data for fine water extraction [57]. Another method is to directly perform
image fusion processing of these two kinds of data, combining the characteristics of the
original image and the information of the ground features to produce a higher-performance
remote sensing image [58,59]. A large amount of data and rich spectral information allow
for a flexible and effective water extraction method and a long-term water monitoring
effort.

3. Water Extraction Method

A majority of the automatic extraction methods of remote sensing water body informa-
tion can be divided into two categories: threshold segmentation and image classification.
The threshold segmentation is mainly based on the spectral characteristics of water [36]. It
uses spectral knowledge to construct various classification models and water body indices
to extract water bodies. The image classification synthesizes the spectrum, texture, and
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spatial characteristics of the image and makes full use of the spectrum, shape, structure,
and texture of the ground features to extract water body information [11].

In low- and medium-resolution images, small water bodies often appear in the form of
mixed pixels, which cannot be accurately divided by the threshold method. With the devel-
opment of high-spatial resolution satellites, images have more abundant spatial and texture
information. Wavelet texture [60] and grey-level co-occurrence matrices (GLCMs) [61]
are often used to extract the texture features of images. Researchers have constructed
image classification and extraction methods by combining features such as spectrum, space,
and texture. Various features can help extract more refined water information [62], but
overly complex classification criteria may reduce efficiency and accuracy. Current image
classification methods include the Support vector machines (SVMs), decision tree, and
object-oriented methods. With the development of computer technology and the arrival of
the era of big data, deep learning has been widely used in water extraction [63,64].

3.1. Threshold Segmentation

Compared with other ground objects, water bodies show lower reflectivity almost
in the range of visible light to near-infrared, especially in the range of near-infrared and
shortwave infrared. By choosing a threshold value derived by the single or multiple spectral
bands, the water body could be extracted. The choice of the threshold value directly affects
the accuracy of the results (Figure 1).
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Figure 1. The diagram to illustrate the water extraction using the normalized differenced water index
(NDWI) and threshold.

3.1.1. Single Band Threshold

The single-band method in optical imagery was mainly used in early water remote
sensing research [65]. A specific waveband was selected, an appropriate threshold was set
to extract water information, and the near-infrared or mid-infrared wavebands with low
water reflectivity were used. Although the single-band threshold method is simple and easy
to implement, the accuracy is not high, and this method also easily causes misprovisioning
and omission of water body information; it is difficult to eliminate the influence of mountain
shadows, and the water body boundary is blurred [66]. With the co-existence of multiple
types of features in remote sensing images, it is difficult to accurately extract all water
bodies based on the information of only one band. With the development of multiband
methods, the application of single-band methods in water body extraction is no longer
common [67].

Threshold segmentation is a method of extracting water bodies from radar images,
primarily based on the low backscattering characteristics of water bodies in the microwave
range [68], which appears as a dark area in the image, thus distinguishing the water bodies
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from other ground objects [69]. Its advantages are simple principle, small calculation
amount, and suitability for water extraction from SAR images with low noise and small
maps. The most commonly used grey-level threshold segmentation methods include the
maximum between-class variance method [70], entropy threshold method, and bimodal
histogram method. However, processing large-area images take a long time, is poor
in accuracy and robustness, and is affected by coherent speckle noise and uneven grey
information throughout the image. It is difficult to obtain accurate threshold points, and it
is impossible to distinguish ground objects with similar water-scattering characteristics.
Some researchers have improved the maximum between-class variance method to ensure
the maximum between-class variance while ensuring that various internal pixels have
better cohesion and obtaining higher-precision water extraction results [71]. Combining
the threshold segmentation method with other methods, such as Markov random fields,
can achieve high-precision and automated water information extraction [46].

3.1.2. Multiband Threshold Method

The multiband method mainly uses the advantages of multibands to comprehensively
extract water information, including the interspectral relationship method and the water
index method. This method extracts water bodies by analyzing the original waveband of
the remote sensing image or the spectral characteristic curve of the characteristic waveband
derived from the original waveband and constructing logical judgment rules [72]. The
spectral characteristics of the water body in the AVHRR data indicate that CH1 is much
greater than CH2, CH2 is less than the average value of the image, and CH3 is greater than
the average value of the entire image [73].

The water body’s reflection gradually decreases from the visible to mid-infrared
wavelength range, and the absorption is highest in the near-infrared and mid-infrared
wavelength ranges, with almost no reflection, which is obviously different from other
objects on the ground [74]. The water index is calculated by using the ratio of the strongest
and weakest wavebands of the water body to achieve the purpose of increasing the dif-
ference between the water body and other ground features and then selecting a threshold
to extract the water. The ratio index is usually normalized to make its value range be-
tween −1 and 1. Researchers have proposed a number of water indices (Table 3). The
earliest normalized difference water index (NDWI) [14] uses the ratio of the green light
band to the near-infrared band to suppress vegetation information to the greatest extent
to highlight water body information. However, it ignores the influence of shadows, land,
and buildings. Later, the modified normalized difference water index (MNDWI) [15] was
proposed, which replaced the near-infrared in the NDWI with the mid-infrared band,
which can be used to accurately extract water information within a town and effectively
reduce the impact of shadows. Later, researchers proposed many improved water indices,
which can enhance the applicability of specific areas and effectively suppress the influence
of shadows. NDWI3 [75] has achieved good results in urban water body extraction; the
enhanced water index (EWI) [76] is suitable for water body extraction in semiarid areas;
and the new water index (NWI) [77] can be determined by simple thresholds. By quickly
and accurately extracting water body information, the Gaussian normalized difference
water index (GNDWI) [16] realizes the automatic extraction of complex and diverse river
water body information. The temperature vegetation water index (TVWI) [78] has a certain
universality, and water bodies are the threshold for nonwater bodies and can be set stably
to 0. The automated water extraction index (AWEI) [79] can improve classification accuracy
in areas that include shadow and dark surfaces that other classification methods often
fail to classify correctly. The above water body indices are all used for optical data. The
Sentinel-1 dual-polarized water index (SDWI) [80] is used for water body extraction from
Sentinel-1 radar data, eliminating the presence of soil and vegetation, but it is susceptible
to shadows.

In fact, the types of features in a region are often diverse, and using only one water
index may not meet the accuracy requirements. The selection of the threshold is also
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a complicated process. Therefore, some scholars have comprehensively used multiple
indices, and their results could obtain higher accuracy than using a single water body
index. Rao and Wang [81] utilized the optimal partition and optimal index joint decision
tree composed of three indices—MNDWI, AWEI, and NDTBI—and the results obtained
by the joint decision tree was more accurate than any of them. Wen et al. [82] established
collaborative decision-making with water indices (CDWI) with five water body indices and
achieved good results in both water and land environmental tests worldwide.

Table 3. Several common water spectral indexes.

Water Index Formula Describe

NDWI [14] NDWI = (G−NIR)/(G + NIR)
Information that suppresses

vegetation; can be affected by
shadows, land, and buildings

NDWI3 [75] NDWI3 = (NIR−MIR)/(NIR + MIR) Town

MNDWI [15] MNDWI = (G−MIR)/(G + MIR)
Cities and towns, effectively

suppressing shadows
EWI [76] EWI = (G−NIR− SWIR)/(G + NIR + SWIR) Semi-arid areas
NWI [77] NWI = [B− (NIR + MIR + FIR)]/[B + NIR + MIR + FIR] Simple threshold setting

GNDWI [16] GNDWIi,j =
(
NDWIi,j −NDWI

)
/σ

Suitable for complex river
water bodies

TVWI [78] TVWI = Ts−Tsmin
Tsmax−Tsmin

, Tsmax = a×NDVI + b, Tsmin = c×NDVI + d
Universal, the threshold can be set

stably to 0

AWEI [80] AWEInsh = 4(G− SWIR1)/(0.25NIR + 2.75SWIR2)
AWEIsh = B + 2.5G− 1.5(NIR + SWIR1)− 0.25SWIR2 Suitable for areas with more shadows

R, G, B, NIR, SWIR, MIR, and FIR are pixel values of red, green, blue, near infrared, short wave infrared, mid
infrared, and far infrared bands, respectively; GNDWIi,j is the Gauss normalized water body index at point (I,
J); NDWIi,j is the normalized difference water body index at point (I, J); NDWI is the mean value of NDWI of
all pixels in the image; σ It is the standard deviation of NDWI of all pixels; FG is the constructed pseudo green
band; Tsmax and Tsmin are obtained by fitting vegetation index NDVI and land surface temperature according
to dry edge and wet edge; a, b, c, and d are the coefficients of the dry edge and wet edge linear fitting equation,
respectively. VV is the pixel value of SAR image with VV polarization mode, and VH is the pixel value of SAR
image with VH polarization mode.).

3.2. Machine Learning Methods
3.2.1. Support Vector Machine

Support vector machine (SVM) [83] is a machine learning method based on statistical
learning theory. They use structural risk minimization (SRM) criteria to find the optimal
classification hyperplane in the high-dimensional feature space to distinguish the water
body from other ground objects, so as to identify the water body.

The basic mathematical form of the support vector machine is:

min
ω,b

Φ(ω, b) =
1
2
(ω×ω). (1)

The constraint is: yi[(ω× xi) + b] ≥ 1, i = 1, · · · , n. Introducing the Lagrange multi-
plier αi, the solved equation of the above formula is:

min
ω,a,b

L(ω, b, α) =
1
2
(ω×ω)−

k

∑
i=1

αi{yi[(ω× xi) + b]− 1}. (2)

The optimal solution is ω =
k
∑

i=1
α∗i yixi. Any αi 6= 0 is taken to find b. In the result,

most αi are 0, and the samples whose αi is not 0 are called support vectors.
For a high-dimensional space, if one wants to transform the original feature space

to a high-dimensional feature space, one must replace the dot product in the optimal
classification surface with the inner product K(x, x’).
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Using SVM to extract water information in high-resolution data can obtain high-
precision extraction results [17], which is better than the traditional water index and easier
to distinguish from hilly shadows [84]. The performance of the SVM method mainly
depends on the selection of the kernel function type and the setting of the kernel function
parameters. It has the advantages of small sample learning, anti-noise performance, high
learning efficiency, and good generalization, but too many samples will increase missed
points and errors. The commonly used kernel functions of support vector machines include
the radial kernel function, sigmoid kernel function, linear kernel function, and polynomial
kernel function (Table 4). The accuracy of the radial basis kernel function is relatively
high [85], but its hardware requirements also vary. Improvements are made at the expense
of extensive training.

Table 4. Common kernel functions.

Kernel Functions Formula

Linear Kernel Function K(xi, x) = (xi × x)
Polynomial Kernel Function K(xi, x) = (γ(xi × x) + c)n

Radial Basis Function K(xi, x) = exp
[
−γ‖x− xi‖2]

Sigmoid Kernel Functions K(xi, x) = tanh(γ(xi × x) + c)

3.2.2. Decision Tree

The decision tree is based on the hierarchical classification idea as its guiding principle,
and it uses a tree structure to divide the data into subsets that have more homogeneous char-
acteristics in accordance with a certain segmentation principle. The decision tree method for
remote sensing image classification first uses training samples to generate a discriminant
function, second builds tree branches according to different values, repeats the establish-
ment of lower nodes and branches in each branch subset, and finally forms a classification
tree. The most famous algorithm is ID3, followed by algorithms such as C4.5, CART, SLIQ,
and SPRINT. The decision tree method uses knowledge other than spectral characteristics,
including digital elevation models, water indices, texture, and spatial characteristics [86];
the recognition results are more accurate, but the abstraction of the decision-making process
or the determination of the decision rules are more complicated [18].

3.2.3. Object-Oriented Classification

The object-oriented image analysis method is developed based on Hay and Nie-
mann [87] concept of image objects [88]. Based on the results of image segmentation,
this method fuses pixels with similar spectral characteristics and spatially adjacent pixels
into one object, ensuring maximum local homogeneity in the same area, and classifying
the object as the basic processing unit. Among them, image segmentation is the key to
object-oriented classification, and the segmentation scale (scale) is the key to determining
the segmentation effect. The most commonly used segmentation method is the multiscale
segmentation algorithm. To determine the optimal segmentation scale, other judgments
are needed. The classification-vector distance index method (classification-vector distance
index method) judges whether the segmentation scale is accurate according to the distance
between the boundary of the ground feature and the actual boundary. Compared with the
more mature human trial and error method (“trial and error” method), accurate results
have been obtained in the classification of water bodies and paddy fields. Traditionally,
pixel-level analysis uses one pixel as the basic unit and cannot take advantage of pixel
neighborhood information or its mutual relationship. Images are frequently isolated, with
“same objects with different spectra” or “foreign matter with the same spectrum” phe-
nomena, and the accuracy of water body extraction is low, making it difficult to meet the
requirements of high-resolution images. In their paper, Gao et al. [89] introduced local
variance variables and Moran’s I indices and combined them with the principle of the
minimal risk Bayes decision to identify the optimal spatial segmentation scale intuitively,
accurately, and uniquely.



Water 2022, 14, 1148 9 of 18

3.2.4. Deep Learning

Benefiting from the development of computer technology and the advent of the era of
big data, deep learning [90] has also ushered in a development climax. Deep learning mainly
uses artificial neural networks for feature extraction and self-learning of remote sensing
image water samples to automatically distinguish water bodies [91]. At this stage, deep
learning was widely applied in remote sensing image classification and recognition, mainly
including restricted Boltzmann machines (RBMs), convolutional neural networks (CNNs)
and autoencoders (AEs). The multilayer RBM and backward propagation algorithm (BP)
form deep belief networks (DBNs). Liu et al. [92] uses the characteristics of unsupervised
learning to better extract image features, but its network parameter selection requires
manual input. It is difficult to determine appropriate experimental parameters due to
the intervention of experimental knowledge. The CNN is often used for remote sensing
classification and has obvious advantages in processing image hyperspectral data. Stacked
autoencoder (SAE) produces fewer reconstruction errors in dimensionality reduction and
feature extraction. To achieve high-precision classification results, it must be combined
with other classifiers [63].

A convolutional neural network and a DeepLabv3 semantic segmentation neural
network are used to extract water information from high-resolution satellite remote sensing
data. The results are better than those of the water index method, object-oriented method,
and support vector machine method, and they can effectively remove the influence of
shadows and buildings [64]. By introducing the dense block of the DenseNet neural
network to construct a water body extraction deep learning full convolution neural network,
it can enhance the sensitivity to small water bodies, improving the water extraction accuracy
of remote sensing images, but remains vulnerable to the influence of building shadows [93].
By combining deep learning and multiple checkerboard segmentation methods for high-
resolution remote sensing image river extraction, and fully considering the spatial geometric
relationship between pixels with high recognition accuracy, it is possible to extract rivers
with a width of up to two pixels [94]. He, Huang, and Li [19] proposed an improved U-Net
network model for extracting water body information from GF-2 remote sensing images.
In terms of small water bodies, shadow differentiation, and boundary segmentation, it is
more advantageous in the environment of the study area. The extraction effect of regions
with large differences needs to be further improved.

4. Applications of Common Methods on Landsat-8 Imagery
4.1. Material and Methods

We selected the Huai River Basin (32◦08′~32◦51′ N, 116◦10′~117◦03′ E) and Lake Nam
Co (30◦30′~30◦35′ N, 90◦16′~91◦03′ E). The Huai River Basin is part of Huai’an city in the
north-central part of Jiangsu Province. Nam Co is the third-largest saltwater lake on the
Qinghai-Tibet Plateau. It is located in the southeastern part of the northern Tibetan Plateau.
We choose these two areas to examine the performance of the typical algorithms to extract
water extent, because: (1) In the middle and lower reaches of the Huai River, the population
densely populated and easily affected by human activities; Nam Co is not affected by
human activities. The lake is dominated by mountains, and its ecological environment is
basically natural. (2) There are interlaced breeding ponds, rivers, and lakes in the Huai
River Basin; Nam Co is a closed inflow lake. (3) The Huai River Basin has abundant summer
rainfall and large inter-annual variability; the area of Nam Co has changed from 1920 km2

to 1980 km2 in the past 30 years, and the lake area has not changed drastically. In general,
these two regions represent plain area and plateau large area. Figures 2a and 3a show that
water bodies in the Huai River Basin are in different sizes and have complex boundaries,
where the river network is dense and complicated, largely increasing the difficulty to
accurate extract water extents. On the contrary, Lake Nam Co is a complete lake with clear
land and water boundary. Researchers pay more attention to the interference of mountain
shadows in the classification results.



Water 2022, 14, 1148 10 of 18Water 2022, 14, x FOR PEER REVIEW 10 of 18 
 

 

 
Figure 2. Water extraction results of several methods in the HuaiHe River Basin. (a) original image; 
(b) NDWI; (c) SVM; (d) CART; (e) Object-Oriented; (f) Deep Learning. 

 
Figure 3. Water extraction results of several methods in Nam Co (a) original image; (b) NDWI; (c) 
SVM;(d) CART; (e) Object-Oriented; (f) Deep Learning. 

We mainly used the Landsat Collection 2 Level-2 Science Products by the USGS, 
which has been atmospherically corrected. The NDWI, support vector machine, CART 
decision tree, and object-oriented methods are used to extract lake water. The threshold 
of the NDWI is determined using the OTSU algorithm [70]. SVM, CART, and object-ori-
ented methods use the same training samples for training, and the categories include wa-
ter and nonwater. We use the libsvm function and smileCart function on the Google Earth 
Engine (Google Inc., Santa Clara, CA, USA) [95] platform to train samples and SNIC algo-
rithm for image segmentation. In addition, the global surface water dynamic dataset [23] 
will be compared with other methods as the classification results of deep learning below. 
We used confusion matrices to evaluate the precision of the extraction results, and the 
ANOVA test was used to examine whether the difference among groups was significant. 
p < 0.05 is significant throughout the manuscript. 

4.2. Performance of Algorithms on Extracting Water Extents 

Figure 2. Water extraction results of several methods in the HuaiHe River Basin. (a) original image;
(b) NDWI; (c) SVM; (d) CART; (e) Object-Oriented; (f) Deep Learning.

Water 2022, 14, x FOR PEER REVIEW 10 of 18 
 

 

 
Figure 2. Water extraction results of several methods in the HuaiHe River Basin. (a) original image; 
(b) NDWI; (c) SVM; (d) CART; (e) Object-Oriented; (f) Deep Learning. 

 
Figure 3. Water extraction results of several methods in Nam Co (a) original image; (b) NDWI; (c) 
SVM;(d) CART; (e) Object-Oriented; (f) Deep Learning. 

We mainly used the Landsat Collection 2 Level-2 Science Products by the USGS, 
which has been atmospherically corrected. The NDWI, support vector machine, CART 
decision tree, and object-oriented methods are used to extract lake water. The threshold 
of the NDWI is determined using the OTSU algorithm [70]. SVM, CART, and object-ori-
ented methods use the same training samples for training, and the categories include wa-
ter and nonwater. We use the libsvm function and smileCart function on the Google Earth 
Engine (Google Inc., Santa Clara, CA, USA) [95] platform to train samples and SNIC algo-
rithm for image segmentation. In addition, the global surface water dynamic dataset [23] 
will be compared with other methods as the classification results of deep learning below. 
We used confusion matrices to evaluate the precision of the extraction results, and the 
ANOVA test was used to examine whether the difference among groups was significant. 
p < 0.05 is significant throughout the manuscript. 

4.2. Performance of Algorithms on Extracting Water Extents 
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SVM;(d) CART; (e) Object-Oriented; (f) Deep Learning.

We mainly used the Landsat Collection 2 Level-2 Science Products by the USGS, which
has been atmospherically corrected. The NDWI, support vector machine, CART decision
tree, and object-oriented methods are used to extract lake water. The threshold of the NDWI
is determined using the OTSU algorithm [70]. SVM, CART, and object-oriented methods
use the same training samples for training, and the categories include water and nonwater.
We use the libsvm function and smileCart function on the Google Earth Engine (Google
Inc., Santa Clara, CA, USA) [95] platform to train samples and SNIC algorithm for image
segmentation. In addition, the global surface water dynamic dataset [23] will be compared
with other methods as the classification results of deep learning below. We used confusion
matrices to evaluate the precision of the extraction results, and the ANOVA test was used
to examine whether the difference among groups was significant. p < 0.05 is significant
throughout the manuscript.
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4.2. Performance of Algorithms on Extracting Water Extents

These methods showed noticeable differences in identifying the water body
(Figures 2 and 3). The water distribution obtained by the four methods, SVM, CART,
object-oriented, and deep learning, is superimposed in the figure with the NDWI extraction
results, as shown in Figures 4 and 5. It can be found that the water extraction results of
several methods are approximately the same; that is, the pixels of type X water and N water
account for the majority. However, there are also local differences in the extraction results
in the figure, which are manifested by inconsistent boundary contours and disconnected
small rivers. Therefore, these local differences are compared with the original Landsat
image, and further analysis is done.
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Part of the Huai River Basin is located in a plain area with complex lake boundaries.
In addition to large rivers and lakes, there are many small rivers, narrow artificial canals,
and scattered ponds. As shown in the red box (Figure 4), the water and land boundaries
extracted by several methods are inconsistent, and the deep learning method does not
identify the breeding ponds around the lake. The object-oriented approach is limited by
the segmentation scale and cannot identify very small water bodies.

Lake Nam Co is located on the Qinghai-Tibet Plateau, and mountain shadows, ice,
and snow are the main interference factors in water extraction. These five methods can
extract the outline of the lake with clear water and land boundaries, but not all methods
can accurately identify small and intermittent rivers (Figure 5). The SVM, CART, object-
oriented, and deep learning in the red box can all identify more rivers than the NDWI, but
the object-oriented method is most disturbed by the shadow of the mountain.

Accuracy evaluation of the extraction results of all water bodies in the Nam Co and
Huai River basins was carried out, and the results obtained by calculating the overall
accuracy and Kappa coefficient are shown in Tables 5 and 6. The overall accuracy of the
five methods in Nam Co is above 0.94, and the Kappa coefficient is above 0.95 except for
the object-oriented method. In the Huai River basin, the overall accuracy of all methods is
above 0.90, and the Kappa coefficient does not reach 0.94 only in deep learning. In addition,
the NDWI, CART, and SVM can obtain similar results in both regions (p > 0.05), and SVM
is slightly better than the other two methods (p < 0.05).

Table 5. Evaluation of the accuracy of Nam Co water extraction results.

Nam Co NDWI CART SVM Object-Oriented Deep Learning

Overall Accuracy 0.9951 0.9937 0.9963 0.9464 0.9878
Kappa 0.9898 0.9869 0.9924 0.8905 0.9746
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Table 6. Evaluation of the accuracy of Huaihe River Basin water extraction results.

Huai River Basin NDWI CART SVM Object-Oriented Deep Learning

Overall Accuracy 0.9735 0.9788 0.9788 0.9788 0.9023
Kappa 0.9466 0.9576 0.9576 0.9576 0.8065

The NDWI is a fast water extraction method with wide applicability, and good results
can be obtained in any area [96]. Furthermore, the NDWI can also be used as a feature
in other water extraction methods to help improve the accuracy of the results [97]. The
extraction results of SVM and CART are similar to the NDWI, but they are more advanta-
geous when identifying small water bodies. Object orientation requires choosing a suitable
segmentation scale to obtain smooth water and land boundaries. When extracting small
water bodies, pixel-based methods are a better choice. Deep learning has high accuracy
and vital applicability, but it requires a large number of samples for training, and various
situations must be considered when selecting samples.

5. Conclusions

At present, there are many methods for extracting water information from remote
sensing data, such as the threshold method and classification method based on optical
remote sensing images, the threshold method and filtering method based on radar remote
sensing images, the texture extraction method, and the combined DEM extraction method.
In addition, there are complementary advantages of optical remote sensing and radar
remote sensing that can be used to extract water body information. Researchers continue
to improve and innovate on existing methods, looking for more automatic, extensive, and
high-precision water extraction methods. There are some problems that need further study.

1. Medium- and low-resolution images have a short revisit period and strong real-time
performance, but the approximate resolution limits the accuracy of water body extrac-
tion. High-resolution images can obtain fine water body extraction results, but the
time resolution is low, and the data are difficult to obtain. This problem of temporal
and spatial resolution mismatch limits the accuracy of water body information extrac-
tion and real-time monitoring. At present, there are an increasing number of remote
sensing data to choose from, and the fusion of multisource remote sensing data brings
more possibilities for water body extraction;

2. Water bodies do not always appear in the form of pure pixels in images. River
networks, small rivers, and water and land boundaries mostly appear as mixed
pixels. These water bodies are more difficult to identify [98]. Although higher-spatial
resolution images can reduce these problems, they are still inevitable. When extracting
the water body from a mixed pixel, not only are the abundances of the end members of
the water body required, but also the position distribution of the water body must be
known. Some scholars have made efforts in this regard [99], obtaining high-precision
water maps through mixed pixel decomposition and super-resolution mapping;

3. There are various methods of water extraction, but they lack universality. One reason
is that there are widespread differences in the parameters of many remote sensing
sensors at present, and different classification rules are often set for remote sensing
images from different sensors. This makes the water extraction method not very
versatile and poor in generalization. Another reason is that the spectral characteristics
of water in the natural environment are affected by sediment, chlorophyll, etc., and
many methods cannot take into account plains, mountainous areas, and urban areas.
In addition, compared with ocean waters with simple optical properties, inland waters
have more complex optical properties, which vary greatly with regions and seasons,
and lack satellite remote sensors specifically for inland waters [100];

4. There is no uniform evaluation standard for the results of water extraction, which
is not conducive to a comparison between various methods. One of the current
accuracy evaluation methods is based on the results of field investigation or manual
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interpretation, and the other is based on the extraction results of other images, using
a confusion matrix, Kappa coefficient [101], and other parameters to evaluate the
extraction results. Establishing a unified evaluation standard and standardizing the
data quality evaluation system will make the water extraction method more mature
and will accelerate its popularization and application;

5. The large volume of remote sensing data and complicated processing has resulted in
a concentration of research in a small area or local area. With the rapid changes in
network and computer technology, cloud storage and cloud computing technologies
have developed rapidly. The emergence of the NASA Earth Exchange (NEX), Amazon
Web Services (AWS), and Google Earth Engine (GEE) have changed the traditional
remote sensing processing method. Remote sensing images and high-performance
computing power form a large-scale, long-term sequence. Remote sensing data
analysis provides a new approach [102]. Currently, a large number of researchers are
conducting scientific research utilizing GEE’s cloud platform [103,104].
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