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Abstract: Water quality indices (WQIs) are used for the simple assessment and classification of the
water quality of surface water sources. However, considerable time, financial resources, and effort
are required to measure the parameters used for their calculation. Prediction of WQIs through
supervised machine learning is a useful and simple approach to reduce the cost of the analysis
through the development of predictive models with a reduced number of water quality parameters.
In this study, regression and classification machine-learning models were developed to estimate the
ecosystem-specific WQI previously developed for the Santiago-Guadalajara River (SGR-WQI), which
involves the measurement of 17 water quality parameters. The best subset selection method was
employed to reduce the number of significant parameters required for the SGR-WQI prediction. The
multiple linear regression model using 12 parameters displayed a residual square error (RSE) of
3.262, similar to that of the multiple linear regression model using 17 parameters (RSE = 3.255), which
translates into significant savings for WQI estimation. Additionally, the generalized additive model
not only displayed an adjusted R2 of 0.9992, which is the best fit of all the models evaluated, but also
fitted the rating curves of each parameter developed for the original algorithm for the SGR-WQI
calculation with great accuracy. Regarding the classification models, an overall proportion of 93% and
86% of data were correctly classified using the logistic regression model with 17 and 12 parameters,
respectively, while the linear discriminant functions using 12 parameters correctly classified an overall
proportion of 84%. The models evaluated were found to be efficient in predicting the SGR-WQI
with a reduced number of parameters as complementary tools to extend the current water quality
monitoring program of the Santiago-Guadalajara River.

Keywords: water quality index prediction; regression and classification algorithms; Santiago-
Guadalajara River

1. Introduction

Rivers all around the world are a vital source of freshwater for the environment, the
economy, and society [1–3]. However, these freshwater ecosystems are currently affected by
several problems such as overexploitation, climate change, and anthropogenic pollution [4].
The water quality of rivers is affected by natural (rainfall and erosion) and anthropogenic
processes (such as urbanization, agriculture, and manufacturing) [5–7].
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Water quality is a nonlinear and nonstationary phenomenon, which encompasses
complex relationships between natural and anthropogenic processes and, thus, continuous
water quality monitoring is fundamental to develop strategies to remediate and preserve
rivers and maintain their sustainable management [8]. However, monitoring programs
require numerous measurements of different water quality parameters at different sampling
points and at different sampling times, and, consequently, large databases are generated [9].
Thus, complex analyses and interpretation are necessary to assess the environmental
situation of a waterbody [10,11]. To overcome this problem, water quality indices (WQIs)
are recognized as useful tools to ease water quality visualization, interpretation, and
communication [12]. WQIs have been widely applied to assess and classify the water
quality of surface and groundwater sources and to help the managers of water resources to
make more effective decisions [13–16]. WQIs are calculated by the integration of multiple
physical, chemical, or biological parameters specifically selected for their significance to the
water quality of water sources in general [17,18]. Moreover, recent efforts have focused on
developing ecosystem-specific water quality indices developed for the specific conditions
of a given water source and following local limits/standards/guidelines for the protection
of aquatic life [19,20]. These ecosystem-specific WQIs are developed to adequately reflect
spatial and temporal variations in agreement with the local territorial context [21,22].

Because considerable time, effort, and financial resources are required to measure the
water quality indicators (physical, chemical, and biological) that are included in WQIs’
algorithms, there is a need for practical computational approaches to estimate WQIs
accurately and efficiently [23]. The costs associated with water quality monitoring can be
reduced if WQIs can be estimated based on smaller sets of water quality parameters and,
consequently, water quality monitoring could be extended to wider catchment areas of the
water sources in question or to monitor other water bodies.

Machine learning (ML) has been extensively applied for the monitoring and control
of several engineering processes using several algorithms such as linear regression, lo-
gistic regression, decision trees, vector support machines, and artificial neural networks,
among others. These methods are used to perform data regression and classification tasks,
which aim to determine the association between a set of variables called input variables
(regressors) or characteristics (features) with an output variable (prediction). In the case
of regression algorithms, a numerical value of the output variable is predicted, and, in
the case of classification algorithms, this output is a categorical variable. ML algorithms
must be adjusted to execute such tasks. Initially, a step known as training is performed
by changing the values of the predictor variables, considering the goal of reducing the
error between the actual and the predicted value of the output variable. A training data
set is used for this purpose and the greater the amount of data available for the task, the
better the performance of the prediction algorithms. Once that error-minimizing model is
obtained, it is tested using the testing dataset, which should be different from the training
dataset [24].

The objective of this study was to evaluate the potential use of simple structure
supervised ML methods to predict the ecosystem-specific WQI previously developed for
the Santiago-Guadalajara River (SGR-WQI) in Mexico [20]. This WQI is currently used by
the local government of Jalisco, Mexico, to communicate the water quality status and trends
to the general society [25]. The main contribution of this research is the use of supervised
ML algorithms (multiple linear regression and generalized additive models for regression
tasks, and logistic regression and linear discriminant analysis for classification tasks) for
the prediction of the SGR-WQI, using less water quality parameters to ease the time and
costs associated with water quality monitoring and, consequently, to extend the number of
sampling points that are regularly monitored in this large basin.

2. Literature Review

Both supervised, with a priori knowledge of the actual value or the class of the
output variable, and unsupervised training methods, which focus on pattern recognition
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without the involvement of a target output attribute, have been developed for water
quality prediction and, in both cases, optimization techniques are used to minimize the
prediction error [26–28]. Adaptive neuro-fuzzy inference system (ANFIS) and artificial
neural networks (ANN) have been the most implemented ML methods during the last
decade for the prediction of water quality [29]. Likewise, other complex ML algorithms,
such as decision trees and support vector machines have been implemented [23,30,31].

For instance, ML models (probabilistic neural network, k-nearest neighbor, and sup-
port vector machine) were used to predict the WQI of Karoon River, Iran. The results
showed that when none of the nine input parameters of the WQI were removed, all models
displayed the same results, however, the PNN displayed the best performance (accuracy of
94.57%) when parameters were removed [32]. Another study tested a back propagation neu-
ral network (BPNN), an adaptive neuro-fuzzy inference system (ANFIS), a support vector
regression (SVR), and a multilinear regression (MLR) for the prediction of the WQI at three
stations across the Yamuna River, India. Although the unsupervised models displayed a
better performance, the MLR displayed a correlation coefficient above 0.9 in most cases [33].
Likewise, a different study tested eight algorithms including multilinear regression (MLR),
random forest (RF), M5P tree, random subspace (RSS), additive regression (AR), ANN,
SVR, and locally weighted linear regression (LWLR) to predict WQI of the groundwater in
Illizi region, southeast Algeria. As a result, the MLR model displayed a higher accuracy
compared to the rest of the models [34].

While these complex models can generate a wider variety of mathematical structures
to estimate the response, the use of simple-structured supervised models is preferred when
models are applied for inference purposes (in addition to the prediction goal), due to its
simpler interpretation. For example, in a multiple linear regression model, the relationship
between Y and X1, X2, . . . , Xp, will be easy to understand as they are linearly correlated,
while in flexible methods, such as ANN, the association between the response and any
individual predictor is quite complex [35].

3. Materials and Methods
3.1. Site Description and Data Collection

The Santiago-Guadalajara River (SGR) originates in Lake Chapala (the largest lake in
Mexico) and flows around the Guadalajara Metropolitan Area (GMA), which is the second
largest metropolitan area in Mexico, on its way to the Pacific Ocean. The Lerma River,
which originates in the State of Mexico, is part of the Lenna-Chapala-Santiago hydrographic
system, with a length greater than 700 km. The Lerma-Chapala-Santiago is one of the largest
hydrological systems in Mexico, where intensive agricultural and industrial activities are
concentrated. The Ahogado stream receives industrial discharges, as well as municipal
discharges from the GMA, until it merges with the Santiago Guadalajara River.

The Santiago-Guadalajara River has a length of 433 km and an average flow of 320 m3/s.
The Santiago-Guadalajara River section (with a catchment area of ~10,016 km2)
expands from the tributary basin of the Zula River and is characterized by high levels of
industrial, agricultural, and livestock activities, and large urban areas [36]. The water qual-
ity in this river has been affected by point and non-point sources of pollution, originating
from different industries: crop fields, urban settlements, and municipal landfills, among
others [36]. The sanitation systems within the basin have been reported to be insufficient to
treat the wastewater generated by the population [36–38], and the public health hazards
generated by the water quality condition of the river have caused concern with the different
public and private agencies. As a result, the Water Commission of the Government of the
State of Jalisco (CEA Jalisco) monitors 44 water quality parameters on a monthly basis at
20 sampling points located in the Río Santiago-Guadalajara basin (Figure 1) [39].
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Figure 1. Sampling points along the Santiago-Guadalajara River (SGR).

Sampling points RS01–RS10, which are located within the Santiago River, and sam-
pling points AA01–AA03, located within the Ahogado stream (an urban stream that is an
important tributary to the Santiago River), have been monitored since 2009 to date. Sam-
pling points RZ01–RZ05, located within the Zula River, and sampling points RL01–RL02,
located at the Lerma-River, have been monitored since March 2020.

3.2. SGR-WQI Algorithm

The SGR-WQI algorithm was specifically developed for the Santiago-Guadalajara
River [20]. The methodology for WQI calculation started with a dataset of 51 parameters,
and principal component analysis (PCA) was applied to reduce the number of parameters.
Seventeen water quality parameters were included in the WQI algorithm as these were
found to be the best indicators of the water quality of the river (Table 1). Then, rating
curves were developed by [20] for each parameter included in the SGR-WQI algorithm.
The rating curves are functions that rate each water quality measurement with a value
between the range of 0 (very poor quality) and 100 (excellent quality). These rated values
are referred to as sub-indices, Qi. The rating curves, developed by [20], incorporated the
local legal limits applicable to the Santiago-Guadalajara River and provide the SGR-WQI
with high sensitivities to parameter values that are outside the thresholds established for
the protection of aquatic life.
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Table 1. Water quality parameters and their assigned weights for the WQI calculation.

Number Parameter Abbreviation Weight

1 Cadmium Cd 0.057091
2 Chromium Cr 0.068067

3 Biological oxygen
demand BOD5 0.066625

4 Dissolved oxygen DO 0.064003
5 Fecal coliforms FC 0.047843
6 Fluoride FL 0.076765
7 Fats, oils, and grease FOG 0.045367
8 Mercury Hg 0.032107
9 Ammonia NH3 0.071960
10 Nitrates NO3 0.088895
11 Lead Pb 0.042887
12 Hydrogen potential pH 0.044139
13 Total suspended solids TSS 0.060231
14 Sulfides SULF 0.058181
15 Total dissolved solids TDS 0.079982
16 Temperature TEMP 0.045952
17 Zinc Zn 0.049905

The WQI was then calculated as a weighted average of the parameter sub-indices, as
shown by the following equation:

WQI =
17

∑
k=1

wkQik (1)

where 0 ≤ Qik ≤ 100 is the sub-index value of the kth parameter obtained through the
rating curve, and wk is the weight of the kth parameter (Table 1). For the development
of the WQI algorithm, multivariate methods (PCA, discriminant analysis, and analysis of
variance) were used to select the set of parameter weights, wk, that best reflected temporal
and spatial variability, as well as the annual cycle and trends in the water quality of
the river [20]. Each WQI observation was then assigned to a water quality class (WQC)
according to the ranges shown in Table 2. A detailed description of the WQI development
and algorithm can be found in [20].

Table 2. Classification ranges [20].

WQI Range Water Quality Class (WQC)

0–25 Very bad
25–50 Bad
50–70 Medium
70–90 Good

90–100 Excellent

3.3. Data Splitting, Training, and Testing Datasets

The complete data matrix was divided into two data subsets. The training subset
included water quality data from 2009 to 2020 (with a defined length of 26,367 observations)
and was used to calculate the WQI values (1551 WQI observations in total) and to develop
the regression and classification models implemented. This subset was used for training
because the same data subset was used for the SGR-WQI development [20]. The models
developed were then evaluated with a second dataset (testing dataset), which included
water quality measurements from January 2021 to April 2021 (1156 observations), which
corresponded to 68 WQI observations, to assess the predictive capacity of the models. This
data subset was used for testing because it had not been previously used for the SGR-WQI
development. Additionally, a 10-fold cross-validation method was implemented to avoid
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over-fitting [26]. The accuracies of the derived models were evaluated through the mean
squared error (MSE), residual square error (RSE), and the proportion of correctly classified
observations in the case of the classification models. The overall methodological approach
is summarized in Figure 2.
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3.4. Outlier Detection

Outliers were detected graphically, using a plot of studentized residuals, and then
eliminated to proceed with the phases of model training and testing. Distribution graphs
were then developed to observe the number of observations belonging to each WQC.

3.5. Z-Score Normalization

Because of the highly different scales used to measure the several water quality
parameters, a normalization process was applied to convert both datasets (training and
testing) to a default scale, prior to the phases of model training and testing. A z-score
normalization was used for this purpose (Equation (2)). The result of this transformation is
a dataset with values varying, ideally between −3 and +3 [40].

zscore =
x− µ

σ
(2)

where x is the value of a particular observation, µ represents the water quality parameter
mean, and σ is the corresponding standard deviation.

3.6. Models Development
3.6.1. Regression Models

Regression models are mathematical expressions that relate to two or more quanti-
tative variables. The variable to be predicted is called the ‘response’ variable, while the
variable(s) used for the estimation are called ‘predictor(s)’. These models provide mean-
ingful information for the understanding of causes and responses occurring in natural
systems [41]. Simple linear regression models (see “Simple Linear Regression” part) were
applied to analyze the relationship between water quality parameters and WQI values,
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which provide information on how the individual behavior of a water quality parameter
affects the overall quality of the water body (as expressed by the WQI). Multiple linear
regression models (see “Multiple Linear Regression” part) were then developed to approxi-
mate linear relations between all the water quality parameters and the WQI values, which,
contrary to simple linear regression, contribute to the understanding of how the complete
set of water quality parameters affects water quality. Ridge and Lasso regressions (see
“Lasso and Ridge Regression” part) were then applied to determine if linear models with
a better fit could be developed with a reduced number of parameters. Additionally, the
selection of significant parameters was achieved using the best subset-selection method,
including both the forward and backward methods (see “Parameter Reduction” part).
Finally, generalized additive models (see “Generalized Additive Models” part) were used
to describe a non-linear relation between all the water quality parameters and the WQI, be-
cause the SGR is a natural ecosystem affected by seasonality, geography, and anthropogenic
activity, and a complex behavior is expected.

Simple Linear Regression

A simple linear regression model is a simple approach for predicting a quantitative
response Y with a single predictor variable X [35]. A linear relationship is assumed between
X and Y, according to Equation (3). In this study, simple linear regression models were
developed taking Y as the WQI (as calculated by the algorithm described in Section 3.2)
and X. as the 17 water quality parameters used to calculate the WQI.

ŴQI = β0 + β1X (3)

Multiple Linear Regression

Multiple linear regression is a method used to predict a response variable Y as a
function of more than one predictor Xp, assigning a coefficient β for each predictor variable,
as expressed by Equation (4) [35,42]. Coefficient β is a reference of how significant the
parameter influence over the WQI is. To develop these models, WQI was considered as
Y and the 17 water quality parameters, included for the WQI calculation, were used as
predictor variables Xp.

ŴQI = β0 + β1X1 + · · ·+ βpXp = β0 + ∑p
k=1 βkXk (4)

where β0 is the intercept, βp represents the estimated regression coefficients for each of the
water quality parameters, and Xp represents the predictor variables [35]. The regression
coefficients were estimated using the least squares fitting procedure minimizing the residual
sum of squares.

RSS =
n

∑
i=1

(
WQIi − ŴQIi

)2
=

n

∑
i=1

(
WQIi − β0 −

p

∑
j=1

βjxij

)2

(5)

Lasso and Ridge Regression

Lasso and Ridge regressions are models that reduce the regression coefficients towards
zero to improve the fit of the model and reduce the variance [35]. These models fit a
parametric linear regression model, as represented by Equation (4), but use a different
fitting procedure to estimate the coefficients β0, β1, . . . , βp. The values of the Ridge and
Lasso regression coefficients are those that best fit Equations (6) and (7), respectively. Lasso
regression is a variant of the Ridge regression, the only difference being the regression
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penalty, which is expressed by the β2
j coefficients on the Ridge regression model and by the∣∣∣βj

∣∣∣ model coefficients on the Lasso regression [35].

n

∑
i=1

(
WQIi − β0 −

p

∑
j=1

βjxij

)2

+ λ

p

∑
j=1

β2
j = RSS + λ

p

∑
j=1

β2
j , (6)

n

∑
i=1

(
WQIi − β0 −

p

∑
j=1

βjxij

)2

+ λ

p

∑
j=1

∣∣∣βj

∣∣∣ = RSS + λ

p

∑
j=1

∣∣∣βj

∣∣∣, (7)

In both cases, λ ≥ 0 is a tuning parameter to be determined separately. The second
terms, λ∑

j
β2

j and λ∑
j

∣∣∣βj

∣∣∣, are referred to as the shrinkage penalty. The penalty term has no

effect when λ = 0, and both regressions (Ridge and Lasso) will produce the least square
estimates. As λ→ ∞ , the impact of the shrinkage penalty grows and the ridge regression
and lasso coefficients will approach zero.

Parameter Reduction
The best subset selection method was applied to the dataset to evaluate the statistical

significance of the 17 water quality parameters over the WQI. This algorithm evaluates a
separate least squares regression for each possible combination of p predictors to select
the best model from 2p possibilities. The algorithm fits all models for k = 1, 2, · · · , p that
contain k predictors and select the best models of each subset based on the highest R2.
Then, the best model is selected evaluating the adjusted R2 and the Bayesian information
criterion (BIC) [35].

The selection of significant parameters was completed using stepwise methods. Ini-
tially, the forward stepwise method was used. This procedure begins with a model contain-
ing no predictors and subsequently adds predictors, one at a time, until all the predictors
are in the model, for k = 1, 2, · · · , (p− 1), and chooses the best models based on the
highest R2. Then, a final single model was selected using the BIC and the adjusted R2 [35].

Additionally, the backward stepwise selection method was implemented. This model
begins with all p predictors in the least-squares model and removes the least useful pre-
dictors one at a time, for k = p, (p− 1), · · · , 1, then chooses k models with the highest
R2. In the end, the selection of a single best model is based on the BIC and the adjusted R2.
Backward selection requires several samples n larger than the number of variables p [35].

Generalized Additive Models

Generalized additive models provide a general frame for extending a standard linear
model by allowing non-linear functions for each of the variables while maintaining addi-
tivity. The following structure was used for the WQI prediction as a function of the water
quality parameters X1, . . . Xp.

ŴQI =
k1

∑
j=1

β1jφ1j(X1) +
k2

∑
j=1

β2jφ2j(X2) + · · ·+
kp

∑
j=1

βpjφpj
(
Xp
)
, (8)

where the base functions φij are allowed to be, for example, polynomials, natural cubic
splines, smooth splines, or even linear models. Thus, the model is the addition of linear
combinations of base functions, hence, the contribution and significance of each parameter
can be evaluated as in the case of the MLR.

3.6.2. Classification Models

The WQI expresses the water quality by a single number between 0 and 100, which is
used to assign a WQC (Table 2) depending on the range of the calculated WQI. The WQC
is a qualitative classification that enables communication of the water quality in a more
understandable way [43].
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Classification models consider a qualitative response variable Y, contrary to linear
regression models for which the response is quantitative. In this study, the qualitative
response variable is the WQC. The models applied for classification in this work predict the
probability of an observation, or a set of observations, to belong to a specific class. The basis
for making this classification is the prediction of the probability of each of the categories
of a qualitative variable (such as good, medium, or bad water quality). Consequently,
these models behave like regression models, as the categorical variable is converted to a
numerical value represented by the probability [35].

Logistic Regression

A logistic regression model was developed to calculate the probability p of a Y set of
observations of water quality parameters, belonging to a particular WQC. In this sense,
there are two possible options, as shown by Equations (5) and (6) [35].

p(X) = Pr(Y = 0| X ) (9)

p(X) = Pr(Y = 1| X ) (10)

where Y is the WQC and X represents the 17 water quality parameters used for the WQI
calculation. For the training phase, the WQC was determined based on the WQI values
obtained by the original WQI algorithm developed by Casillas-García et al. (2021) [19]
using the training data set (measurements made before 2020). Because this model only
considers two classifications for Y, 0 was assigned to a medium quality (Equation (9)) and 1
was assigned to bad quality (Equation (10)). Other categories were not considered because,
historically, there were null (for the excellent and good WQCs) or very few (for the very
bad WQC) observations corresponding to these classes, as shown in Table 3.

Table 3. WQC observed within the training and testing data sets.

WQC

Excellent Good Medium Bad Very Bad Total

Training data set 0 0 369 1178 4 1551
Test data set 0 0 12 55 1 68

Linear Discriminant Analysis

Linear discriminant analysis (LDA) was used to classify the water quality observations
into k classes (k ≥ 2). In this study, only three classes (medium, bad, and very bad) were
considered since the other categories have never been observed; the SGR has been a highly
polluted river for more than a decade [20]. LDA is used to determine the probability of an
observation, or a set of observations, belonging to each class, as shown by Equation (11).

fk(X) ≡ Pr(X|Y = k) (11)

where Y is the qualitative response variable (in this case the WQC), X represents the set
of water quality parameters, and k represents the classes (medium, bad, and very bad).
Linear discriminant analysis may be used to determine the probability of an observation
belonging to the kth class given the predictors’ observations. Then, the Bayes’ theorem,
given in Equation (12), states:

Pr(Y = k|X = x) =
πkfk(x)

∑k
l=1 πlfl(x)

(12)

where fk(x) is the density function and πk is the prior probability of an observation belong-
ing to the kth class [35]. A diagram explaining the methodology for model development
and testing is shown in Figure 3. The regression and classification models implemented in
this study are summarized in Figure 3.
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3.7. Software

All calculation and computational analyses were performed using the RStudio soft-
ware, version 1.4.1717. The packages used were: stats version 4.1.0, MASS version 7.3-54,
leaps version 3.1, glmnet version 4.1-2, mgcv version 1.8-35, ggplot2 version 3.3.4, car
version 3.0-10, dplyr version 1.0.7, and base version 4.1.0.

4. Results
4.1. Outliers Detection

Four outliers and one observation with high leverage were identified by plotting
studentized residuals. Outliers are shown in red in Figure 4. This graph shows the atypical
behavior of the outliers, compared with the rest of the observations. These observations
belonged to the good WQC and were eliminated from the original dataset.

4.2. Data Exploration and Classification

As previously stated, the Santiago-Guadalajara River is a highly polluted urban river
that receives discharges from industrial, agricultural, livestock, and urban sources [44].
Consequently, most of the WQI observations are classified into the bad and medium WQCs,
while very few observations fall into the very bad WQC. It is important to note that only
these three categories (medium, bad, and very bad) were present in both datasets. The
distribution curves of the WQI observations within the training and testing data sets show
that no observations were classified into the good or excellent WQCs (Figure 5).
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observations in the testing data set.

4.3. Regression Models
4.3.1. Simple Linear Regression

Figure 6 presents the distribution curve and the simple linear regression of two
individual parameters, pH (Figure 6a,b) and TDS (Figure 6c,d). The TDS linear regression
displayed a negative slope with an adjusted R2 of 0.4425 and R2 of 0.4429, while the pH
linear regression displayed an adjusted R2 value of −0.00063 and R2 of 1.033 × 10−5.
These two parameters correspond to the highest (TDS) and lowest (pH) R2 values obtained
within all 17 of the simple linear regression models developed (one for each water quality
parameter). Even the highest R2 is very low (0.4425), which shows that the adjustment is
very poor for all the models. These results prove that none of the parameters affect the WQI
significantly by themselves, thus, the WQI variations are caused by changes in multiple
parameters, as proposed by Casillas-García et al. (2021) for the original WQI algorithms.
This fact was expected as it is difficult to estimate a response variable (calculated with
17 parameters) by using only one of them. However, an initial analysis of the fit of these
models was useful to proceed with the development of more complex ones.
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4.3.2. Multiple Linear Regression

The multiple linear regression model used to predict the WQI values (Equation (4)),
using all 17 water quality parameters displayed a residual standard error (RSE) of 3.255, an
R2 of 0.8217, and an adjusted R2 of 0.8197. Additionally, 14 of the 17 parameters were found
to be significant (Table 4). The dispersion graphs of the residuals and the fitted values are
shown in Figure 7. A better fit was obtained with the multiple linear regression compared
to all simple linear regression models, however, the fit was still insufficient to accurately
predict the WQI values.

Table 4. Multiple linear regression models’ coefficients and p-values.

(a) with 17 Parameters (b) with 12 Parameters

Parameter Coefficient p-Value Coefficient p-Value

Intercept 44.593 <0.001 44.593 <0.001
Cd −1.073 <0.001 −1.158 <0.001
Cr −0.078 0.363

BOD5 −0.868 <0.001 −0.827 <0.001
DO 2.293 <0.001 2.321 <0.001
FC −0.463 <0.001 −0.444 <0.001
FL −1.894 <0.001 −1.909 <0.001

FOG −0.690 <0.001 −0.739 <0.001
Hg −0.020 0.811

NH3 −0.580 <0.001 −0.563 <0.001
NO3 0.113 0.239
Pb −0.569 <0.001 −0.594 <0.001
pH −0.285 0.007 −0.315 0.003
SST −1.536 <0.001 −1.600 <0.001

SULF 0.187 0.071
TDS −2.598 <0.001 −2.603 <0.001

TEMP 0.949 <0.001 0.918 <0.001
Zn −0.205 0.039
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As only 14 parameters were statistically significant in this model (Table 4), the adjust-
ment could be improved through parameter reduction. The residuals plot in Figure 7a
exhibits a quadratic pattern and provides a strong indication of nonlinearity. Nevertheless,
normality assumption was checked as shown in Figure 7c,d and was assessed using a
Shapiro–Wilk normality test (p value = 0.1892). Heteroscedasticity was detected using a
Breusch–Pagan test (p value = 2.32× 10−16), thus a constant variance cannot be assumed.
Additionally, the NO3 and SULF coefficients were positive, which is inverse to the logical
behavior, as a decrease in the river’s water quality is expected when the concentration
of this parameters increases. The coefficient value is indicative of the influence of the
parameter on the WQI behavior; parameters with positive coefficients positively affect
the WQI (such as DO and TEMP), while parameters with negative coefficients diminish
the WQI. However, positive coefficients were determined for NO3 and SULF, which is
not expected since a rise in the concentration of these parameters should decrease the
WQI. For these reasons, non-significant and inconsistent parameters were excluded for the
development of a second multiple linear regression (Table 4).

The second multiple linear regression model (using only 12 parameters) displayed
an RSE of 3.262, an R2 of 0.8205, and an adjusted R2 of 0.8191. The fit of this new model
was found to be almost equal to that of the multiple linear regression model including all
17 parameters. As the model adjustment did not change significantly, the prediction of the
SGR-WQI could be achieved by a reduced number of parameters without a significant loss
of accuracy. Likewise, the residuals plot (Figure 8a) exhibits the same quadratic pattern
indicating non-linearity; normality assumption was also observed and evaluated by a
Shapiro–Wilk normality test (p value = 0.1743). Once again, heteroscedasticity was detected
using a Breusch–Pagan test (p value = 3.54× 10−12). However, as the fit did not improve
after eliminating non-significant and inconsistent parameters, linear models could not
consistently describe the relationship between the WQI and the water quality parameters.
The multiple linear regression model (using 12 parameters) was evaluated using the testing
data subset, and a RSE of 11.3664 was obtained. Although this value is indicative of WQI
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values predicted with good accuracy, a better WQI prediction could be obtained with
non-linear models. Also, the coefficients of the parameters indicate which parameters have
a higher influence on the model, which are TDS > DO > FL > TSS > Cd; high content of TDS
and TSS are standard indications of water contamination and are related to high amounts
of other pollutants, DO is very important for aquatic ecosystems since very low levels
can cause fish death, FL has gained relevance in last decades since it is related to health
problems such as dental and skeletal fluorosis. Figure 8 shows the residuals and fitted
values of the multiple linear regression model using 12 parameters.
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4.3.3. Ridge and Lasso Regression

A series of Ridge and Lasso regression models were performed, varying the values
of the tuning parameter λ to find the minimum test MSE. These errors were calculated
for each value within the range 1× 10−5 ≤ λ ≤ 1× 105. Figure 9 shows that the errors
minimize for values of λ < 0.001. Given that these tuning values are close to zero, the
penalty term has no effect and, thus, the Ridge and Lasso regression coefficients are like
those obtained by the least squares method (Equation (5)). Ridge and Lasso regressions
seek to improve the fit of the multiple linear regression model testing iterations in which
the coefficient of some parameters is set to zero. The results show that the model is only
benefited by eliminating five parameters (Cr, Hg, NO3, SULF, and Zn), which were those
regarded as inconsistent or not significant in the initial multiple linear regression using
17 parameters.
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4.3.4. Best Subset Selection, Forward and Backward Stepwise Selection

Figure 10 shows the adjusted R2 and the BIC for each best model with k predictors.
For example, the best simple linear regression modelM1 is given considering TDS as the
predictor variable (Figure 1). The maximum adjusted R2 and the best BIC are reached at
12 predictors (red squares in Figure 10), and, at this point, there is little improvement if
additional variables are included. The best subset selection included 12 selected predictors
(Cd, BOD5, DO, CF, FL, FOG, NH3, Pb, pH, TSS, TDS, and TEMP), which were also used for
the multiple linear regression model, including 12 parameters, as they displayed significant
coefficients (Table 4). The forward and backward stepwise selections were performed
and the same subsets of parameters were obtained at each step, thus, these models are
equivalent. These results confirm that the 12 parameters previously selected for the MLR
provide a better fit.
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4.3.5. Generalized Additive Model

To improve the accuracy of the WQI prediction, a generalized additive model (Equation (8))
was fitted using natural cubic splines and linear combinations as base functions. Figure 11a
shows the plot of residuals for the training data set where there is no discernible pattern.
These results have a better accuracy compared to the multiple linear regressions, as an
adjusted R2 of 0.9992 and a MSE of 1.026 were obtained using the test data set. The points
in the scatterplots (Figure 11c,d) are practically on the identity function, thus, WQI ≈ ˆWQI.
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An additional characteristic of this model is its capability to model how each parameter
affects the WQI. The model in Equation (8) can be rewritten as:

ŴQI =
p

∑
k=1

fk(Xk), (13)

where each function fk can be fitted by natural splines or step linear models. The original
function for the WQI can be considered as a model of this type:

ŴQI =
p

∑
k=1

wkQik(Xk) =
p

∑
k=1

Q̂ik(Xk), (14)

The generalized additive model describes the behavior of the rating curves, such that,
as a general setting, we have

wkQik(Xk) ≈ fk(Xk) + ck (15)

where ck is a constant for each parameter, such that ∑
k

ck ≈ 0. Figure 12 shows these

trends for DBO5, DO, pH, and TDS. The generalized additive models not only improve
the accuracy of the WQI prediction but also fit the rating curves (plus a constant) of
each parameter developed for the original algorithm by Casillas-García et al. (2021) [20]
with great accuracy. As shown in Figure 12, the base functions and the rating curves
corresponding to DBO5, DO, pH, and TDS display the same trend, however, the base
functions exhibit deviations that can be attributed to the constant ck effect. This is a
remarkable result, considering that Casillas-García et al. 2021 [20] developed such curves by
considering the maximum permissible values of each parameter, as well as the distribution
of historical water quality observations.
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4.4. Classification Models

The results of the classification models were compared with the true classification
(Table 3) defined by the ranges for the WQCs estimated by the SGR-WQI algorithm (Table 2).

4.4.1. Logistic Regression Model

The logistic regression model correctly classified a proportion of 84% (311 observations)
into the medium water quality class, when comparing the model’s classification results
with the true classification obtained through the original SGR-WQI algorithm. In addition,
a proportion of 96% (1130 observations) was correctly classified into the bad water quality
class. The overall performance of this model was 93%. These results are summarized
in Table 5.

Table 5. Summary of the results achieved by the logistic regression model.

True Classification
Proportion of Correctly

Classified
ObservationsMedium Bad

Model
classification

Training data set
(17 parameters)

Bad 58 1130 0.959
Medium 311 48 0.843

Training data set
(12 parameters)

Bad 98 1099 0.933
Medium 271 79 0.734

Testing dataset Bad 1 55 1
Medium 11 0 0.916

The Cd, BOD5, DO, FL, FOG, Pb, pH, SST, SULF, TDS, TEMP, and Zn parameter
results were significant for this model. It is important to note that the significant parameters
in this model coincide with previous methods (the multiple linear regression and best
subset selection). Only two categories were included to be classified by this model, the
medium WQC was set if the calculated conditional probability was >0.5 (Equation (9)),
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while the bad WQC corresponded to a probability <0.5 (Equation (10)). As shown in
Figure 13, highly reliable WQC predictions were achieved by the logistic regression model.
However, the observations classified into the medium WQC (yellow dots) with a conditional
probability >0.5 are observations that were misclassified, as these actually belong to the
bad WQC (true classification). Conversely, the observations classified into the medium
WQC (orange dots) with a conditional probability <0.5 are observations belonging to the
medium WQC that were misclassified.
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To reduce the number of parameters required to make the water quality classification,
a second logistic regression model was developed. The parameters selected for this second
logistic regression model were Cd, Cr, BOD5, DO, FC, FL, FOG, Hg, NH3, NO3, Pb, and Zn
(12 parameters). These parameters were selected by Roy’s first root statistic criteria [45]
and are consistent with those selected by the best subset selection (Section 3.5). As a
result, proportions of 73% (271 observations) and 93% (1099 observations) were classified
correctly into the medium and bad water quality class, respectively (Table 5), with a global
performance of 86% of correctly classified observations. This logistic regression displayed a
lower proportion of correct classifications in comparison with the logistic regression model
including 17 parameters (84% for medium and 96% for bad classifications). However,
this difference may not be significant if the cost-benefit of predicting the WQC using only
12 parameters is considered. Finally, the logistic regression models were applied to test
the data subset and a proportion of 100% (55 observations) was correctly classified into
the bad WQC and a proportion of 92% (11 observations) was correctly classified into the
medium WQC. Both logistic regression models (with 17 and 12 parameters) exhibited the
same results for testing.

4.4.2. Linear Discriminant Analysis

The linear discriminant functions, derived from the discriminant analysis, correctly
classified a proportion of 81% (298 observations) into the medium WQC and a proportion
of 92% (1130 observations) was correctly classified into the bad WQC (Table 6), resulting in
an overall performance of 87%. All the observations belonging to the very bad WQC were
correctly classified by the model, however, 13 additional observations were misclassified
in this category. This error could be attributed to the low number of observations in this
category, which makes the accurate adjustment of the linear discriminant functions difficult.
Figure 14 shows the differences between the results of the classification displayed by the
original SGR-WQI calculation algorithm and the linear discriminant functions (Figure 14a,b,
respectively). The first linear discriminant function (LD1) in the x-axis distinguished
between the medium and bad quality observations while the second linear discriminant
function (LD2) distinguished between medium/bad and very bad quality observations.
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Table 6. Summary of discriminant analysis model.

True Classification Proportion of Correctly
Classified DataMedium Bad Very Bad

Model
classification

Training data set
(17 parameters)

Medium 298 77 0 0.807
Bad 71 1088 0 0.923

Very bad 0 13 4 1

Training dataset
(12 parameters)

Medium 210 74 0 0.569
Bad 159 1092 0 0.937

Very bad 0 12 4 1

Test data set
(17 parameters)

Medium 11 0 0 0.916
Bad 1 55 1 1

Very bad 0 0 0 0

Test data set
(12 parameters)

Medium 10 0 0 0.833
Bad 2 55 1 1

Very bad 0 0 0 0
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A second discriminant analysis was performed with the 12 parameters selected by
Roy’s first root statistic criteria [45] and the best subset selection (Section 3.5). This new
model correctly classified a proportion of 57% (210 observations) and 94% (1092 obser-
vations) into the medium and bad WQCs, respectively (Table 6), with a corresponding
global performance of 84% of correctly classified observations. Similarly, for the model with
17 parameters, all observations belonging to the very bad WQC were correctly assigned,
however, 12 additional observations were misclassified into this category. Figure 15 shows
the differences between the results of the classifications displayed by the original WQI
calculation algorithm and the linear discriminant functions (using 12 parameters). The
classification achieved by the model with 12 parameters was similar to that achieved by the
model with 17 parameters. Finally, the LDA models (17 and 12 parameters) were applied to
the testing data set and they both correctly classified a proportion of 100% (55 observations)
into the bad WQC and proportions of 92% (11 observations) and 83% (10 observations) into
the medium WQC, respectively.



Water 2022, 14, 1235 20 of 24
Water 2022, 14, x FOR PEER REVIEW 20 of 24 
 

 

 
Figure 15. (a) Real WQCs obtained by the original WQI calculation algorithm (using the training 
data subset). (b) Predicted WQCs achieved by the model with 12 parameters (using the training 
data subset). (c) Real WQCs obtained by the original WQI calculation algorithm (using the testing 
data subset). (d) Predicted WQCs achieved by the model with 12 parameters (using the testing data 
subset). 

Table 6. Summary of discriminant analysis model. 

 
  

True Classification Proportion of 
Correctly  

Classified Data  Medium Bad 
Very 
Bad 

Model  
classification 

Training data 
set (17 

parameters) 

Medium 298 77 0 0.807 
Bad 71 1088 0 0.923 

Very bad 0 13 4 1 
Training 

dataset (12 
parameters) 

Medium 210 74 0 0.569 
Bad 159 1092 0 0.937 

Very bad 0 12 4 1 
Test data set  

(17 
parameters) 

Medium 11 0 0 0.916 
Bad 1 55 1 1 

Very bad 0 0 0 0 
Test data set 

(12 
parameters) 

Medium 10 0 0 0.833 
Bad 2 55 1 1 

Very bad 0 0 0 0 

5. Discussion 
Simple linear regression models were developed to analyze how the individual be-

havior of a water quality parameter affects the WQI, however, none of these linear models 
displayed a good fit, indicating that none of the parameters can be used to predict the 
WQI by itself. The multiple linear regression model using 17 parameters obtained a resid-
ual standard error (RSE) of 3.255, an R2 of 0.8217, and an adjusted R2 of 0.8197. The adjust-
ment was better than that reported by Ahmed et al. (2019) for a multiple linear regression 
model using only four water quality parameters, implemented to predict a WQI which 
displayed a RSE of 11.7550 and an R2 of 0.6573. 

Because the multiple linear regression model including 12 parameters displayed little 
variation in accuracy, compared with the previous multiple linear regression including 17 
parameters, the specific SGR-WQI developed by Casillas-García et al. (2021), which 

Figure 15. (a) Real WQCs obtained by the original WQI calculation algorithm (using the training
data subset). (b) Predicted WQCs achieved by the model with 12 parameters (using the training
data subset). (c) Real WQCs obtained by the original WQI calculation algorithm (using the testing
data subset). (d) Predicted WQCs achieved by the model with 12 parameters (using the testing
data subset).

5. Discussion

Simple linear regression models were developed to analyze how the individual be-
havior of a water quality parameter affects the WQI, however, none of these linear models
displayed a good fit, indicating that none of the parameters can be used to predict the WQI
by itself. The multiple linear regression model using 17 parameters obtained a residual
standard error (RSE) of 3.255, an R2 of 0.8217, and an adjusted R2 of 0.8197. The adjustment
was better than that reported by Ahmed et al. (2019) for a multiple linear regression model
using only four water quality parameters, implemented to predict a WQI which displayed
a RSE of 11.7550 and an R2 of 0.6573.

Because the multiple linear regression model including 12 parameters displayed little
variation in accuracy, compared with the previous multiple linear regression including
17 parameters, the specific SGR-WQI developed by Casillas-García et al. (2021), which
comprises a complex calculation algorithm, can be estimated using less water quality
parameters through a simpler algorithm. This fact opens up the possibility to expand the
monitoring to additional sampling points within the Santiago-Guadalajara River basin with
a lower budget. However, it is important to maintain the monitoring of the 20 current sam-
pling points with the 17 original parameters as the water quality trends could change over
time, especially if corrective actions are applied to reduce contamination. The SGR-WQI
original algorithm was developed with a self-adaptive approach, based on the historical
distribution of water quality data [20]. If the trends of these data changes over time, the
SGR-WQI calculation will adapt accordingly to maintain its reliability and specificity. In
the same way, upgrading the machine-learning models developed will be required if new
trends in water quality are presented. Corrective actions have recently been implemented
and will be further implemented in the coming years to improve the water quality in
the Santiago-Guadalajara River. If the water quality in the Santiago-Guadalajara River
improves in the future and the ranges not reported in the current dataset are reached, new
supervised machine-learning models will be necessary to adjust to the new behavior, as the
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current calculations are only reliable for the current and past water quality conditions of
the river. The generalized additive model displayed an adjusted R2 of 0.9992 and an MSE
of 1.026. These results are comparable to those reported by Asadollah et al. (2021) using an
extra tree regression to predict a WQI with 10 parameters, which displayed a R2 of 0.99
and an RSE of 1.37. Similarly, Hameed et al. (2017) used a neural network with a radial
base function using six parameters to estimate a WQI and obtained an R2 of 0.9872 and
RSE of 0.0157. The results obtained by the generalized additive model are relevant as they
prove that WQIs can be estimated using simpler algorithms than those reported previously
(decisions trees and neural networks). The use of simpler models is advantageous to reduce
the time and effort required for WQI prediction.

Regarding classification models, the logistic regression model developed here correctly
classified 93% and 86% observations for the 17 and 12 parameter models, respectively. The
linear discriminant functions correctly classified 87% and 84% observations for the 17 and
12 parameter models respectively. Ho et al. (2019) used a decision tree algorithm to predict
WQC and achieved 84% accuracy by their best configuration using five parameters; the
accuracy was reduced to 81.8% and 77.3% when four and three parameters were used. In
addition, Ahmed et al. (2019) achieved an R2 of 0.56 for a classification model using a
multi-layer perceptron algorithm with four parameters. The logistic linear regression model
developed in this study displayed a better performance for WQC prediction compared
with the linear discriminant functions and other algorithms reported previously, however,
this model can only be applied for the prediction of two classes, as most of the observations
on SGR belong to medium and bad categories.

In this study, we focused on testing simple-structured supervised ML models with
linear or quasi-linear structures as there was previous knowledge of the highly linear
structure of the SGR-WQI algorithm [32–34]. Furthermore, the results herein presented
indicate that in fact the WQI can be predicted with these models. The generalized additive
model displayed the best performance of the models here tested. However, the MLR model
using 12 parameters is a better option if the main goal is parameter reduction. Additionally,
the models applied in this work are easy to reproduce for water quality evaluation due to
their relatively simple structure and practical programming.

6. Conclusions

An accurate, efficient, practical, and cost-effective water quality framework is vital to
preserve and establish remedial actions for water bodies. The prediction of the SGR-WQI
through machine-learning algorithms is a solid approach to analyze and estimate water
quality behavior. From the models evaluated in this research, the generalized additive
model and the logistic regression methods displayed better performance in estimating WQI
and WQC, respectively. However, for input reduction, the MLR model using 12 parameters
is a better option.

A good model must be able to differentiate the intrinsic data variability (caused by
the sampling and measurement techniques) from actual changes in the water quality
trend. The wider the dataset used, the more precise the model will be. In our case, the
monthly monitoring data from the last 10 years was used, however, this monitoring data
only produced WQI observations within two water quality classes (more than 99% of the
observations belonged to the medium or bad WQCs). Thus, if the new monitoring data
produces WQI observations belonging to different WQCs, the models developed here
could become less precise. In this sense, fuzzy logic could be a better approach to process a
wider range of WQI inputs. Additionally, more complex supervised models, such as ANNs,
could provide more precise responses and should be tested in future research. However,
these models have reduced interpretability in comparison to the supervised models herein
presented and have the potential of overfitting a quasi-linear system.

It is important to highlight that the machine-learning models do not substitute the
SGR-WQI algorithm; these methodologies were developed as complementary tools to
extend the current water quality monitoring program of the Santiago-Guadalajara River.



Water 2022, 14, 1235 22 of 24

The monitoring of all 17 water quality parameters is essential for the estimation of the
SGR-WQI in the main channel of the river. However, through machine-learning models a
good estimation can be achieved using 12 parameters. The SGR-WQI estimation, in turn,
can be used to expand the monitoring to additional sampling points in the main channel of
the Santiago-Guadalajara River or its tributaries. Additionally, some future perspectives for
expanding the scope of the application of the machine-learning models for the SGR-WQI
prediction is the use of a state observer with a differential network for further parameter
reduction. If SGR-WQI can be estimated with accuracy, using only parameters measured
in situ by sensors, online real-time estimation of the SGR-WQI would be feasible. This
extended monitoring would require less time and a lower budget, as this methodology
requires less water quality parameters, no laboratory analytics, and a simpler algorithm to
do the calculations. The expanded monitoring would provide more detailed information on
the watershed situation, which is useful for developing more efficient and precise corrective
and preventive action plans to improve the water quality of the river.
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