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Abstract: Artificial-intelligence methods and machine-learning models have demonstrated their
ability to optimize, model, and automate critical water- and wastewater-treatment applications,
natural-systems monitoring and management, and water-based agriculture such as hydroponics and
aquaponics. In addition to providing computer-assisted aid to complex issues surrounding water
chemistry and physical/biological processes, artificial intelligence and machine-learning (AI/ML) ap-
plications are anticipated to further optimize water-based applications and decrease capital expenses.
This review offers a cross-section of peer reviewed, critical water-based applications that have been
coupled with AI or ML, including chlorination, adsorption, membrane filtration, water-quality-index
monitoring, water-quality-parameter modeling, river-level monitoring, and aquaponics/hydroponics
automation/monitoring. Although success in control, optimization, and modeling has been achieved
with the AI methods, ML models, and smart technologies (including the Internet of Things (IoT),
sensors, and systems based on these technologies) that are reviewed herein, key challenges and
limitations were common and pervasive throughout. Poor data management, low explainability,
poor model reproducibility and standardization, as well as a lack of academic transparency are all
important hurdles to overcome in order to successfully implement these intelligent applications.
Recommendations to aid explainability, data management, reproducibility, and model causality are
offered in order to overcome these hurdles and continue the successful implementation of these
powerful tools.

Keywords: artificial intelligence; water treatment; machine learning; hydroponics; Internet of
Things; monitoring

1. Introduction

The need for sustainable and clean water access is important to water- and wastewater-
treatment plants and many other natural and industrial systems that rely on the resource.
In addition to meeting the needs of consumers and providing necessary quality-of-life
upgrades to infrastructure, treatment plants must also contend with complex regulatory
measures to meet increasing standards of quality [1]. This is only confounded as countries
continue to experience heavily polluted waterways, affecting human life as well as aquatic
and terrestrial life. As countries continue to industrialize and modernize, these issues
are observably worsening [2]. Researchers globally have studied methods to optimize,
remediate and improve our applications involving water usage [3–5]. For many, there has
been sufficient attention toward creating and simulating optimized, cost-effective, and
intelligent models to aid in this challenge.

Artificial intelligence (AI) refers to the idea of endowing algorithms with the ability to
perform tasks and make inferences that would require an intelligent human in the same
position, while machine learning (ML) relates to intelligent systems that can adapt their
behavior during the system-training stage to newly provided information [6]. ML, being
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a bottom-up mathematical model relying on historical datasets, excels in its correlative
abilities and is able to make inferences in systems with complex mathematical origins that
even humans have difficulty understanding and applying [7]. Their ability to aid and
support understanding is majorly responsible for the rise in AI and ML applications in
academic communities of all subjects and industries [8], including areas studying water
treatments such as coagulation [9] and chlorination dosing, membrane-filtration modeling,
adsorption processes, and natural-systems monitoring such as river-quality modeling, and
agricultural system health.

Emerging AI and ML, coupled with smart technology, are filling a niche in water
applications that were previously underserved by traditional techniques and thinking.
Some reports estimate that AI expenditures in the water industry will account for almost
10% of the investment of over $90 billion that is expected to mature by 2030 [10]. In
water applications, AI, ML, and smart technologies are expected to model and overcome
complex and difficult issues through their generalization, resilience, and relative ease of
design to achieve cost savings and optimize processes [11,12]. Water applications that
have seen notable ML utilization include water and wastewater treatment, natural-systems
monitoring, and precision/water-based agriculture. These industry studies have been
observed to rely on numerous ML techniques, with the most commonly used including
artificial neural networks (ANNs), recurrent neural networks (RNNs), random forest (RF),
support vector machine (SVM), and adaptive-neuro fuzzy inference systems (ANFISs) with
occasional AI methods including fuzzy inference systems (FISs). There have also been some
applications involving hybrid techniques that marry two ML systems, including ANN–RF
and SVM–RF. Studies have recorded success in their applications of both AI and ML in
water-based usages for optimizing modeling processes.

While these successes have been noted, AI and ML applications are not without
their challenges that must be overcome before widespread implementation occurs. This
review offers a cross-section of mostly ML techniques, with some AI and smart technolo-
gies, that have been applied in water-based applications to optimize and model water-
and wastewater-treatment processes (including chlorination, adsorption, and membrane-
filtration processes), natural-systems monitoring, including dissolved-oxygen monitoring,
water-quality-index monitoring and water-level monitoring, and water-based agriculture
including hydroponics and aquaponics. This review is not intended to be all-encompassing
of AI, ML, and smart-technology applications in water-based studies but rather to show the
current pulse of many of these important published works. While all the categories include
descriptions of the model(s) used, as well as input and output parameters, the individual
analyses also include topics of specific relevance. As the reviewed journals’ successes are
noted, so too are the shortcomings that were nearly ubiquitously discovered. Challenges
and their implications to future success, along with recommendations and conclusions, are
included to map these common shortcomings, and to offer a path beyond them.

2. Review Search Criteria and Methodology

This review included a search of peer-reviewed publications on Web of Science to eval-
uate the application of artificial intelligence, machine learning, and smart technology in wa-
ter treatment and monitoring. Searches were separated into four broader categories: “water
treatment”, “water systems monitoring”, “hydroponics” and “aquaponics”. Hydroponics
and aquaponics are included as separate search results in order to identify water-specific
applications of AI, ML, and smart technologies that rely on nutrient/environmental control
and monitoring. These broader categories were matched with specific keywords to better
define the search results including “artificial intelligence”, “machine learning”, and “smart
technology”. The search was limited to peer-reviewed publications that included specific
mentions of methods and models used. Other review publications were not included in
this paper. The literature search was limited to include peer-reviewed articles written in
English that were published between 2012 and 2022, with the bulk between 2018 and 2022
(last updated on 24 March 2022)
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Using a combination of keywords with the “water treatment” category, approximately
760 search results were returned including articles and proceeding papers. Following a
refinement for peer-reviewed articles and proceeding papers that focused on chlorination,
adsorption, and membrane processes, approximately 400 search results remained. After
a text review, 28 references were included for inclusion in this in-depth review (11 for
chlorination, 10 for adsorption, and 7 for membrane). The inclusion criteria were based
on the scope of the available papers and the availability of specific AI methods and ML
models. For the “water systems monitoring” category, approximately 220 search results
were returned. Following a similar text review for peer review, scope, and specific AI or
ML mention, 12 references that displayed a robust representation of available research
were included for this in-depth review. Similarly, the initial searches for “hydroponics”
and “aquaponics” combined netted approximately 100 search results (approx. 60 for
hydroponics, 40 for aquaponics). Utilizing the refinement criteria, 10 references were
selected for inclusion in this in-depth review.

3. Machine-Learning Models, Artificial-Intelligence Methods, and Smart Technology

ML models used in water applications are briefly summarized below in Section 3.1. A
brief mention of utilized AI methods is also included. A section on smart technologies as
defined in this review paper is included in Section 3.2, which are considered the Internet of
Things, smart sensors, and systems based on these technologies, and are often integrated
with AI/ML models and methods. All of these techniques have been studied for uses in
water- and wastewater-treatment processes including chlorination, adsorption and mem-
brane filtration, water-quality management including dissolved oxygen and water level, as
well as water-quality-index modeling and/or hydroponics and aquaponics farming.

3.1. Machine-Learning Models and Artificial-Intelligence Methods

AI and ML models and methods are briefly summarized below in Table 1. Their gen-
eral usages, specific usages in water treatment and modeling applications, advantages, and
disadvantages are highlighted to aid in the selection of appropriate models and methods
for water treatment and monitoring applications. Further peer-reviewed and published
textbook sources that supply the necessary foundational and in-depth explanations of
these methods and models are also included in the final column. These water treatment
and monitoring applications are not intended to be all-encompassing, but to represent the
published peer-reviewed journals that were selected based on the methodology explained
above. Most of these included ML methods would fit the “black-box” archetype and would
be considered a consistent “disadvantage” for many of the models (notably excluding
GA/GPs).
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Table 1. A summary of AI methods and ML models used in water treatment and monitoring.

Leaning and
Modeling
Technique

General Applications *

Reviewed Water
Treatment and
Monitoring
Applications

Advantages Disadvantages

Random Forest (RF)

• Supervised machine
learning
• Regression,
Classification
[13–18]

• Adsorption process
percent removal
modeling
• Simple and hybrid
dissolved-oxygen
modeling

• Intuitive model
architecture
• Capable of handling
continuous and
categorical inputs-even
with missing
values/data
• Relatively stable with
less impact due to noise
and outliers
• Bagging algorithm
reduces overfitting and
variance

• Accuracy and
robustness determined
by the “density” of
decision trees
• Increases in density
result in significant
increases in model
complexity, model
training period, and
required computational
power

Support Vector Ma-
chines/Regressions
(SVM/SVR)

• Supervised machine
learning
• Regression,
Classification/ Pattern
Analysis
[19–23]

• Disinfection
by-product (DBP)
modeling
• Membrane-process
parameter modeling
• Biological oxygen
demand (BOD) and
chemical oxygen
demand (COD)
modeling
• Dissolved-oxygen
modeling of rivers
• Aquaponics growth
rate modeling
• Aquaponics growth
stage classification

• Capable of handling
high dimensional
datasets (i.e., high
number of inputs vs.
lower number of
outputs)
• Capable of handling
small dataset changes
• Functional with both
linear and non-linear
data

• Kernel selection is
initially difficult and
time consuming
• Modeling requires
high computational
power making
SVM/SVR mostly not
suitable for larger
datasets
• Susceptible to noise
in datasets
• Relatively long
training times

Fuzzy Inference
System (FIS)

• Artificial intelligence
• Decision making, system
control
[24–28]

• Chlorine dosage
set-point control
• Hydroponics system
and environmental
control

• Utilization of fuzzy
logic rather than binary
logic better models the
human experience of
decision making
• Outputs and
decisions are easily
interpretable with a
well-defined system

• Terminology can be
interpreted as
confusing without
knowledge of fuzzy
logic
• Applicability
dependent on
operator-defined
parameters and
experience-prone to
human error

Genetic
Algorithm/Genetic
Programming
(GA/GEP)

• Evolutionary, stochastic
algorithm
• Regression,
Classification
[29–32]

• DBP formation
modeling

• Basic concept easy to
understand for most
• Multi-objective
optimization is possible
• Robust to both noisy
datasets and local
maxima/minima
• Functional on
discrete, continuous,
and mixed datasets

• Implementation is
often difficult and time
consuming
• Requires high
computational power
• Fitness/objective
function and operators
difficult to derive
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Table 1. Cont.

Leaning and
Modeling
Technique

General Applications *

Reviewed Water
Treatment and
Monitoring
Applications

Advantages Disadvantages

Artificial Neural
Network
(ANN)-General

• (Typically) Supervised
machine learning
• Regression,
Classification [23,33,34]
(Figure 1A)

• Chlorine
dosage/set-point
• DBP formation
modeling
• Adsorption process
parameter modeling
• Membrane-process
parameter modeling
• Dissolved-oxygen-
concentration modeling
• Hydroponics system
control and
classification

• Capable of handling
high dimensional
datasets
• Modeling/prediction
results obtained in a
reasonable amount of
time
• Forward propagation
capable of cheap and
fast computation
• See below for specific
ANN model
advantages

• High computational
power associated with
backward propagation
stage
• Some models and
architecture themselves
are difficult to
understand
• See below for specific
ANN model
disadvantages

k-Nearest Neighbor
(k-NN)

• Supervised machine
learning
• Classification [23,35,36]

• Aquaponics growth
stage classification

• Easy to implement
with little to no training
period
• Capable of handling
new data additions

• Poor performance
with large datasets and
datasets with high
dimensionality
• Susceptible to noise,
missing data, and
outliers

Hammerstein-
Wiener
(HW)

• Machine-learning model
• Regression [37–41]

• Dissolved-oxygen-
concentration
modeling

• Capable of modeling
dynamic datasets that
display static
non-linearity
• Static non-linearity
can be canceled to
apply linear algorithms

• Particularly complex
model that is difficult
to understand and
implement

Radial Basis
Function (RBF)
Kernel

• Machine-learning
function
• Regression,
Classification
[23,42–44]

• DBP formation
modeling
• Adsorption process
removal efficiency
• Membrane-process
parameter modeling

• Performs faster with
less computational
power than traditional
ANN models
• Less susceptible to
local minima/maxima
issues
• Capable of handling
noisy datasets
• Simple three-layer
(input, hidden, output)
architecture

• Complexity greatly
increases with
increasing neurons in
the model’s one hidden
layer
• Difficulty handling
increasingly non-linear
datasets

Recurrent Neural
Network
(RNN)/Long
Short-Term
Memory (LSTM)

• Supervised machine
learning
• Regression,
Classification [23,45–48]
(Figure 1B)

• Membrane-process
parameter modeling
• Dissolve oxygen
concentration modeling

• Suitable for
time-series datasets
and modeling
• Suitable for
sequential datasets and
modeling
• No limit to the length
of dataset inputs

• Requires high
computational power
• Requires large and
diverse datasets
making training
difficult
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Table 1. Cont.

Leaning and
Modeling
Technique

General Applications *

Reviewed Water
Treatment and
Monitoring
Applications

Advantages Disadvantages

Convolutional
Neural Network
(CNN)

• Supervised machine
learning
• Regression,
Classification,
Segmentation [23,49–52]
(Figure 1D)

• DBP formation
modeling

• Results are typically
regarded as highly
accurate
• As the model runs in
parallel, results are
obtained quickly
• Excel at solving with
image-based inputs

• Model and
architecture themselves
are extensive and
complicated
• Requires high
computational power

Adaptive
Neuro-Fuzzy
Inference Systems
(ANFIS)

• Supervised machine
learning
• Regression,
Classification
[53–55](Figure 1C)

• DBP formation
modeling
• Adsorption process
removal efficiency
modeling
• Membrane-process
parameters modeling
• Dissolved-oxygen-
concentration modeling
• BOD/COD modeling

• Combined important
advantages of ANN
models with the FIS
including:
• No need to rely solely
on the human
experience as a FIS
does
• Relatively fast
learning
• Uses both numerical
and linguistic language
during modeling
• Capable of handling
non-linear datasets
• Able to classify and
recognize patterns as
an ANN model does

• Requires high
computational power
that increases with the
number of rules
implemented
• Highly susceptible to
performance issues
with smaller datasets;
more so than other
ANN models
• Membership function
type and number are
vital and can be
difficult to implement
to create acceptable
accuracy

Extreme Learning
Machine (ELM)

• Supervised machine
learning
• Regression,
Classification [56–58]

• Dissolved-oxygen-
concentration
modeling

• Relatively short
training times
• Suitable for pattern
classifications

• Often faces
over-fitting or
under-fitting if too
many/few hidden
nodes are utilized

* The references cited in “General Applications” are foundational source material of the AI models.
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3.2. Smart Technology—The Internet of Things (IoT) and Smart Sensing Technology

The Internet of Things is a descriptor for a network of physical objects that can
connect to the internet (or other communication networks) and that are often endowed with
some sort of analytical process (such as environmental sensing) using software, hardware
or other technologies. In the context of this paper, the IoT in water applications often
includes internet-enabled systems equipped with pressure sensors, flow sensors, and/or
water-quality/characteristic sensors [59]. The intent is typically to exchange data with
other connected devices or networks over the life and duration of the sensor or other
technology [60], often for system optimization, transparency or ease of use [61]. The IoT
creates a cooperative network of data collection that can be stored locally or offsite without
a human ever physically needing to take the data themselves or operate the physical object.
As such, the long-lasting function and life of the connected device must be maintained.
Though not technically artificial intelligence, the IoT can be fused with AI to create what
has been coined as the “Artificial Intelligence of Things”, which would marry this data-
collection process to feed AI with critical inputs for its learning process [62].

Smart sensing technology can be related to IoT, but often represents a broader breadth
of systems that do not need to be defined by their collectiveness and can also include
stand-alone or isolated systems/sensors. To achieve the designation of “smart” sensing
technology, the sensors must have some function beyond their general sensing abilities [63],
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which is generally achieved through an actionable decision or automation. For example, a
thermostat that both measures the temperature of a room and interfaces with a furnace in
order to achieve a set temperature, thus not inherently requiring a connection with other
smart devices in the home. The smart designation can be enhanced through the ability to
wirelessly interact with other systems through Wi-Fi or Bluetooth capabilities.

4. Applications in Water and Wastewater Treatment

Artificial intelligence and machine-learning techniques have been studied in several
water- and wastewater-treatment applications. This section will serve as a cross-section of
three common treatment processes employed at water- and wastewater-treatment plants.
Much of the input data utilized by the reviewed journals were collected and disseminated
by treatment-plant staff or other regulatory bodies, relying on traditional collection methods.
Using smart-technology integration with the reviewed AI methods or ML models, the
burden of data collection can be decreased. More data is also likely to increase the accuracy
of selected ML models. Ultimately, this is not intended to represent the gamut of research
into AI and ML application in the water-treatment industry but rather a representation of
current research interest.

AI methods have been demonstrated to be effective in controlling chlorination, while
ML models are effective in modeling DBP concentrations, as well as modeling important
parameters for adsorption and membrane-filtration processes. The results are often eval-
uated using various statistical measures including the coefficient of correlation (R), the
coefficient of determination (R2), the mean average error (MAE), the mean square error
(MSE), the root mean square error (RMSE), and relative error (RE).

4.1. Chlorination and Disinfection By-Product Management

Disinfection in a water- and wastewater-treatment plant is the process by which
microorganisms and viruses are killed or inactivated, mainly with chlorine-based disin-
fectants [64]. While chlorination is effective as a disinfectant, it also poses human health
hazards [65]. Beyond its ability to cause acute toxicity in humans, chlorine is also known
to interact with bromide and organic matter naturally found in water systems to form
what is known as disinfection by-products. Disinfection by-products (DBPs) are suspected
human carcinogens and reproductive disruptors, and have received increased scrutiny
from regulators all over the world [66]. DBPs mainly belong to two larger subcategories:
trihalomethanes (THMs) and haloacetic acids (HAAs). THMs are regarded as the most
common form of DBPs as their formation is associated with chlorine disinfectants [67].
Haloacetic acids are commonly tested for five or nine common haloacetic acids and are
commonly referred to as HAA5 or HAA9. The entire mechanism behind the formation
of DBPs in drinking water is not known, making their prediction and mitigation an ideal
candidate for ML technologies. When learning has been achieved, mitigation through
control using AI methods is possible.

The published applications using AI methods to control chlorination and ML to
model and predict DBP formation/chlorine requirements are presented in Table 2. Many
researchers performed model testing on surface waters that undergo treatment at drinking-
water plants utilizing chlorine as the primary disinfectant, though some studies did involve
pre-chlorination peroxide/ozonation. Researchers also noted success in modeling DBP
concentrations in the treated water-distribution networks, and directly at consumer homes
and taps. Common model inputs include water temperature, pH, chlorine concentration,
contact time, and TOC/DOC concentrations. Other successful models have implemented
inputs using bromine concentration, UV254, algae concentrations, chlorophyll-a concentra-
tions, and DBP-precursor chemical markers.
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Table 2. AI methods to automate and ML to model and predict DBP formation/chlorine requirements.

Target
Compound (s)

Water
Source Disinfectant

AI/ML
Technique
Used

Input Variables Output Reference

Chlorine dose
and free
residual
chlorine (FRC)
set point

Surface
water Chlorine ANN

Reservoir set-point output,
FRC of treated water tank,
FRC output of WTP (mg/L),
WTP production flow rate,
compensating system flow
rate, dosage error

Chlorine
dosage, WTP
FRC set point

[68]

Chlorine dose Surface
water

Chlorine
(ClO) FIS

Raw water total organic
carbon (TOC), pH, contact
time, temperature

Chlorine
dosage recom-
mendation,
FRC

[69]

Total tri-
halomethanes
(TTHMs)

Surface
water Chlorine SVM, ANN,

GEP

pH, temperature, contact
time, Cl2/DOC, bromine
concentration

TTHM effluent
concentration [70]

TTHM Surface
water

Chlorine
(Cl2) SVM, ANN pH, temperature, residual

chlorine, TOC, UV254

TTHM effluent
concentration
pre-monsoon
season (PrM)
and
post-monsoon
season (PoM)

[71]

TTHM Surface
water Chlorine ANN

Temperature, pH, TOC,
algae concentration,
chlorophyll-a concentration,
pre, middle, and post
chlorine concentration, total
chlorine concentration

TTHM effluent
concentration [72]

DCAA, TCAA,
BCAA, HAA5,
HAA9

Tap water Chlorine RBF-ANN

Dissolved organic carbon
(DOC), UVA254, bromine
concentration, temperature,
pH, Cl2 concentration,
NO2-N concentration,
NH4+-N concentration

DBP tap
concentration [73]

TTHM, TCM,
BDCM Tap water Chlorine RBF-ANN pH, temperature, UVA254,

Cl2 concentration
DBP tap
concentration [74]

TTHM, TCM,
BDCM, THAA,
DCAA, TCAA

Surface
water

Peroxide/Ozone,
Chlorine ANN, CNN Fluorescence spectra DBP effluent

concentration [75]

TTHMs, TCM,
BDCM, DBCM

Surface
water Chlorine ANFIS

Temperature, pH, UVA254,
Cl2 concentration,
dissolved-organic-carbon
concentration

DBP effluent
concentration [76]

DCAA, TCAA Lab-created Chlorine ANN, RF, SVM

Number of aromatic bonds,
hydrophilicity,
electrotopological
descriptors related to
electrostatic interactions, and
atomic distribution of
electronegativity

DBP effluent
concentration [77]

The most tested ML model used for chlorination and DBP prediction is the ANN,
with other applications involving support vector machines, fuzzy inference systems, and
genetic algorithms. In comparative studies, ANNs typically outperformed both GAs and
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SVMs, though there are some cases of SVMs providing a slight advantage when R2 is used
as a point of comparison [60,67]. Common DBPs that were modeled and/or predicted
include total trihalomethanes (TTHM) and total haloacetic acids (THAA), with some studies
focusing on specific DBP compounds including dichloroacetic acid (DCAA), trichloroacetic
acid (TCAA), bromochloroacetic acid (BCAA), HAA5, HAA9, trichloromethane (TCM),
bromodichloromethane (BDCM) and dibromochloromethane (DBCM). Predictions for
TTHMs or THAAs versus their compounds did not differ widely in statistical model-
validation numbers.

4.2. Adsorption Processes

Adsorption processes are generally regarded as both a physical and chemical treatment
option for removing a wide range of contaminants and pollutants in both the water-
treatment and wastewater-treatment industries. The process of adsorption involves an
exothermic mass-transfer surface process that causes the transfer of some target molecule
(or adsorbate) from a fluid to a solid surface (or adsorbent, but also often referred to as the
sorptive media in the industry) [78]. Due to the complexity of the interactions that affect
the efficacy of an adsorptive process [79], it is often difficult for plants to precisely calculate
the important parameters and ultimate removals of the adsorption process. Reducing
this complexity would enable a treatment plant to extend a sorptive media’s life and
increase a treatment plant’s effectiveness and confidence that it is effectively treating
the water according to any applicable rules and regulations. To further optimize the
process, researchers have identified models using ML to make important predictions for
the adsorption process. ML for adsorption processes have the potential to support operator
decisions.

The published applications using ML to model and predict adsorption-process param-
eters are presented in Table 3. Studies have been published modeling adsorption processes
with water streams contaminated with metals, industrial dyes, and organic compounds.
Adsorbent media ranges widely and includes carbonaceous materials and metal-based
nanocomposites, among others. Inputs commonly used during ML modeling of adsorption
processes include pH, water temperature, adsorbent dose, contact time, and initial adsor-
bate concentration. Individual models have included inputs utilizing adsorbent particle
size, system flow rate, agitation speed, bed height, and BET surface area, among others.
Studies that included various organic pollutants operated with varying compound-specific
parameters such as target-contaminant molar mass. The majority of the published studies
that are included in this review pertained to models with outputs of adsorbate percentage
removal (also known as adsorption efficiency), though some models sought to predict
adsorption capacity, non-dimensional effluent concentrations, and the relative importance
of input water-quality parameters.
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Table 3. ML to model and predict adsorption processes and removal rates.

Adsorbate Adsorbent ML Technique
Used Input Variables Output Reference

Copper ions Attapulgite
clay RF, ANN, SVM

Initial copper concentration,
adsorbent dose, pH, contact
time, addition of NaNO3

Adsorbate percent
removal [80]

Asphaltenes

Nickle(II)
Oxide
Nanocompos-
ites

RBF-ANN, ANN,
SVM,

Type of nanocomposite, pH,
amount of adsorbent over
adsorbate concentration,
temperature

Adsorbate percent
removal [81]

Various organic
pollutants

Activated
carbon

ANN, SVM,
ANFIS

Molar mass of target
contaminant, initial
concentration, flow rate, bed
height, specific surface area,
contact time

Non-dimensional
effluent
concentration

[82]

As (III) Various ANFIS

Initial concentration, adsorbent
dose, pH, contact time, agitation
speed, temperature, solution
volume, inoculum size, flow
rate

Adsorbate percent
removal [83]

Methylene blue
(MB), Cd(II)

Natural walnut
activated
carbon

ANN
pH, adsorbent mass, MB
concentration, Cd(II)
concentration, contact time

Adsorbate percent
removal [84]

Sunset yellow
(SY)

Neodymium
modified
carbon

ANN Adsorbent dose, initial
concentration, contact time

Adsorbate percent
removal [85]

Ni(II), Cd(II)

Typha
domingensis
(Cattail)
biomass

ANFIS
pH, adsorbent dosage,
metal-ions concentration,
contact, biosorbent particle size

Input parameters
influence on
removal efficiency

[86]

Zn(II) Rice husk ANN Initial concentration, contact
time, temperature

Adsorption
capacity [87]

Phosphate

Encapsulated
nanoscale
zero-valent
iron

ANN
pH, phosphate concentration,
adsorbent dose, stirring rate,
reaction time

Adsorbate percent
removal [88]

Various organic
pollutants

Activated
carbon ANN

Molar mass of target
contaminant, initial
concentration, flow rate, bed
height, particle diameter, BET
surface area, average pore
diameter

Non-dimensional
effluent
concentration

[89]

For studies including metal, organic, and industrial-dye contaminants, the ANN was
the most used ML model. Other models that researchers studied with notable success
include ANFIS, SVM, and RF. On average, ANN, SVM, and RF ML models performed
adequately, generally achieving R2 values greater than 0.9, and in some cases, greater
than 0.99 [80,81]. In most cases, SVM models performed slightly better than ANN models,
producing both R2 and RMSE values of better statistical value. In one case, the optimized
ANFIS model performed poorly in comparison to other success models for adsorption
processes, achieving an R = 0.813, and was noted as the worst performing in a comparison
between ANN, ANFIS, and SVM models [82], though in another it achieved the adequate
performance with an R2 = 0.9333 [83].
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4.3. Membrane-Filtration Processes

Membrane processes in water and wastewater treatment refer to the separation of
contaminants using a barrier or filter. The water is passed through the membrane usually due
to high-pressure differentials between one side of the membrane and the other side [90]. The
smaller the pore size, the more pressure is required to pass the water through the membrane.
Membrane processes are typically used for contaminants that are difficult or costly to remove
by chemical or physical means, but also for contaminants that require a high level of removal
that simply cannot be achieved by other chemical or physical means [91]. The most used
membrane processes are microfiltration, ultrafiltration, nanofiltration, and reverse osmosis.

Applications using ML to optimize, model, and predict the membrane-filtration pro-
cess are presented in Table 4. Researchers have created models that function with microfil-
tration, ultrafiltration, nanofiltration, and reverse osmosis. A study involving a submerged
membrane bioreactor has also been included in this review. Water sources tested us-
ing these models include a wide array of pollutants and natural compounds, including
petroleum/oil, natural organic matter, various industrial and pharmaceutical wastes, and
simple salt/ocean water. Similar to previous sections involving ML in water/wastewater-
treatment applications, ANNs are the dominant model used. Other models that have been
utilized for membrane-filtration-process modeling include ANFIS, SVM, and specific forms
of ANNs including RNNs (some of which utilize LSTM).

Table 4. ML to model and predict membrane-filtration parameters.

Membrane Type Water Source ML Technique
Used Input Variables Output Reference

Titanium-based
ceramic
ultrafiltration

Petroleum production
wastewater

ANN, ANFIS,
RBF-ANN

pH, temperature, time,
transmembrane pressure,
crossflow velocity

Permeate flux [92]

Nanocomposite
ultrafiltration Various ANN

Polymer type, polymer
concentration, filler
concentration, filler
concentration, average filler
size, solvent type, solvent
concentration, contact angle

Solute rejection
(SR), pure
water flux
(PWF), flux
recovery (FR)

[93]

Microfiltration

Dilute suspension
mixture of crude oil,
dilute suspension
mixture of tween-20

ANN Flux rate, filtration time, shear
rate

Transmembrane
pressure (TMP) [94]

Submerged
membrane
bioreactor

Palm oil mill effluent RNN
Pump voltage, airflow,
transmembrane pressure OR
flux

TMP, permeate
flux (PF) [95]

Reverse osmosis Saltwater ANN

Membrane operating period,
the time between cleanings,
water temperature, input
concentration, inflow, inlet
pressure, recovery percent

Pressure drop
(PD), salt
passage (SP)

[96]

Nanofiltration Surface water w/
natural organic matter RNN (LSTM)

Fluorescence regional
integration, pressure, initial
flux, DOC concentration,
fouling layer thickness

Permeate flux
(PF), fouling
layer thickness
(FLT)

[97]

Nanofiltration/reverse
osmosis

Pharmaceutical
wastewater ANN, SVM

Effective diameter of the
target compound, logD,
dipole moment, molecular
length, molecular equivalent
width, molecular weight
cutoff, sodium chloride salt
rejection, zeta potential,
contact angle, pH, pressure,
temperature, recovery

Rejection
percentage of
the target
compound

[98]
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ML techniques for modeling membrane-filtration processes seek to output several
different variables, commonly including transmembrane pressure, permeate flux, and
solute rejection. Inputs that exist in some of these published studies include pH, temper-
ature, contact/filtration time, transmembrane pressure, and flux rate, among many, and
more specific, options. Again, due to the range of models testing for different parameters,
it is difficult to fully compare the statistical values that many of these studies obtained.
Ultimately, ANN, RNN, and SVM models performed adequately well in terms of their
respective R2 values, consistently achieving values greater than 0.9, and in many cases,
achieving values greater than 0.99 [92,94,98] (Table 4).

4.4. Artificial Intelligence in Water Treatment: A Brief Case Study of ANN, SVM, and RF Models
for Adsorption-Efficiency Prediction

The published study conducted by Bhaget et al. ([80]) focused on the prediction of
copper-ion removal in an adsorption process relying on attapulgite clay as the primary
adsorbent. Three models were developed and compared to determine the optimal form of
prediction. These models included an artificial neural network, a support vector machine,
and a grid-optimization-based random forest. This study conducted by Bhaget et al. was
selected due to their in-depth discussion of the construction of their model and their
methods for input selection. This ultimately aids in furthering the development of these
intelligent models and methods by allowing future researchers to better understand the
processes and details of Bhaget et al.’s implementation.

The model inputs for all three intelligent options included initial copper concentration,
adsorbent dosage, pH of the water, contact time, and the ionic strength of the solution (upon
the addition of NaNO3). Copper-ion concentration was held at a constant level of 50 mg/L
to determine the effect the other input variables had on the adsorption efficiency. The
adsorbent dosage varied from 2 to 15 g/L, pH varied from 2.0 to 12.0, NaNO3 concentration
varied from 0 to 0.5 mol/L, and contact time was evaluated varying from 5 to 120 min.

The models were all developed using open-source software for the programming
language R, known for its usage in statistical computation. For training and testing, the
dataset was divided into two with 80% used for training and the remaining 20% used for
testing. The ANN model consisted of a four-layer model (one input layer, two hidden
layers, and one output layer) where the first hidden layer contained five nodes, while
the second hidden layer contained three nodes. Each neuron relied on a linear output
function. The SVM model was developed using a linear kernel. Finally, the RF model
utilized 76 samples to develop decision trees relying on the bootstrapping method (which
divides data into several subsets through random replacement, allowing each decision tree
in a forest to have its “own” random subset for training purposes [99]).

Tests were run on each model using a varying set of inputs. The input sets included:
(1) initial copper concentration; (2) initial copper concentration and adsorbent dosage;
(3) initial copper concentration, adsorbent dosage, and contact time; (4) initial copper
concentration, adsorbent dosage, contact time, and pH; (5) initial copper concentration,
adsorbent dosage, contact time, pH, and NaNO3 concentration. The models were noted to
perform best using all five inputs. Ultimately the RF and ANN models were determined to
display the best performance in terms of accuracy, achieving correlation coefficients greater
than 0.99, while SVM achieved a maximum correlation coefficient of 0.93.

5. Applications in Water-Quality Management

Artificial intelligence and machine-learning techniques have been studied in water-
quality management. This section will serve as a cross-section of some water-quality-
management models including dissolved oxygen, among other water-quality parameters
and indices, and river-water-level monitoring.

ML models have been demonstrated to be useful for the prediction and modeling
of water-quality-management parameters. The results were commonly evaluated using
various statistical measures, potentially including the coefficient of determination (R2), the



Water 2022, 14, 1384 14 of 28

mean square error (MSE), the root mean square error (RMSE), the normalized root mean
square error (NRMSE), the mean absolute percentage error (MAPE), the Nash–Sutcliffe
efficiency coefficient (NSE), the Pearson correlation coefficient (PCC) and/or accuracy
(ACC).

5.1. Water-Quality Management

Water-quality management is an important task necessary for the health and good
function of aquatic ecosystems. Often, human activity can hurt the water quality of rivers
and other waterways, and tracking this effect is vital to maintaining these ecosystems. A
commonly tracked parameter used to discern the health of a river or other waterway is the
dissolved-oxygen concentration. Hypoxia (or the lack of dissolved oxygen in waterways)
is becoming increasingly prevalent, generally because of increased nutrient loading and
global warming [100].

Due to the interactions between dissolved-oxygen (DO) concentrations and human
activity/pollution, it is increasingly important to measure DO as a means of predicting,
and possibly preventing, hypoxic zones from dealing widespread damage to these aquatic
ecosystems. Accurate and real-time results are often most favorable as moderate decreases
in DO represent potentially fatal results in certain species [101]. In some cases, DO sensing
can be obfuscated by environmental factors, demonstrating a present need for models and
methods that can overcome the traditional sensing methods’ shortcomings [102].

Table 5 presents some studies on modeling water-quality-management parameters
with ML, chiefly including dissolved-oxygen modeling, with additional studies focusing
on the more general water-quality index, and/or future water levels for rivers. Locations
used for sensing and monitoring water-quality parameters mainly include rivers, with one
WWTP included for BOD and COD monitoring.

Common inputs for water-quality modeling using ML include pH, water temperature,
and BOD levels. These inputs are also generally the same for water-quality-index (WQI)
monitoring and BOD/COD modeling, with the inclusion of dissolved oxygen as an input
in the case of the published study for WQI included in this review, while water-level
monitoring relies exclusively on past water levels and robust training data.

While studies modeling aides for water-quality management using ML techniques
mainly utilize ANNs, a wide array of other methods have also been studied including
ANFIS, RNN, EML, RT, SVM, HW, and hybrid ML models utilizing some of them with RF
models. Most studies’ models demonstrated accurate predictions, but this is ultimately
location dependent. On average, ANFIS models outperformed typical ANN and SVM
models in almost all the published studies reviewed here and presented in Table 5, and in
some cases were outperformed by hybrid models. Water-level forecasts were accurately
predicted using both ANN and ANFIS models, achieving R2 values greater than 0.999 with
both models.
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Table 5. ML to model and predict water-quality parameters and environmental variables.

Location ML Technique Used Input Variables Output Ref

Mathura, India
(Yamuna River) ANN, ANFIS

pH, BOD, water temperature,
dissolved oxygen (DO) (all inputs
have independent variables taken at
stations upstream, midstream, and
downstream)

Upstream, midstream,
and downstream DO
concentration

[103]

Oregon, USA
(Link & Klamath
Rivers)

ELM, ANN,
ANFIS, RF

Hourly temperature, pH, specific
conductivity DO concentration [104]

Malaysia
(Kinta River)

ANN, RNN (LSTM),
ELM, HW, ANN-RF,
RNN (LSTM)-RF,
ELM-RF, HW-RF

BOD, COD, pH, NH3, temperature,
chlorine, calcium, sodium, and total
solids concentrations

DO concentration [105]

Tabriz, Iran
(Tabriz WWTP) ANN, ANFIS, SVM Daily influent BOD/COD, TSS, pH,

previous BOD/COD effluent BOD, COD effluent [106]

Kedah, Malaysia
(Muda River) ANN, ANFIS

Water level for (t−1),(t−2), and
(t−3), where t−1 is the water level 1
h ago, and so on

Future water level (in
one hour) [107]

Palla, India
(Yamuna River) ANN, ANFIS DO, pH, BOD, NH4, water

temperature Water-quality index [108]

Nizamuddin, India
(Yamuna River) ANN, ANFIS, SVM pH, BOD, COD, flow rate, NH3

concentration, water temperature DO concentration [109]

Udi, India
(Yamuna River) ANN, ANFIS, SVM pH, BOD, COD, flow rate, NH3

concentration, water temperature DO concentration [109]

Kelantan, Malaysia
(Kelantan River) ANN

DO concentration, BOD, COD, pH,
ammonia nitrogen concentration,
suspended solids

DO concentration,
BOD, COD, pH,
ammonia nitrogen
concentration
(NH3-NL), suspended
solids (SS)

[110]

Hilo, Hawaii (Wailuku
River) ANN, ELM, SVR

Hourly turbidity, hourly salinity,
hourly water temperature, hourly
river flow

Turbidity w/ river flow
at t [111]

Mesa, Arizona
(algae cultivation pond) RNN (LSTM) Microbial potentiometric sensor

measured open-circuit potentials

Blue-green algae conc.,
conductivity,
chlorophyll conc., DO,
pH, turbidity

[112]

Johor State, Malaysia
(Johor River) ANFIS

Temperature, conductivity, salinity,
nitrate, turbidity, phosphate,
chloride, potassium, sodium,
magnesium, iron, and E-coli
concentrations

Suspended solids, pH,
ammoniacal nitrogen [113]

Thailand
(Chao Phraya River)

SVM with varying
kernel functions

BOD, DO, fecal coliform bacteria,
total coliform bacteria, ammonia
concentration, salinity

ammonia
concentration, total
coliform bacteria, fecal
coliform bacteria, BOD,
DO, salinity

[114]

5.2. Artificial Intelligence in Water-Quality Management: A Brief Case Study of ANFIS and ANN
Models for WQI Prediction

ML-based models have been developed to predict the water-quality index for the river
Ganga and its tributaries ([108]). Both models (ANN model and ANFIS model) relied on
inputs of dissolved-oxygen concentration, pH, BOD, ammonium nitrate concentration,
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and water temperature. This case study will highlight the methods used to achieve the
AI models to better understand their construction and relative accuracy compared to one
another. The study conducted by Gaya et al. was selected due to their inclusion of the
ML models’ structure, along with their decision to utilize similar ML models with varying
structures to test the effect varying inputs and hidden layers had on model accuracy.

Both the ANN model and the ANFIS model were developed using programming
packages within MATLAB R2017b. Both models utilized a dataset of which 70% was
employed for training (referred to as calibration) and 30% was used for testing (referred
to as validation). The ANN model was a simple three-layer neural network (one input
layer, one hidden layer, and one output layer). Input data were normalized from 0 to 1
before being fed to the ANN model. As is commonly used with these models, the ANN
model relied on backpropagation, meaning that input training data are fed through the
model, passing through the output layer, where training error is propagated backward
until the selected level of accuracy is achieved. The models were tested using five different
structures that differed for the ANN and ANFIS model. For the ANN model, the structure
was varied and included varying numbers of nodes. ANN model 1 (ANN-1) used one
input node of dissolved oxygen, one hidden-layer node, and one output node. ANN-2 used
two input nodes of dissolved oxygen and pH, two hidden-layer nodes, and one output
node. ANN-3 used the previous plus BOD, three hidden-layer nodes, and one output node.
ANN-4 used the previous plus ammonium nitrate concentration, four hidden-layer nodes,
and one output node. ANN-5 used the previous water temperature, six hidden-layer nodes,
and one output node. The best performing ANN model was noted as ANN-2.

The ANFIS models were tested using five different structures with variable input
variables and two triangular membership function inputs with constant output. ANFIS
model 1 (ANFIS-1) utilized all five input variables. ANFIS-2 utilized four input variables,
ANFIS-3 utilized three input variables, ANFIS-4 utilized two input variables, and ANFIS-5
utilized two input variables. Interestingly, the best-performing model was noted as ANFIS-
2, but variable combinations were not as readily available for ANFIS models as they were
for ANN models. Both ANN and ANFIS models were noted for their relative success in
predicting actual WQIs, achieving high determination coefficients greater than 0.99.

6. Applications in Water-Based Agriculture

Smart technology in conjunction with artificial intelligence and machine-learning
methods has garnered interest in some sectors of the research community. This section
will serve as a cross-section of two water-based agricultural methods: hydroponics and
aquaponics. Smart technology both coupled with and independent of AI methods and ML
models (referred to below as “Smart Systems”) has been demonstrated to be effective in
automating and monitoring the growth process and health of these water-based agricultural
systems. The results are evaluated using various statistical methods including the system
accuracy, the coefficient of determination (R2), the mean average error (MAE), the false-
positive rate (FPR), and the system error (Err).

6.1. Hydroponics and Aquaponics

Hydroponic farming and hydroponic systems are methods of plant cultivation that
do not use soil. Plants are grown in (an often specifically tailored) nutrient solution that
provides the plant with all its nutrient and water needs. While this is a far more technical
form of cultivation compared to traditional farming, hydroponics has the distinct advantage
of producing higher crop yields, with greater plant density in significantly less space and
with lower average water usage [115]. Crops are grown suspended in a tailored nutrient
solution that must also be kept at the proper pH for growing, and the growing rooms must
be kept at the proper humidity and temperature [116]. Nutrient solutions are typically
stored in separate tanks and are delivered to the crops utilizing a pump and pipe network.

Aquaponics is like hydroponics and is often considered a subset of hydroponic farming.
Plants are still typically grown without the use of soils, but instead of relying on a tailored
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solution for nutrients, a more sustainable cycle is employed [117]. In aquaponic systems,
plants receive their nutrients from the by-products of fish (typically fecal matter) stored
in adjacent (or near-adjacent) tanks and connected through a pump and pipe network.
In return, the crops often act as water purifiers for the fish through the removal of their
by-products and fecal matter [118]. It is often a difficult process for cultivators to maintain
and optimize hydroponic and aquaponic setups. Thus, researchers have been looking into
artificial-intelligence models and have been more commonly using smart technology to
help ease some of the burdens of controlling a hydro/aquaponics system.

For the purposes of this paper, AI methods, ML models, and smart applications used
in the hydro and aquaponic studies are presented in Table 6 and referred to as “Intelligent
Models, Methods and Technology”. In contrast to other sections presented in this review,
many of the applications involve control and monitoring using smart and/or internet-
enabled devices, often using the IoT. Some of the included articles do not rely on a proper
IoT, and instead use smart sensors (that may have internet functionality) for control and
automation. Like more traditional forms of AI and ML, these setups rely on the use of criti-
cal inputs for information monitoring and system action. Common aqua and hydroponic
sensor data include pH, water temperature, air temperature, humidity, nutrient/plant
height (often measured using an ultrasonic sensor), and electrical conductivity (which is
meant to be analogous to nutrient loading). Other aquaponic-specific inputs include total
dissolved solids and ammonia concentration.

In studies where IoT or smart sensing is utilized for monitoring system health and
automation, outputs are commonly related to nutrient-pump feeding, humidity, tempera-
ture controls, pH control, and light control. To achieve these levels of automation, these
IoT systems can be paired with AI methods and ML models, such as FIS or ANN. These
systems are also paired with central control/processing units (though due to the scale of
many of these studies, they are often technically considered microprocessors).

Arduino-based controllers are the most popular among the reviewed applicable pub-
lished papers. Studies indicate that there has also been some success in implementing ML
models for crop harvestability, crop height, fish weight, and nutrient solution constituent
concentrations. These outcomes have been achieved using k-NN, SVM, and ANN. Studies
integrating the models and smart technology have noted positive plant growth compared to
traditional methods and have allowed operators to employ remote-monitoring techniques.

Table 6. Intelligent models, methods and technology to monitor and predict plant growth in hydro-
ponic and aquaponic agriculture systems.

Type of
Water-Based
Agriculture

Intelligent Models,
Methods, and
Technology Utilized

Input Variables Output Reference

Aquaponics k-NN, SVM Images of crops
Growth stage classification
(vegetative, head development,
and harvestable)

[119]

Aquaponics IoT

Digital light, water level/plant
height (ultrasonic), air
temperature and humidity, water
temperature (in a fish tank),
electrical conductivity, pH

System health notifications,
activation/deactivation of
actuators for fish feeding, water
heating, and grow lights

[120]

Aquaponics Smart Sensing and
Control

Humidity, water temperature, pH,
light intensity, total dissolved
solids, room temperature, flow
between systems

Water pump (for circulation), air
pump (for water oxygenation),
grow light, fish feeder

[121]
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Table 6. Cont.

Type of
Water-Based
Agriculture

Intelligent Models,
Methods, and
Technology Utilized

Input Variables Output Reference

Aquaponics SVR

Water temperature, ambient
temperature, pH, amount of fish
feed used, TDS, ∆pH, ∆water
temperature, ∆ambient
temperature, ∆fish weight, ∆plant
height

Fish growth rate, plant growth
rate [121]

Aquaponics IoT, FIS
Temperature, turbidity, pH,
dissolved oxygen, TDS, ammonia
concentration, water level

System health notifications,
temperature, and ammonia
control using FIS

[122]

Hydroponics IoT, ANN pH, temperature, light intensity,
humidity, water level

Water pump (for nutrient or pH
control), light control, humidity
control.

[123]

Hydroponics
Novel AI monitoring
system, Smart Sensing
and Control

Humidity, temperature, pH, water
level System health notifications [124]

Hydroponics FIS pH, humidity pH control, humidity control [125]

Hydroponics Self-Learning AI UV-vis spectroscopy Total nitrogen, total phosphorus,
total potassium, pH [126]

Hydroponics IoT

Room temperature, room
humidity, water temperature,
water pH, horticultural lighting,
fertilizer level

System health notifications [127]

6.2. Smart Technology and Artificial Intelligence in Water-Based Agriculture: A Brief Case Study
of IoT and FIS in Aquaponics

The published study conducted by Rozie et al. ([122]) implemented the IoT and an
FIS using internet-connected sensors and data-connected rules and membership. The
study conducted by Rozie et al. was included for its in-depth explanation and inclusion
of the necessary sensors and tools to create an IoT network and a functioning automatic
system using an AI method. Their clear explanation of the membership functions used to
create their FIS is also an important reason why this paper was selected. Ultimately, these
inclusions and explanations will aid future researchers in reproducing the results presented
below while also maintaining confidence in the knowledge that the system was sufficiently
explained.

The IoT-based sensors captured data relating to pH, temperature, turbidity, dissolved
oxygen, total dissolved solids, ammonia concentration, and water level while relying on
them for a cloud-based storage system. Data were stored in various formats (CSV, excel,
pdf, and images) with the intention of being used for creating a timeseries for the study and
long-term observation of aquaponics processes and variables. Two of the aforementioned
datasets, namely temperature and ammonia concentration, were additionally utilized for
automation and control using the FIS.

Fuzzification of the data for the FIS was achieved using three membership functions:
namely a temperature function with defined “cold”, “good”, “warm” and “hot” vari-
ables, an ammonia function with defined “safe”, “warning”, and “toxic” variables, and a
motor-speed function with “slow”, “normal” and “quick” variables. The temperature and
ammonia-concentration variables were defined using experience and knowledge derived
from the Indonesian National Standards Agency. The motor-speed function was used to
control the temperature and ammonia concentration by introducing clean and appropriate
temperature water to the system. For example, when the membership function for temper-
ature indicates “hot” and the membership function for ammonia concentration indicates
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“toxic”, the input for the motor-speed membership function would result in an output of
“quick”, thereby quickly introducing freshwater to the system to cool water temperatures
and dilute ammonia levels. All data were simultaneously recorded and uploaded to a
web-application-based user interface and a TelegramBot live-chat feature to aid in remote
control and monitoring of the system.

Utilizing the FIS, Rozie et al. were able to achieve acceptable temperature cooling in
approximately 2 h versus the 3.5 h that a non-controlled system would naturally take to
cool using fixed motor speeds. Ammonia control was also achieved and able to decrease
ammonia levels from 0.19 ppm at its peak to approximately 0.04 ppm without direct human
intervention. System updates directly to human monitors for other variable inputs recorded
were sent to users within 3 s of appreciable changes.

7. Common Challenges with AI and ML Implementation in Water Treatment and
Monitoring

AI methods and ML modeling have some distinct and advantageous uses compared
to traditional models and knowledge. While these successes are important to note, it is also
important to note that there are some unique challenges associated with this space that
must be discussed for widespread adoption to become possible in water-based applications.

7.1. Learning and Reproducibility Challenges

Many artificial-intelligence and machine-learning techniques are subject to poor re-
producibility as they are often developed using random weights and tailored activation
functions that may only work with data that have similar characteristics as the dataset
with which it was originally trained and tested [128]. This not only makes it difficult
for organizations to apply a singular AI method or ML model to many different areas of
their industry, but it also makes it difficult for researchers to recreate and verify previous
methods and conclusions. It is often the case that the specific code used to create their ML
models is not included in published works, which instead opt to include general descrip-
tions of their process. While researchers have many reasons to exclude the exact code from
their published work (such as it being proprietary), this does very little to boost public
confidence, knowledge of their systems, and verifiability, relegating AI and ML further
to their “black-box” delegations. This exclusion of code is true for many of the studies
reviewed here in this paper.

7.2. Data Challenges

Another important challenge to note is that these models are extensively dependent
on the selected data. The learning/training process is often the most important step in
developing a successful model, and selecting an appropriate dataset is no small task of
that process. Due to this, small deviations in natural or treatment processes that were
not encountered during the training process can cause a previously successful model
to become essentially defunct and unable to process the new information that it was
supplied as it was never prepared to handle it. This problem can be further exacerbated
by the fact that many real-life systems lack the extensive datasets needed to power many
of these ML models. While researchers and academics can select their datasets, many
communities that would benefit from these intelligent systems simply do not have the
data-management/storage capabilities necessary for the function of these models [129]. So,
while larger municipalities and operations may be able to overcome these data-management
issues, smaller populations will be left with inadequate information.

7.3. Benchmark and Standardization Challenges

This challenge regarding the selection of data also extends into an issue of specificity.
As data are often carefully selected for use under specific conditions and locations, it is
increasingly difficult to extend existing and proven models to new locations. Ultimately,
this makes regulatory adoption significantly harder. The specificity of these datasets to
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their unique locations and conditions makes the standardization that is often required for
local and national regulations a challenge. The current state of AI and ML surrounding the
careful selection of datasets that are near-perfectly tailored to their unique characteristics is
a significant hurdle to overcome in order to make way for local and national regulations to
accept these powerful tools on a regulatory and standard basis.

7.4. Result Comparison Challenges

This challenge is similar to the issues posed in the Standardization section above but
relates specifically to the way researchers conduct and publish their results and measures
of success. As was common in almost every paper reviewed in this journal, researchers
included some statistical methods to evaluate the accuracy and/or precision of their mod-
els. These include but are not limited to the coefficient of correlation (R), the coefficient
of determination (R2), the mean average error (MAE), the mean square error (MSE), the
root mean square error (RMSE), normalized root mean square error (NRMSE), Pearson
correlation coefficient (PCC), Nash–Sutcliffe efficiency coefficient (NSE), and relative error
(RE). The challenge is introduced in the fact that there is no standard statistical method
employed by researchers using AI/ML models and methods. Coupled with data and repro-
ducibility challenges that lead to incomplete/unpublished raw data (making independent
statistical analysis impossible), this makes it difficult to truly compare the results from
studies published by researchers using different statistical methods, even when they rely
on the same ML models.

7.5. Explainability Challenges

The final, but potentially most important challenges regarding the implementation
of AI and ML in water applications are the social and legal challenges. We cannot expect
these applications to be infallible, just as we cannot expect this from operators and other
related experts. It is not a question of if, but a question of when these applications can
fail if implemented in critical areas such as drinking-water treatment. The complexity and
apparent randomness of some of these models will be difficult to explain to the public at
large, but it is increasingly important that the public be equipped to understand the extent
and limitations of these systems as much as possible. Legally, it will be difficult to assign
blame and enact restitution with the current laws enacted in many localities [130].

8. Recommendations for AI/ML Implementation in Water Treatment and Monitoring

It is because of these challenges that future recommendations are necessary and im-
portant in ensuring that these powerful models and systems can be implemented to aid
some of our most important processes in society. Perhaps the most important recommen-
dations for the future relate to the management of data, the ability to reproduce models
in new areas and industries using existing and proven models, the creation/utilization of
explainable AI methods and ML models, transparency, and introducing causality into AI
and ML constructions.

8.1. Recommendations for Data Management and Reproducibility

While many treatment plants and natural systems already have sensing systems to
comply with regulatory bodies, regulatory compliance tends to require extended averages.
While it is likely that data are originally recorded using small time scales, it is not certain
that every area of the water industry has maintained the detailed data that would be
necessary to achieve these intelligent systems [131]. Storing data in its most detailed
form so that it can eventually be called back and used in training/teaching these systems
whenever possible is one way to alleviate this issue. Even systems that are not currently
using AI or ML in their daily functions could benefit from creating historical archives of
necessary data should the day come that AI or ML would prove useful.

Methods have been proposed to alleviate this data-management issue that has classi-
cally prevented many industries from implementing these systems, and also increased the
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reproducibility for new areas using existing and proven methods and models. The process
known as transfer learning (also referred to as knowledge transfer) is used to translate a
pre-trained model from one application to different applications relying only on a relatively
small amount of new data.

Transfer learning is ultimately based on the human experience of applying previous
knowledge and experience to new problems for faster and better results. Rather than
crafting ML models that use traditional learning methods to learn each task from the
ground up, transfer-learning techniques seek to use knowledge from past tasks for new
tasks, specifically when new tasks lack robust high-quality training data [132]. Methods
of transfer learning can be employed when labeled data are available in a target domain
(known as inductive transfer learning), when label data are available in a source domain
(transductive transfer learning), and when no labeled data exist in both the source and
target domains (unsupervised transfer learning) [133].

8.2. Recommendations for Transparency and Explainable AI/ML Models and Methods

Transparency is increasingly necessary when utilizing AI and ML, not only so re-
searchers can verify their reproducibility but so that everyone can benefit from the knowl-
edge behind their construction. Humans are generally hesitant to adopt models and
methods that are not easily interpretable and trustworthy [134], and with the rise in deep
learning and black-box methods (as seen in the models reviewed in this very paper), trans-
parency and explainability are increasingly difficult to come by in AI and ML applications.
While divulging the precise methods and construct of deep learning and black-box mod-
els between researchers is certainly a viable way of increasing transparency within the
academic community, this ultimately still falls short of reaching a larger, more general
audience [135]. The concept of explainable AI and ML seeks to do this very thing.

Explainable AI and ML is based on three levels of transparency, namely simulatability,
decomposability, and algorithmic transparency [136]. Simulatability, in this case, refers
to a human’s ability to think (or simulate) a model, and is mainly driven by the model’s
complexity. For example, models relying on complex rule-based functions or deep, intri-
cate structures, such as ANFIS models, have low simulatability, while models relying on
simpler and more explainable rules, such as decision trees and random forests, have high
simulatability.

Decomposability refers to the ability to appreciably interpret the individual parts of a
model, such as the inputs, parameters, and correlations. It relies on the decomposed model
being interpretable by a human without outside help or tools. Algorithmic transparency
refers to a person’s ability to follow the steps an ML model uses to take an input and create
an output. For these reasons, models with deep structures or architecture would have low
algorithmic transparency. For a more in-depth discussion of explainable AI and ML, along
with methods to make the ML models discussed in this paper more explainable, it is highly
recommended that the referenced source from Arrieta et al. be viewed.

8.3. Recommendations for Introducing Causality into AI/ML Models and Methods

The ability to overcome poor performance in AI and ML applications due to distur-
bances between training and testing data can be achieved by introducing causality (i.e.,
defining the linkage between cause and effect, input and output) between model variables.
Stable learning methods, or the ability for a learning algorithm to maintain little to no
change when the training data itself is changed, have been used to introduce causality,
and come in the form of a variety of different models, namely domain adaptation, domain
generalization, and variable decorrelation [137].

Domain adaptation refers to the alteration of a source domain to make it more like
that of the target domain [132]. In the case of domain adaptation, labels should be readily
available in the source dataset but are usually not readily or ubiquitously available in
the target dataset. This method works through simultaneous training using both the
source-dataset and target-dataset domains and relying heavily on the labels supplied by
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the source dataset to train the unlabeled target dataset. The two datasets should be closely
related when using domain adaptation, and data should be readily available from the target
dataset.

Domain generalization is similar to domain adaptation, except that it can function
with unseen (i.e., assumed unavailable) datasets [138]. This is achieved by using data from
related but distinct sources to form a more general model. A commonly used example
for a functional domain-generalized model is one that was trained using handmade work
such as sketches, cartoons, or paintings but can accurately classify real-life images such as
photographs [139].

Variable decorrelation seeks to alleviate the issue of correlation bias, or the perceived
illusion that correlation exists between two variables when in fact it is tenuous at best.
The process seeks to identify the true significance of a variable. This can be achieved by
reweighting samples, thereby removing linkages between variables and specific training
data [140]. In some cases, this can be difficult to apply and can reduce sample sizes, but
other proposed subsets of variable decorrelation such as decomposed variable decorrelation
have been recommended [137].

9. Conclusions

Artificial intelligence and machine learning, along with smart technology, can be used
to simplify and understand some of the most complex issues facing water-based industries.
This review has provided a cross-section and analysis of common ML models, with some AI
techniques and smart technologies that have been employed in water-based applications.

ML models and AI methods have adequately optimized, predicted, modeled, and
automated some of the most critical applications in water-based industries/operations,
including that of water- and wastewater-treatment plants, natural systems, and water-based
agriculture. Though many of the studies have been published and reviewed with success,
they are not without their own sets of challenges and limitations. Data management,
public/legal opinions, reproducibility, and transparency in research are all important hills
that must be climbed to further these intelligent applications. While these challenges and
limitations are certainly apparent, they do not discount the current research and progress
which suggests that ML models, AI methods and smart technologies have important
implications and futures for one of our planet’s most important resources.
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