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Abstract: Accurate estimation of reference evapotranspiration (ETo) plays a vital role in irrigation and
water resource planning. The Penman–Monteith method recommended by the Food and Agriculture
Organization (FAO PM56) is widely used and considered a standard to calculate ETo. However,
FAO PM56 cannot be used with limited meteorological variables, so it is compulsory to choose an
alternative model for ETo estimation, which requires fewer variables. This study built ten machine
learning (ML) models based on multi-function, neural network, and tree-based structure against the
FAO PM56 method. For this purpose, time series temperature data on a monthly scale are only used
to train ML models. The developed ML models were applied to estimate ETo at different test stations
and the obtained results were compared with the FAO PM56 method to verify and validate their
performance in ETo estimation for the selected stations. In addition, multiple statistical indicators,
including root-mean-square error (RMSE), coefficient of determination (R2), mean absolute error
(MAE), Nash–Sutcliffe efficiency (NSE), and correlation coefficient (r) were calculated to compare the
performance of each ML model on ETo estimation. Among the applied ML models, the ETo tree boost
(TB) ML model outperformed the other ML models in estimating ETo in diverse climatic conditions
based on statistical indicators (R2, NSE, r, RMSE, and MAE). Moreover, the observed R2, NSE, and
r were the highest for the TB ML model, while RMSE and MAE were found to be the lowest at the
study sites compared to other applied ML models. Lastly, ETo point data yielded from the TB ML
model was used in an interpolation process to create monthly and annual ETo maps. Based on the
ETo maps, this study suggests mainly a focus on areas with high ETo values and proper irrigation
scheduling of crops to ensure water sustainability.

Keywords: reference evapotranspiration; machine learning models; neural networks-based models;
tree-based models; multifunction-based models; climatic regions

Water 2022, 14, 1666. https://doi.org/10.3390/w14101666 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w14101666
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0002-8658-8575
https://orcid.org/0000-0001-9207-5779
https://orcid.org/0000-0002-3771-9380
https://orcid.org/0000-0002-8702-1140
https://orcid.org/0000-0002-5506-9502
https://orcid.org/0000-0002-7833-9253
https://doi.org/10.3390/w14101666
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w14101666?type=check_update&version=2


Water 2022, 14, 1666 2 of 29

1. Introduction

Water scarcity has become a global issue and a challenging task for arid and semi-
arid areas. Because of the rapid growth of the world’s population, each country attempts
to utilize water with better management by adopting innovative ways. [1]. Upgrading
water management systems and quantitative irrigation scheduling are essential to solving
water shortages. The proper amount of water given at the right time to crops is called
irrigation scheduling which may be computed in terms of evapotranspiration (ET). It is
a combination of evaporation and transpiration processes [2]. The determination of ET
is directly quantified by using the lysimeter, eddy covariance, and Bowen ratio energy
balance methods. ET estimation with these methods involves high capital, operation, and
maintenance costs, which may limit their use in practice [3–5]. As a result, relying on the
indirect technique is the best choice for quantification. One of these indirect techniques is
using empirical models that can be classified into multiple classes, including temperature-
based, radiation-based, mass transfer-based models, etc. The reference evapotranspiration
(ETo) is estimated in almost all empirical models. The reason for this is that calculating ET
for each crop is challenging. As a result, ETo is first estimated using indirect techniques, and
crop coefficients are then utilized to predict ET of each desired crop. Several attempts have
been made to estimate ETo correctly. However, the Food and Agriculture Organization
(FAO) of the United Nations (UN) and the American Society of Civil Engineers (ASCE) ET
committee recommend the Penman-Monteith (FAO PM56) method, which Allen introduced
in 1998 and validated in various climatic conditions [4,6].

Many sites across the globe do not have a full set of meteorological data for FAO
PM56 ETo calculations. However, recent studies reported ML-based predictions of the
FAO PM56 ETo using a full set of meteorological variables [7,8], which also unveiled the
relative importance and interdependencies and interrelations among the variables. In a
different study, ETo was computed using FAO PM56 with a full set of meteorological
variables, and the results were compared against predictions by a deep neural network
(NN) model that uses solar radiation (Rn) as a sole meteorological predictor [9]. Rn was
found to be the most critical meteorological variable in calculating ETo in a semi-arid region
by Basagaoglu et al. [7]. However, sunshine hours (N) can be used as a surrogate variable
for Rs when the latter is not available or precarious as in the current study. Zhou et al. [10]
also endorsed this statement as they explored the potential of deep factorization machine
(DeepFM), three-gradient boosting (gradient boosting with categorical features support
(CatBoost), light gradient boosting (LightGBM), extreme gradient boosting (XGBoost)),
three tree-based (gradient boosting decision tree (GBDT), random forest (RF), decision
tree (DT)), and one support vector machine (SVM-RBF) machine learning (ML) models for
modeling daily ETo in China by considering climatic variables (N, temperature (T), relative
humidity (RH), and wind speed (U)) of 12 stations located in humid and arid climatic
conditions. Previous studies have indicated that N was more closely related to Rs than
other meteorological variables [11–13]. Therefore, this study selected N as a substitute
for Rs.

Limited access to all parametric data and discovered ambiguity in the dependability
of meteorological parameters or unavailability of climatic variables for numerous sites
becomes a significant impediment to ETo estimation using the FAO PM56 method [14,15].
Although essential climatic variables are now accessible for climatic stations, still, climatic
data lack at many locations due to a limited number of automated weather stations de-
ployed at specific sites, and data quality is a concern due to installing obsolete weather
stations. The sensor’s operation is unreliable and reveals numerous variations that need
data calibration to be usable. In this case, ETo estimates derived using the FAO PM56
method are inconsistent and create a space to develop new methods to reliably estimate
ETo based on fewer inputs and an approach for the use of at least the FAO PM56 method.

Since a full set of meteorological variables is not available at many sites across the
globe, numerous studies have been reported that correlate their proposed equations using
limited meteorological data with the FAO PM56 method to develop alternative methods for
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ETo estimation. However, the results of these methods are often found inconsistent [16–19].
However, over the past two decades, ML synchronized with several algorithms were
applied for ETo modeling using limited climatic data [20–28]. The resulting ML models
indicate the best ETo modeling choice leading to the FAO PM56 method. The adaptation
in the advantage of ML models is mainly the selection of input variables versus output
variables. In addition, adding or removing an input variable using the ML technique to
create an output model compared to conventional methods entices researchers in additional
hydrological studies to develop the best input–output relationship [29–35].

The recent studies on ETo modeling highlighted this trending topic and were over-
whelming among hydrologists and meteorologists. Yin et al. [36] examined the performance
of the artificial neural network (ANN), SVM, and three empirical models for estimating the
daily ETo in a mountainous inland watershed in northwest China using historical weather
daily data. They reported SVM performed best in the study region. Wen et al. [37] estimated
ETo of an arid region in China using daily climatic variables (Tmax, Tmin, U, Rs) by applying
two ML models of ANNs and SVM against three empirical (Hargreaves (Ha), Ritchie (Ri)
Priestley, and Taylor (PT)) models. The authors used maximum and minimum temperature
as the model input. It was observed that the estimated daily ETo was reasonable using
limited meteorological variables. Wang et al. [38] investigated the performance of two ML
models, i.e., gene expression programming (GEP) and ANNs, for estimating daily ETo
using climatic data (Tmax, Tmin, U, RH, and N) of four meteorological stations located in the
karst region of Guangxi Province in China. The study revealed that GEP based on fewer
climatic inputs could produce simple explicit mathematical formulas that are easier to use
than the applied ANN models.

Sanikhani et al. [39] used four ML models (multilayer perceptron (MLP), generalized
regression neural network (GRNN), radial basis function neural network (RBFNN), and
adoptive neuro fuzzy interference system (ANFIS)) to predict the monthly ETo using three
climatic variables (Tmax, Tmin and extraterrestrial radiation (Ra)) from two stations in Turkey.
They developed the ML models based on temperature data, and the accuracy was examined
using the Hargreaves–Samani (HS) empirical equation. The GEP and GRNN in Antalya
outperformed the RBFNN and ANFIS in Isparta. Mohammadrezapour et al. [40] applied
three ML models (SVM, GEP and ANFIS) using different input climatic combinations for
ETo modeling. Their results showed that SVM exhibited the best performance among
the other ML models. Wu et al. [41] investigated the performance of eight ML models
(ANN, RF, GBDT, XGBoost, multivariate adaptive regression spline (MARS), SVM, extreme
learning machine (ELM), and kernel-based nonlinear extension of arps decline models
(KNEA)) to estimate ETo using temperature data alone and concluded that tree base ML
models of RF, XGBoost, GBDT were outperformed.

Saggi and Jain [42] examined four ML models (deep learning (DL), generalized linear
model (GLM), GBDT, and RF) to predict daily ETo using climatic variables (Tmax, Tmin,
U, RH, and N) at Punjab, India. They concluded that the DL model had a better per-
formance than other models. Likewise, Shiri et al. [43] compared a multifunction ML
model, i.e., a GEP, with a locally and externally calibrated PT model for ETo modeling.
They found that the multifunction ML model outperformed the calibrated empirical PT.
Tikhamarine et al. [44] calculated (or estimated) monthly ETo by applying five variants of
neural network (NN) models (i.e., embedded grey wolf optimizer (NNGWO), multiverse
optimizer (NNMVO), particle swarm optimizer (NNPSO), whale optimization algorithm
(NNWOA), and ant lion optimizer (NNALO)) at two stations (Ranichauri, Dar El Beida) in
India and Algeria. The ETo result of the NN models was compared with the Valiantzas (VA)
empirical model, and the NNGWO-generated satisfactory output was compared to other
NN models. Moreover, Ferreira et al. [45] compared the performance of two ML models
(NN, GEP). They indicated that ML models were better than the FAO PM56 method with
limited climatic data. In addition, Granata [46] developed four ETo ML models (regression
model tree (M5P), GBDT, RF, and SVM) by using climatic variables obtained from eddy
covariance (EC) flux tower stations installed at a site in central Florida characterized by a hu-
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mid subtropical climate. Based on the number of input variables (Rn, sensible heat flux (H),
soil moisture content (W), U, average relative humidity (RHavg) and Tmean), three different
input variants were created. The results showed that the selected ML models using all three
input variants have good capability for ETo prediction. In addition, M5P proved to be the
most accurate, while RF was the least accurate. The M5P ML model based on temperature
data performed well and predicted reliable ETo values. Keshtegar et al. [47] compared
the performance of the polynomial chaos expansion and response surface method against
the tree and neural network-based ML models for ETo modeling. Their results showed
polynomial chaos expansion and ML models performed better than the empirical models.

Nourani et al. [48] compared ML (MLP, ANFIS, SVR, MLR) and empirical (Hargreaves
and Samani (HS), modified Hargreaves and Samani (MHS), Makkink (Mk), and Ri) models
for ETo modeling using monthly meteorological variables (RH, Rs, Rn, Ra, Tmax, Tmin, Tmean,
U, and P) from fourteen stations located in different countries (e.g., Turkey, Cyprus, Iraq,
Iran, and Libya). The results indicated that ML models outperform traditional empirical
models based on different performing indices. Shiri [49] compared a multifunction ML
model to six empirical equations (HS, PT, Mk and Turc (Tu), Dalton (Dn) and Trabert (Tr))
for daily ETo modeling in a deserted area of Iran using five climatic variables (Tmax, Tmin,
Rs, U, and RH). The results demonstrated that the calibrated mass transfer-based equations
(TU, Dn, Tr) and their corresponding GEP outperformed the other models used in the
analyzed sites. This criticized the widely accepted consequence of using temperature-
/radiation-based models without data for various sites. Raza et al. [50] reviewed research
articles that applied various ML models for ETo modeling using limited climatic data
against the FAO PM56 method. The study reviewed recent articles published within the
last eight years (2012–2020). This study suggests using ML models with temporal climatic
data and creating ETo maps based on an ML model to present a realistic scenario that is
beneficial for crop water distribution.

Although weather records have been readily available in recent years, meteorological
data scarcity exists in many sites. In the case of Pakistan (our study area), few weather
stations were installed, and climatic data for several locations were found insufficient to
calculate ETo-based crop water requirements. Thus, the improvement of methods relying
on fewer climatic inputs (e.g., temperature data) and the development of ML models for
ETo estimation with minimal climatic records turn into a task of great relevance when
standard methods (e.g., FAO PM56) cannot be applied due to excessive input demands or
unavailability of climatic parameters, e.g., Rs. For this purpose, ML can be considered one
of the best options for developing an ETo model. There is no need to calibrate ML against
on-site measurements for local calibration. However, the development of an ML model
with a known set of input variables against the target variable is a crucial and vital issue
that has clearly been addressed in this study. The developed ML models were evaluated at
different test stations using only temperature (minimum and maximum) data to validate
their performance estimating ETo. Finally, ETo point data resulting from the best ML model
were used in an interpolation process to develop monthly and annual ETo maps, showing
the ETo variation over the study region. The ETo maps help agronomists, hydrologists,
and agricultural engineers to calculate crop water requirements precisely (e.g., drip and
sprinkler irrigation methods) for the cropland to avoid under- and overirrigation problems.

2. Data Collection and Country Profile

The FAO has developed a climatic database called CLIMWAT [51]. It contains geo-
graphical parameters (latitude, longitude, altitude) and climatic variables, which include
the minimum and maximum temperatures (Tmax, Tmin), the average relative humidity
(RHavg), wind speed (U), and sunshine hours (N). In this study, the climatic data of 22 sta-
tions in Pakistan, were gathered from the CLIMWAT database (Figure 1). Sarfaraz et al. [52]
defined Pakistan is located in a temperate zone. The climate is mainly desert, with scorching
summers and chilly or frigid winters, with considerable temperature changes at specific
sites. Table 1 contains statistical data on accessible climate factors. In addition, as shown in
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Figure 2, a boxplot chart was utilized to depict monthly variations of the chosen climatic
variables.

Water 2022, 14, x FOR PEER REVIEW 5 of 31 
 

 

scorching summers and chilly or frigid winters, with considerable temperature changes 
at specific sites. Table 1 contains statistical data on accessible climate factors. In addition, 
as shown in Figure 2, a boxplot chart was utilized to depict monthly variations of the 
chosen climatic variables. 

It can also be perceived from Figure 2 that Tmin increased from January to July and 
then continuously decreased until December. A similar trend was observed for Tmax (Fig-
ure 2b). This is because of the solar effect from winter to summer seasons (Figure 2e). N 
observed the maximum during the summer and the minimum when winter started. In 
addition, RHavg was interconnected with Tmax and Tmin because the maximum humidity 
was observed when the air temperature was high and vice versa. Moreover, RHavg was 
the highest in the summer season (Jul to Sep) because of the wind effect (Figure 2c). When 
the wind blows higher in the summer, as observed in Figure 2d, it increases humidity in 
the air. Overall, the maximum increase in average humidity and the highest humidity 
value were observed in the summer season. 

 
Figure 1. Geographical location of the selected climatic stations in Pakistan. 

  

Figure 1. Geographical location of the selected climatic stations in Pakistan.

Table 1. Statistical information on the available climatic variables.

Variables Observations Minimum Maximum Mean Std. Deviation Skewness Kurtosis

Min Temp 264.00 −8.70 30.30 13.78 9.69 −0.18 −0.95

Max Temp 264.00 0.80 44.20 27.55 9.73 −0.57 −0.38

Humidity 264.00 19.00 83.00 49.50 14.18 0.23 −0.55

Wind speed 264.00 17.00 752.00 197.72 145.95 1.33 1.82

Sunshine 264.00 0.80 13.90 7.44 1.87 −0.50 1.72

ETo 264.00 0.63 11.19 4.58 2.39 0.48 −0.31
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  Figure 2. Boxplot shows monthly variations of the selected climatic variables.

It can also be perceived from Figure 2 that Tmin increased from January to July and
then continuously decreased until December. A similar trend was observed for Tmax
(Figure 2b). This is because of the solar effect from winter to summer seasons (Figure 2e).
N observed the maximum during the summer and the minimum when winter started. In
addition, RHavg was interconnected with Tmax and Tmin because the maximum humidity
was observed when the air temperature was high and vice versa. Moreover, RHavg was the
highest in the summer season (Jul to Sep) because of the wind effect (Figure 2c). When the
wind blows higher in the summer, as observed in Figure 2d, it increases humidity in the air.
Overall, the maximum increase in average humidity and the highest humidity value were
observed in the summer season.
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3. FAO PM56 Method and Development of ML Models

To determine ETo values, the FAO PM56 standardized method developed by Allen et al. [4]
in 1998 is employed. This approach is based on the following equation, which is a mixture
of meteorological and aerodynamic parameters:

ETo =
0.408∆(Rn − G) + γ× 900

Tmean+273 ×U2 × (es − ea)

∆ + G(1 + 0.34U2)
(1)

where:
ETo is measured in mm/day;
Rn = net radiation at the surface (MJ/m2/day);
G = soil heat flux density (MJ/m2/day);
Tmean = air temperature at 2 m height (◦C);
Es = saturation vapor pressure (kPa);
ea = actual vapor pressure (kPa);
∆ = slope of vapor pressure curve (kPa/◦C);
γ = psychrometric constant (kPa/◦C);
γ = 0.000665 × p (kpa);
es is saturation vapor pressure (kPa), calculated using Equation (2):

es =

(
emin ×

(
(RHmax)

100

)
+ emax ×

(
(RHmin)

100

))
2

(2)

where:
emin: minimum vapor pressure;
emax: maximum vapor pressure;
RHmin: minimum relative humidity;
RHmax: maximum relative humidity.
U2 is wind speed at 2 m height (m/s) calculated using Equation (3):

U2 =
ws× 4.87× 1000

3600× emin(67.8× 3− 5.42)
(3)

where:
Ws: wind speed at a specific height above the ground surface;
emin: minimum vapor pressure;
J = 1, 2, 3. . . . . . .n.
CropWat 8.0 given on the official website of the FAO (https://www.fao.org/land-

water/databases-and-software/cropwat/en/ (accessed on 10 March 2022)) was used to
calculate ETo values as in the study of Tikhamarine et al. [33]. Moreover, CropWat was
developed using the FAO PM56 method, which requires at least five climatic parameters
(Tmax, Tmin, RHavg, U, N) as well as geographic parameters (longitude, latitude, altitude,
periodicity component (n)) for ETo estimation. The statistical values of all the five climatic
parameters used to calculate ETo are included in Table 1. However, the calculated ETo
using the FAO PM56 method (PM ETo) and CropWat 8.0 are presented in Figure 2f. On the
other hand, the average monthly climatic variables and ETo values labeled as PM ETo are
included in Appendix A.1.

In this study, ten ML models were chosen to estimate ETo. The ML models can
be divided into three categories: (i) three tree-based models; (ii) four neural network-
based models; (iii) three multifunction-based models. Training data of only two climatic
parameters (Tmax, Tmin) were primarily used to train ML models. Afterwards, trained
ML models were applied in different climatic stations to calculate monthly ETo using
only temperature variables (i.e., Tmax and Tmin). The climatic data from 15 stations
(15 × 12 = 180 records) were used to train the selected ML models, while climatic data

https://www.fao.org/land-water/databases-and-software/cropwat/en/
https://www.fao.org/land-water/databases-and-software/cropwat/en/
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from seven stations (7 × 12 = 84 records) were used to investigate each ML model’s perfor-
mance. The theoretical details and practical applications of ML models to estimate ETo are
elaborated below.

3.1. Tree-Based ML Models
3.1.1. Single Decision Tree

The basic ideology for the DT model is the iterative dichotomizer (ID3) algorithm
elaborated by Raza et al. [53]. However, this study used the following steps to develop the
DT model: (1) input of Tmax and Tmin selected as predicted variables and (2) selection of
the tree control parameters (i.e., node size, node split, and tree level). In this study, node
size consisted of five rows, whereas the minimum split occurred at ten nodes, and the
maximum size of the tree (level) was 10; (3) selection of the cross-validation method. In this
study, V-fold cross-validation was employed as recommended by a previous study [53];
(4) an essential step is the selection of the pruning method; this study applied tree pruning
control up to a minimum cross-validated error created in the earlier step; (5) finally, the
target (ETo) value was determined.

3.1.2. Tree Boost

A TB model contains several individual trees like SDTs in series. These smaller trees are
interlinked with each other. Therefore, the connection is present between the adjacent trees.
Thus, it is a chain-like structure with several trees. For the present study, the following steps
were considered to develop the TB model: (i) input parameters of the climatic variables
(Tmax, Tmin) assigned as predictor variables; (ii) commonly, misclassification is not crucial
in ML, but its rate (%) has decided the predictive ability of ML model. In this way, the
Huber loss function was applied to remove the misclassification error generated during
the model development process; (iii) the surrogate splitter method was utilized to split the
selected dataset; (iv) the minimum and the maximum number of trees in the TB model for
creating a series to perform an ensemble process were 10 and 400, respectively, which were
assigned after several attempts (trial and error method); (v) the dataset was segregated
using the K-type classification, which divides the dataset into k and k-1 subsets. Each of
the k subsets was tested, while the k-1 subset was deployed for training. The average value
from each subset was collected and then the overall ETo value as an output of the model
was projected.

3.1.3. Decision Tree Forest

For the present study, the steps involved in the development of the TF model were
as follows: (1) climatic variables (Tmax, Tmin) were selected as predictors/input; (2) 70%
of the total dataset were labeled as sample data while 30% fell in the out-of-bag (OOB)
data; (3) the sample data were split by the automatic randomization function used in the
TF model; (4) the actual result of each tree was collected while residual variance during
the process was collected separately; (5) the OOB data were analyzed and the resulting
residual variance was separated; (6) the average values from all the resulting residual
variance obtained from the sample and OOB were computed; (7) at last, the prediction was
determined. The stepwise process for ML models based on a tree-like structure is presented
in Figure 3. It can be seen that climatic variables (Tmax, Tmin, RHavg, U, and N) are used as
input to train tree-based ML models. In addition, a summary of the DT, TB, and TF models
and their optimal parametric values are presented in Table 2.



Water 2022, 14, 1666 9 of 29Water 2022, 14, x FOR PEER REVIEW 9 of 31 
 

 

 
Figure 3. Stepwise process for tree-based ML models on ETo modeling. 

Table 2. Outline of tree-based ML models. 

ML models  Basic algorithm 
Parametric values for model development  

Depth of tree Split value Pruned size node  
DT Iterative Dichotomiser 3 (ID3) 09 26 10 
TB Gradient Boosting Algorithm (GBA) 05 8.2 05 
TF Random Forest Algorithm (RFA) 16 77.3 08 

3.2. Neural Network (NN)-Based ML Models 
3.2.1. Multilayer Perceptron Neural Network (MLPNN) 

The following steps were followed to develop an ETo model using the MLPNN: (1) 
input variables of climate (Tmax, Tmin) were selected as predictors; (2) the activation func-
tions of sigmoid and linear in the input-hidden and hidden-output layers were applied to 
process the dataset; (3) a back propagation procedure was adopted to adjust the weight 
connection between interconnected neurons; (4) the traditional conjugate gradient (TCG) 
and the scaled conjugate gradient (SCG) were employed as kernel functions; (5) the pre-
dicted ETo was the model output. 

Input Data

Climatic variables 

Tmax,Tmin

Tree Models
(DT, TB,TF)

Model 
Development 

paramters

Tunning to find 
optimal values

Target Variable

ETo

Figure 3. Stepwise process for tree-based ML models on ETo modeling.

Table 2. Outline of tree-based ML models.

ML Models Basic Algorithm
Parametric Values for Model Development

Depth of Tree Split Value Pruned Size Node

DT Iterative Dichotomiser 3 (ID3) 09 26 10
TB Gradient Boosting Algorithm (GBA) 05 8.2 05
TF Random Forest Algorithm (RFA) 16 77.3 08

3.2. Neural Network (NN)-Based ML Models
3.2.1. Multilayer Perceptron Neural Network (MLPNN)

The following steps were followed to develop an ETo model using the MLPNN: (1) in-
put variables of climate (Tmax, Tmin) were selected as predictors; (2) the activation functions
of sigmoid and linear in the input-hidden and hidden-output layers were applied to process
the dataset; (3) a back propagation procedure was adopted to adjust the weight connection
between interconnected neurons; (4) the traditional conjugate gradient (TCG) and the
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scaled conjugate gradient (SCG) were employed as kernel functions; (5) the predicted ETo
was the model output.

3.2.2. Generalize Regression Neural Network (GRNN)

The GRNN was applied using the following steps [54]: (1) the reciprocal and Gaussian
kernel functions were separately applied to investigate each performance; (2) minimizing
the neurons in the network was considered the best way to optimize model evaluation, so
the leave-one-out (LOO) method was used for this purpose; (3) the range of sigma from
0.0001 to 10 with search step of 20 was specified for each variable.

3.2.3. Cascade Correlation Neural Network (CCANN)

For the development of the CCANN model, the succeeding steps were as follows:
(1) transform functions of the sigmoid (sig), Gaussian (GU), and a combination of sigmoid
and Gaussian functions were used to process dataset information; (2) V-fold cross-validation
method was employed to evaluate the network model size; (3) the network parameters of
candidate neurons and epochs were 12 and 200 with a weight range of 1.00 after the hit
and trail procedure.

3.2.4. Radial Basis Function Neural Network (RBFNN)

Shoaib et al. [55] elaborated the neural network of the RBFNN model in detail. The
development of the RBFNN network for the present study was performed as follows:
(1) the network parameters of maximum neurons, radius, and lambda were selected as 100,
400, and 10, respectively; (2) V-fold cross-validation was used to validate the dataset; (3) the
tuning parameters of population size and maximum generation for the RBFNN network
were 200 and 20, respectively; (4) the activation function of the radial basis function was
employed in both hidden and output layers. The schematic structure of the applied NN-ML
models is shown in Figure 4a,b, indicating the input–output relationship of temperature
variables and ETo for the current study. Details regarding the schematic structure of NN-ML
models could be found in Raza et al. [44].
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3.3. Multifunction (MF)-Based ML Models
3.3.1. Gene Expression Programming (GEP)

Shoaib et al. [56] comprehensively elaborated the theoretical background and architecture of
GEP along with the stepwise procedure. Apart from theory, the following steps were chosen to
develop the GEP model in the present study: (1) Root relative square error (RRSE) found the best
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metric and chosen as the optimal fitness function; (2) climatic variables (Tmax, Tmin) were assigned
as a set of terminals; (3) set of functions was chosen based on arithmetic (+,−,×,÷) and math-
ematical

{
ln, ex, 2

√
x, x2, x3, x4, Sinx, Cosx, Tanx, Sinhx, Coshx, Tanhx, ArcSx, ArcCx, ArcTx

}
op-

erators; (4) two linking functions of addition (+) and multiplication (×) were selected; (5)
finally, mathematical ETo equations of various kinds were obtained by choosing the fol-
lowing general and evolution GEP parametric values: population size→ 50; No. of genes
per chromosome→ 04; head length→ 8; inversion rate→ 0.1; transposition rate→ 0.1;
recombination rates→ 0.1; one-point rate→ 0.3; two-point rate→ 0.3; mutation rate→
0.044; IS transposition rate→ 0.1; RIS transposition rate→ 0.1.

3.3.2. Support Vector Machine (SVM)

The background knowledge of SVMs was described by Raza et al. [54]. Some steps
were performed to develop the SVM model for ETo, as follows: (1) two types of SVM models,
namely, epsilon (€) and neuron (Nu), were applied using the five climatic parameters (Tmax,
Tmin); (2) various types of kernel function including linear, RBF sigmoid, and polynomial
were tried; (3) model validation was determined by applying the V-fold cross-validation
method; (4) pattern and grid search control with an interval of 10 was applied to determine
accurate values for optimal parameters; (5) the parametric summary of the SVM model in
term of ranges to predict ETo is given as C (0.1–500); Nu (0.001–0.6); gamma (0.001–50); P
(0.0001–100); coefficient (0–100); degree (3.00).

3.3.3. Global Method of Data Handling (GMDH)

Raza et al. [54] described the framework of the GMDH. The following steps were
performed to determine ETo using the GMDH model: (1) the maximum network layers of
20 with polynomial order 16 were assigned; (2) 20 neurons were fixed for each network
layer; (3) V-fold cross-validation was used; (4) the previous layer in the GMDH network
was connected to the initial output variables; (5) like the GEP model, various types of
functions (linear, quadratic, cubic, product, ratio, asymptotic, logistic, Gaussian, logarith-
mic, exponential) with one and two variables were applied to generate corresponding
ETo equations. The topology of multifunction models for modeling the ETo is shown in
Figure 5.
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3.4. Proposed ML Models

Figure 6 depicts the flowchart of proposed ML models for ETo estimation. It can be
perceived that three tree-based, four NN-based, and three MF-based ML models were
chosen to calculate ETo using only temperature data (Tmin, Tmax) as input variables. The
performance of each ML model was investigated by calculating different statistical evalua-
tion indices.
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3.5. Model Evaluation Indicators

The previous studies [40–50] applied several statistical indices to evaluate the perfor-
mance of each ML model versus the conventional method (e.g., the FAO PM56 method). In
the current study, the following statistical indices, root-mean-square error (RMSE), determi-
nation coefficient (R2), mean absolute error (MAE), Nash–Sutcliffe efficiency (NSE), and
correlation coefficient (r), were used to evaluate 10 ML models:

R2 =

 ∑n
i=1
(
ETobs − ETobs

)(
ETest − ETest

)√
∑n

i=1
(
ETobs − ETobs

)2
∑n

i=1
(
ETest − ETest

)2

2

(4)

RMSE =

√√√√ N

∑
i=1

(ETobs − ETest)
2

n
(5)

r =
[
n× {∑n

i=1 {(ETobs × ETest)}]− [{(∑n
i=1 ETobs)× (∑n

i=1 ETest)}
]√

[ n× {∑n
i=1 (ETobs)

2]− [{(∑n
i=1 ETobs)}2]× [ n× {∑n

i=1(ETest)}2]− [{(∑n
i=1 ETest)}2]

(6)
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MAE =
N

∑
i=1

|ETobs − ETest|
n

(7)

NSE = 1− ∑n
i=1(ETobs − ETest)

∑n
i=1(ETobs − ETobs)

(8)

where ETobs, ETest, ETobs , ETest are the observed value, the estimated value, the average
observed value, the average estimated value of ETo, respectively, and n represents the total
number of observations.

4. Training Results of Developed ML Models

To accurately estimate the monthly ETo, 10 different ML models were applied (MLPNN,
GRNN, CCANN, DT, TF, GEP, GMDH, RBFNN, SVM, and TB). Since the data were col-
lected from different locations and sites and had different characteristics, it was a challenge
to create a reliable predictive model. The dataset was randomly grouped into phases
called the training set and the testing set. The training set was used for the calibration
process and model construction, while the testing set was used to examine each ML model’s
performance accuracy. Tree base-, NN-, and MF-based ML models were trained using
only temperature variables (Tmax and Tmin), and ETo estimated by the FAO PM56 method
was used as the target variable. The ETo estimated by each ML model was recorded and
compared with PM ETo. The obtained results as statistical indices (RMSE, R2, MAE, NSE,
and r) are explained below.

4.1. Tree-Based Models

Tree-based ML models of DT, TB, and TF were applied for ETo estimation using
climatic data from 15 stations. Climatic parameters of Tmin and Tmax were used as input to
the selected models. The training results of these models are depicted in Table 3.

Table 3. Results obtained in the training process for the selected tree models.

Model Depth of
the Tree

R2

(%)
r RMSE

(mm/Month)
MAE

(mm/Month)
NSE
(%)

DT 09 89.78 0.94 0.758 0.75 85.67
TB 05 96.87 0.98 0.41 0.42 95.34
TF 16 90.40 0.96 0.73 0.62 89.42

A minimum depth of 5 was obtained for the TB model (Table 3). It is worth noting
that the tree model with its minimum depth does not contain a complex structure as found
in high-value cases. It is clear from Table 3 that TB performed best compared to the DT and
TF models. R2 and NSE for TB were 96.87% and 95.34%, respectively, while TF and DT had
90.40%, 89.78%, and 89.42% and 85.67%, respectively. In addition, the correlation coefficient
(r) of TB was higher, i.e., 0.98, compared to the DT and TF models. On the other hand,
RMSE and MAE were lower for the TB model, indicating the best performance among
other tree base-chosen models.

4.2. Neural Network (NN)-Based ML Models

Table 4 indicates the applied neural network-based models of MLPNN, GRNN,
CCANN, and RBFNN for ETo estimation using various kernel functions. For the MLPNN
model, the kernel function of the traditional conjugate gradient (TCG) with optimal struc-
ture 2-18-1 outperformed the scale conjugate gradient (SCG). R2 and r for the TCG kernel
function were the highest values, while RMSE and MAE were lower as compared to SCG.
Likewise, in the GRNN model, Gaussian (Gu) and reciprocal (Res) functions were applied
to determine ETo by employing climatic variables. It can be inferred from Table 4 that
the GRNN with the optimal structure of 2-5-1 at the Res kernel function was found best
in performance and showed promising results. The correlation (r) and determination
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coefficient (R2) were 0.99 and 99.99%, correspondingly, for Res, which is higher than the
Gu function. Conversely, the error at the Gu function recorded higher was as follows:
RMSE = 0.29 mm/month, MAE = 0.18 mm/month. However, NSE during training was
recorded as 97.43% and 98.67% for the Gu and Res functions, respectively. This indicates
that the performance of the GRNN model was reasonable at both kernel functions and can
be used to estimate ETo.

Table 4. Summary outlier of the selected neural network-based ML models.

Model Kernel
Function

NN
Structure

R2

(%)
r RMSE

(mm/Month)
MAE

(mm/Month) NSE (%)

MLPNN SCG 2-6-1 85.78 0.92 0.89 0.66 84.72
TCG 2-18-1 88.02 0.93 0.82 0.60 87.17

GRNN Gu 2-7-1 98.41 0.99 0.29 0.18 97.43
Res 2-5-1 99.99 0.99 0.01 0.01 98.67

CCANN Sig 2-8-1 98.92 0.99 0.24 0.18 97.88
Gu 2-12-1 97.59 0.98 0.36 0.30 96.48

S&G 2-16-1 96.23 0.98 0.46 0.36 95.24
RBFNN RBF 2-36-1 96.41 0.98 0.44 0.35 95.32

Likewise, the results of the CCANN model at three kernel functions of Gu, Sig, and a
combination of sigmoid and Gaussian functions are summarized in Table 4. The results
indicated that the minimum number of hidden neurons with an optimal structure of
2-8-1 by using the sigmoid function in the CCANN model outperformed the Gu and
S&G kernel functions. For the Sig kernel function, model performance indices of the
CCANN were calculated as follows: R2 = 98.92%; r = 0.24; RMSE = 0.24 mm/month;
MAE = 0.18 mm/month; NSE = 97.88%. On the other hand, the CCANN with the Gaussian
function generated higher R2 (97.59%) and lower RMSE (0.36 mm/month) compared to
the S&G kernel function with an optimal structure of 4-12-1. In addition, the RBFNN
network with the radial basis function (RBF) was applied to estimate ETo. The output
results of the RBFNN can be seen in Table 4. It can be observed that the RBFNN generated
reliable estimates at the optimal structure of 2-36-1 as follows: R2 = 96.41%; r = 0.98;
RMSE = 0.44 mm/month; MAE = 0.36 mm/month; and NSE = 95.32%.

Overall, it can be concluded that the MLPNN at the TCG, the GRNN at Res, the
CCANN at Sig, and the RBFNN at the RBF kernel function showed the best performance
among others for estimating ETo. Our results aligned with the finding of Martí et al. [57]
who stated that a model with minimum neurons was selected and considered best for ETo
estimation. In this study, the GRNN at Res outperformed others, with minimum neurons
among all the neural network-based models, as verified in Table 4.

4.3. Multifunction (MF)-Based ML Models

The results of the SVM for the training period are depicted in Table 5. It can be seen
that €-SVM and Nu-SVM were applied at different kernel functions. Both types of the SVM
showed outperformed the results at the RBF kernel function compared to others. The R2

and r for both SVMs at RBF were to be the highest among others. For €-SVM, R2 was ob-
served at 99.77% while r was estimated as 1.00. Similarly, for Nu-SVM, R2 and r were noted
as 99.66% and 1.00, respectively. As shown in Table 5, higher values of RMSE and MAE
were generated when applying the SVM model at linear, sigmoid, and polynomial kernel
functions. These are listed as follows: 2.08 mm/month and 1.78 mm/month of RMSE and
MAE for the linear kernel integrated with both SVM models; RMSE = 2.10 mm/month,
MAE = 1.78 mm/month and RMSE = 2.08 mm/month, MAE = 1.78 mm/month for the sig-
moid kernel with €-SVM and Nu-SVM; RMSE = 2.16 mm/month, MAE = 1.89 mm/month;
and RMSE = 2.23 mm/month, MAE = 1.78 mm/month for the polynomial kernel function
used in €-SVM and Nu-SVM models, accordingly.
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Table 5. Results of the applied SVM model at each kernel function (training period).

SVM
Model

Kernel
Function

R2

(%)
R RMSE

(mm/Month)
MAE

(mm/Month)
NSE
(%)

€-SVM

Linear 73.98 0.86 2.08 1.78 72.49
RBF 99.77 1.00 0.11 0.10 98.56

Polynomial 65.46 0.80 2.16 1.89 64.29
Sigmoid 69.67 0.83 2.10 1.78 68.55

Nu-SVM

Linear 69.26 0.83 2.08 1.78 67.32
RBF 99.66 1.00 0.14 0.13 98.49

Polynomial 60.32 0.77 2.23 1.78 59.79
Sigmoid 67.25 0.82 2.08 1.78 66.98

The results obtained from the GEP are presented in Table 6. The present study sub-
tilized the addition (Add.) and multiplication (Mul.) linking functions with various
mathematical and arithmetic operators to calculate the ETo equation. All the operators
were labeled from F1 to F20 (Appendix A.2). It can be inferred from Appendix A.2 that the
GEP model outperformed and showed promising results with the Add. linking function
and F8 operators {+,−,×,÷, Sinhx, Coshx, Tanhx}. The RMSE obtained at this combina-
tion was 1.44 mm/month, the recorded minimum. The GEP generated good results for ETo
estimation on the addition (Add) and multiplication (Mul) linking functions at the F8 and
F11 operators, respectively (Table 6). These were highly ranked among others as the lowest
values (1.44 mm/month and 1.47 mm/month) of RMSE obtained. The corresponding R2, r,
MAE, and NSE results were also presented in Table 6.

Table 6. Results of the GEP for the best operators under the Add. and Mul. linking functions
(Appendix A.2).

No. Operators Linking
Function

R2

(%) r RMSE
(mm/Month)

MAE
(mm/Month)

NSE
(%)

F8 {+,−,×,÷, Sinhx, Coshx, Tanhx} Add. 82.98 0.91 1.44 1.55 81.49
F11 {+,−,×,÷} Mul. 80.77 0.89 1.47 1.62 79.56

Like the GEP model, the GMDH applied for ETo estimation used multiple types of
functions (i.e., linear, quadratic, product, exponential, etc.). The mathematical description
of each function in terms of the equation could be determined from Appendix A.3. Ad-
ditionally, RMSE was selected as an evaluation parameter for each function. The RMSE
for the GMDH model was found in the range of 0.88 to 2.23 mm/month. The evaluation
indices (R2, r, RMSE, MAE, and NSE) were recorded at a quadratic function with two
variables of the GMDH model (Table 7).

Table 7. Results of the GMDH for ETo estimation at the best function (Appendix A.3).

Function Equation R2

(%) r RMSE
(mm/Month)

MAE
(mm/Month)

NSE
(%)

Quadratic 2 variables ETo = y 91.06 0.95 0.83 0.85 90.88

Note: Y = p1 + p2x1 + p3x2
1 + p4x2 + p5x2

2 + p6x1x2 (coefficients p1–p5 given in Appendix A.3).

5. Evaluation of the Proposed ML Models against the FAO PM56 Method

This study evaluated the trained ML models using climatic parameters of Tmax and
Tmin only to estimate ETo at seven climatic stations in Pakistan (Gilgit, Islamabad, Ja-
cobabad, Karachi, Lyallpur, Multan, and Skardu). The climatic and geographic details
corresponding to each selected climatic station are mentioned in Appendix A.1. ETo es-
timated with the MLPNN, GRNN, CCANN, DT, TF, GEP, GMDH, RBFNN, SVM, and
TB were labeled as MLPNN ETo, GRNN ETo, CCANN ETo, DT ETo, TF ETo, GEP ETo,
GMDH ETo, RBFNN ETo, SVM ETo, and TB ETo, respectively. The flowchart of proposed
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ML models for ETo estimation can be seen in Figure 6. The ETo obtained from the applied
ML models were compared with PM ETo values to investigate their performance. For this
purpose, evaluation indices (r, R2, RMSE, MAE, and NSE) were calculated and presented
in Figure 7. However, scatterplots between the actual (PM ETo) and proposed ML models
(predicted) are given in Figure 8. It can be perceived from Figures 7 and 8 that the proposed
ML models generated the best results for ETo estimation. However, GRNN ETo, and TB
ETo were found to be very close to PM ETo. In addition, r, R2, and NSE values could
be found at nearly 1.00. Alternatively, RMSE and MAE were found lower than with the
other ML models. For the GRNN model, r = 0.97, R2 = 0.96, NSE = 0.99, MAE = 0.36 and
RMSE = 0.46, while r = 0.99, R2 = 1.00, NSE = 1.00, MAE = 0.26 and RMSE = 0.37 for the
TB model.
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Figure 9 showed that ETo estimated by ML models outperformed and followed PM56
ETo. Overestimation of ETo values was found using the GEP and RBFNN models due
to low correlation and high variance. On the other hand, the DT model showed a high
value of RMSE but generated good ETo values as it has high efficiency. Therefore, ETo
estimated using DT appeared closer to the FAO PM56 method than with the GEP and
the RBF, as observed in Figure 9. The overall results indicated that TB ETo followed well
with PM ETo and was capable of capturing monthly ETo variation. In comparison of the
tree-based, neural network-based, and multifunction-based ML models, it was found that
TB (among the tree-based), GRNN (among the neural network-based), and SVM (among
the multifunction-based) outperformed all the applied ML models.

The results of this study aligned with the results of Mohammadrezapour et al. [40] who
stated that tree-based ML models outperform others in an arid region (Sistan and Baluchestan
Province) of Iran using only temperature climatic variables. Likewise, Sanikhani et al. [39]
calculated reliable ETo by applying the GEP and GRNN using temperature data only in the
Mediterranean region (hot and dry during the summer season and rainy during the winter
season) of Turkey. Similarly, Granata [46] proved the performance of ML models against
the FAO PM56 method using limited data of temperature variables at a central Florida
site located in a humid climate. Thus, it can be concluded that ML models showed good
performance in various climatic conditions using only time series temperature data, which
also supports our study results.
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A comparison of ETo obtained from the FAO PM56 method and ML models using
temperature data only for the stations mentioned above is presented in Table 8 to display
the ETo results. It can be concluded that the selected ML models outperformed others
using temperature data only and showed good results under different climatic conditions.
The overall results indicate that TB (among the tree-based), GRNN (among the neural
network-based), and SVM (among the multifunction-based) performed best at the tested
climatic stations and yielded approximate results for ETo estimation compared to PM ETo.
However, TB ETo trailed well with PM ETo, as observed in Table 8.
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Table 8. Comparison of PM ETo with ML ETo.

Model Gilgit Islamabad Jacobabad Karachi Lyallpur Multan Skardu

PM ETo 2.7 5.1 6.43 4.65 4.38 5.38 2.69

MLPNN ETo 2.5 5.0 6.53 4.68 4.32 5.19 1.86

GRNN ETo 2.7 5.1 6.45 4.64 4.38 5.37 2.69

CCANN ETo 2.8 5.3 6.51 4.71 4.43 4.92 2.37

RBFNN ETo 2.5 5.0 6.51 4.76 4.21 5.40 1.87

SDT ETo 3.2 5.0 6.40 4.94 4.90 5.94 2.44

DTF ET 3.2 5.0 6.67 4.90 4.91 6.10 2.61

TB ETo 2.7 5.1 6.42 4.64 4.38 5.37 2.69

GEP ETo 2.6 5.2 6.35 6.07 5.19 5.70 2.33

GMDH ETo 3.0 5.2 6.59 4.64 4.57 5.05 2.11

SVM ETo 2.9 5.2 6.40 4.69 4.36 5.40 2.72

The heatmap diagram, as presented in Figure 10 provided significant information
about the best modeling performance based on five statistical indices (r, R2, NSE, RMSE, and
MAE) and also supported our above-mentioned results, which confirmed the TB ML model
as an outstanding model to estimate ETo using only temperature data. Although GEP
generated acceptable model efficacy (precision) during the training phase (NSE = 81.49%),
it exhibited the worst accuracies (NSE = 28%) as compared to other ML models in the
testing set. Additionally, the other statistical indices, such as RMSE and MAE, also gave
further information about the weaknesses of GEP model. It is true that the GEP ML model
suffers from an overfitting issue. On the other hand, the RBFNN and MLP showed much
better performance than GEP. Finally, the TB and SVM ML models achieved high precision
in ETo estimation with the FAO PM56 method. Moreover, the TB ML model is considered
the best predictive model and recorded the highest R2 = 1; NSE = 1; r = 0.99 and lowest
MAE = 0.26 mm/month, RMSE = 0.37 mm/month, respectively.
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Considering the ML models, it can be noted that this approach often requires a
relatively lower number of input parameters compared to FAO PM56 method. The logical
explanation of this phenomenon is that the data size (training and testing) includes total
22 locations of different characteristics. Besides, geographical factors are very important
when developing robust ML models based on a dataset collected from several locations.
For further assessment, it is vital to examine the ability of the proposed model (TB) against
several ML models developed in the past to estimate ETo globally. Thus, the findings
obtained during the test using the TB model are validated against various ML models
carried out in the literature. For example, Raza et al. [53] compared tree-based ML model in
ETo estimation by considering 11 stations from different parts of the world and found in the
testing phase that TB performed better than DT and TF ML models based on R2 and RMSE
indices. Likewise, Raza et al. [54] showed the supremacy of MLP over several ML models
in ETo estimation by assessing various performing indices at various climatic locations.

ETo Interpolation Maps Based on the Best ML Model

ArcMap GIS 10.1 software was used for mapping ETo of Pakistan. For this purpose,
an interpolation technique was used to determine ETo values using point data of ETo.
In addition, interpolation is a technique to find unknown values using available sample
dataset values. It can be used to predict an unknown value for any geographic dataset.
Different tools existed like Inverse Distance Weighted (IDW), Kriging and Natural Neighbor
for interpolation of point data. This study applied the IDW tool to prepare the surface
raster map by employing TB ETo point data (Appendix A.4) and geographic data. This
IDW-interpolation method is a straightforward and unique method based on an average
value of the sample data algorithm. Figure 11 shows interpolated monthly ETo maps of
Jan–Dec, while Figure 12 showed Pakistan’s annual ETo map, respectively. These ETo
maps are based on temporal and geographic data and present realistic scenarios, which
are mainly helpful to determine crop water requirements and obtain good crop yield with
saving water. According to Figure 11, ETo increased from Jan to Jul while started to drop
from Aug to Dec. The lowest ETo recorded in Jan (0.63) which gradually increased 4.49
upto Jul month and same trend could be observed (4.19 to 11.83) in the highest ETo from
Jan–Jul. However, Aug-Dec months showed decreased in ETo on both low and high scale.
From Figure 2, it can be perceived that temperatures (Tmin, Tmax) showed same inclining
(Jan–Jul) and declining (Aug–Dec) trends which showed significant relationship with ETo.
From Figure 12, ETo increases from the southern to the northern part of Pakistan. The peak
of ETo was found in the May–Jul months. The southeastern region looked more affected
than other regions and recorded the highest ETo. From Aug–Dec months, the overall effects
of ETo were reduced in the southern and southeastern parts of Pakistan.
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6. Study Discussion and Comparison with ML Studies

Certainly, ETo is affected by near-surface and ground conditions, but temperature data
primarily influence it. This study found a high correlation between ETo and temperature
data because it also incorporates effects of other local climatic variables (i.e., RH, U, N,
solar radiation (Rs), etc.). ETo also changed with latitude/locations and showed location
has strong impact on the spatiotemporal variations of ETo. Wang et al. [58] determined the
effect of altitude and latitude on surface air temperature across the Qinghai-Tibet Plateau
and found that temperature variations depend on not only altitude but also on latitude.
There is a gradual decrease in temperature with the increasing altitude and latitude. In
Turkey, Turgut and Usanmaz [59] investigated variations in wind speed, wind direction,
and humidity, depending on altitude. They found that average wind direction changes
from 169◦ at the lowest altitude to 260◦ at the highest altitude. Also, average wind speed
increases by 2.3 m/s, while average relative humidity decreases by 4%, for an increase
of one kilometer in altitude [59]. One of the most important reasons for advocating a
simpler method than FAO PM56 is the substantial likelihood of inaccuracy in weather
data measurement and collection, especially in developing countries (e.g., Pakistan) and
meteorological stations managed by non-experts. In these situations, data accuracy and
quality parameters may not be reliable [60]. The discussion presented below also support
our study’s results based on statistical indices.

The capacity of different ML to model monthly and daily mean ETo using temperature
data alone from local or cross stations was investigated by Wu et al. [41]. For the local appli-
cation, tree-based ML models had greater estimation accuracy based on statistical indices
(R2 = 0.962 and RMSE = 0.263 mm/day) than the other models. SVM was appropriate
model where temperature data is not available at the site, and data from nearby stations
can be utilized. If meteorological data is missing, the tree-based ML can provide the best so-
lution for ETo modeling. Likewise, Mohammadrezapour et al. [40] applied SVM, GEP, and
adoptive neuro-fuzzy interference system (ANFIS) using different input climatic combina-
tions for ETo modeling. The results showed that SVM performed best with R2 = 0.998 and
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RMSE = 0.434 mm/month among the selected ML models. Saggi and Jain [42] examined
four ML models, namely, deep learning (DL), generalized linear model, gradient boosting
machine, and TF for daily ETo modeling in India. The results showed superior performance
of the DL model with the highest NSE of 0.98 and lowest RMSE of 0.19 compared to other
models. Shiri et al. [43] compared GEP with locally and externally calibrated Priestley
Taylor (PT) model on ETo estimation. They found that GEP outperformed (with indices of
RMSE = 0.462 mm/day; MAE = 0.216 mm/day) and provided the best solution for ETo
modeling alternative to the FAO PM56 method using two meteorological inputs in humid
and arid stations of Iran. Tikhamarine et al. [44] applied five integrated algorithms of ML
neural network for modeling monthly ETo at two stations located in India and Algeria. The
obtained ML results compared with Valiantzas model based on an empirical equation. It
was found that ML with grey wolf optimization algorithms (ML GWO) performed best in
comparison to the empirical equation as indices calculated at both stations as NSE = 0.99
and RMSE = 0.05–0.08 mm/month.

Ferreira et al. [45] stated that most empirical equations commonly reported are site-
specific or less extensive climatic conditions, limiting their use globally. Therefore, the
authors applied several ML models for ETo modeling in the entire region of Brazil using
fewer climatic data. The authors recommended that ML is the best choice in case of missing
meteorological data. In addition, the study concluded that the absence of RH data in
analysis decreases RMSE up to 24%. Granata [46] determined the best ETo ML model
among SVM and tree base (DT, TB, TF) by using climatic data of the humid region in
Florida. Keshtegar et al. [47] developed a polynomial chaos expansion (PCE) ML model
for ETo modeling using limited climatic inputs at two stations in Turkey. The results
demonstrated that the PCE ML model outperformed other alternative approaches and
generated the highest NSE of 0.999, lowest RMSE of 0.045 mm, and agreement index of
0.999. Nourani et al. [48] compared ML (neural network and multifunction) and empirical
models for ETo modeling in various climatic regions globally (e.g., Turkey, Iraq, Cyprus,
Iran, and Libya). The results of ML models showed supremacy over empirical models.
Additionally, two ensemble models based on ML and empirical equations were also devel-
oped to improve ETo results and compared with single ML and empirical equations. The
study recommends using the ML model in case of missing climatic data for ETo modeling.
Likewise, Shiri [49] investigated a multifunction ML (GEP) model compared to six em-
pirical equations for daily ETo modeling using island climatic data in Iran. The results of
GEP suppressed over the selected empirical models and externally calibrated GEP model
performed best at the test island because there was no need to train GEP model with local
climatic inputs, hence generated reliable ETo.

Kisi et al. [61] investigated the ability of four ML models for monthly ETo modeling
in Iran. GEP ML model did not perform well at several stations and provided the worst
estimate in this study, which contradicts our study results. This study showed good
performance of ML GEP model using input data, which may be due to the use of optimal
parametric values and the best linking function during training of the GEP model. Similarly,
neural network and ANFIS models outperformed and provided a better estimate for ETo,
which agrees with our study. However, applications of ML over empirical and local
calibrated models are recommended to use in case of missing climatic data. In addition, over
and under estimation in ETo values using ML models are depends on proper calibration in
the training phase. Higher training data leads to undereste ETo while ETo overestimation
was observed in the case of minimum training data. As the current study used the least
amount of training points due to the limitation of the monthly-scale data, under-estimation
in ETo was also observed using GEP and DT ML models against the FAO PM56 method.
Marti et al. [62] examined the ML model’s performance in case of missing climatic data at
various climatic stations in India. The application of ML models with minimal data needs
proper training, and the use of ETo models based on ML can be applied to other climatic
conditions for its verification and validation. Therefore, this study investigated ML models
in various climatic conditions to verify the performance of developed ML ETo models.
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Table 9 shows data requirements for FAO PM56 and ML models for ETo estimation. It
can be seen in Table 9 that FAO PM56 depends upon several parameters, including other
factors, which are not easily accessible, especially in developing countries. Alternatively,
ML models require fewer parameters (only temperature data) that give the best ETo value
compared to the FAO PM56 method. The symbol “

√
” in Table 9 represents the parameters

needed for ETo estimation while “-” indicates not used in the corresponding procedure.

Table 9. Data requirements for FAO PM56 and ML models in ETo estimation.

Input Data
Parameter Tmin Tmax RH U N Rn

Aerodynamic Factors
(Rn, es, ea, emin, emax,

∆, Z, and γ)

Adopted
Methodology

Target
Result

Climatic and
aerodynamic

√ √ √ √ √ √ √
FAO PM56 PM ETo

Temperature
√ √

- - - - - ML models ML ETo

Significant attempts were made to increasingly constitute powerful models to accu-
rately estimate ETo based on a few parameters that can easily be measured. Zhu et al. [63]
tried to build a ML model based on temperature data only and compared its ETo predictive
results with several empirical equations. The study examined that the developed ML
model performed best by producing the least error in the testing phase and showed a high
correlation (R2 = 89%) value between actual and predicted ETo. Overall, as shown above,
the approach of past research has been used to estimate ETo over a number of sites. Even
though researchers produced powerful ML models with excellent accuracy, the method-
ologies discussed could not be used to form a generic model instead of estimating each
case study independently. However, the suggested ML model accurately estimated the ETo
using data from dozens of sites in our investigation. Aside from the training procedure of
15 stations in a single model, another intriguing characteristic is that the suggested model’s
efficacy and prediction accuracy were high (NSE = 1; R2 = 1).

7. Conclusions

This study examined tree-based (DT, TB, TF), neural network-based (MLP, GRNN,
CCANN, and RBFNN), and multifunction-based (GMDH, SVM, and GEP) machine learn-
ing (ML) models in the estimation of ETo using temperature data of different climatic sta-
tions located in Pakistan. Based on the model evaluation statistics, the performance of each
selected model was compared with standard ETo estimated by the FAO PM56 method. The
highest-ranked among the tree-based ML models was TB, which was found to outperform
ten ML models. When temperature (minimum and maximum) data were used as an input
to the ML TB model, the results were as follows: r = 0.99, R2 = 1.00, NSE = 1.00, MAE = 0.26,
and RMSE = 0.37. On the other hand, the GRNN at the joint kernel function performed
best among the neural network-based ML models with the optimal structure of 2-5-1 and
best-performing indices: r = 0.97, NSE = 99%, R2 = 95.00%, RMSE = 0.61 mm/month, and
MAE = 0.50 mm/month. Various types of kernel function interlinked with €-SVM and
Nu-SVM were tried to investigate accuracy of the results. The €-SVM with the radial
basis function (RBF) was found to be the best among the multifunction-based models with
r = 0.99, NSE = 88%, R2 = 98.00%, RMSE = 0.37 mm/month, and MAE = 0.29 mm/month.
In addition, the performance of the GMDH was found to be superior to the GEP by calcu-
lating the least variance and high correlation. Except for the GEP model, all the selected
ML models had high efficiency, and NSE was mostly found above 90%. TB was found
largely the best in the estimation of ETo and close to PM ETo using only temperature data.
Thus, it can be concluded that the estimation of ETo could be efficaciously determined by
using proposed ML models with available temperature data. The monthly and annually
varying ETo maps based on the ML TB model indicated that more attention is needed
towards southern and southeastern parts of Pakistan for precise planning and management
of water use.
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Limitations, Suggested Improvements and Future Directions

The use of proposed ETo ML models is limited to the study region using only tem-
perature data. So, it is necessary to create similar or novel ML models using fewer or
similar meteorological inputs to investigate the performance of the developed ML models
in other regions. Moreover, the proposed ETo model of the current study also requires the
selection of proper training/calibration before applying it to other regions. In addition,
ML models do not have physical mechanisms. They are called black-box techniques. In
these techniques, a user only knows the input and the expected output of the model but is
unaware of how the program achieves those results. Therefore, it is challenging to create
an accurate ML model without knowledge of functional specifications. Moreover, over-
and underfitting problems could also be found during the training/calibration process of
an ML model due to the random division of the dataset.

The future developments of this study will concern the creation of more ETo models
based on hybrid data intelligence (HDI) techniques and extreme learning machine (ELM)
that contemplate different climatic conditions and subsequently consider the effects of
climate change if present. Efforts on gap infilling techniques are mandatory, as effective
planning, management, and control of water resource systems require considerable and
reliable data on ETo modeling. Particular attention should be given to regional models
due to their crucial role in places with missing data to develop local models. Important
information on various water resources issues, such as examining water use by different
regions, water rights, water allocation, water consumption, and planning and management
of ground and surface water resources, can be managed by ETo maps. The ETo maps in
different months revealed that the highest amounts of ETo occurred in the southern parts
of Pakistan. More attention should be focused on water resource planning of these parts.
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Appendix A

Appendix A.1. Monthly Averages of Climatic Variables and PM ETo

Sr. No.
Climatic Lon Lat Alt Tmin Tmax RHavg U N PM ETo
Stations DD DD m ◦C ◦C % km/Day Hours mm

1 Multan 71.43 30.2 123 18.6 33.3 57 184 9.3 5.38
2 Chaman 66.45 30.93 1313 12.7 25.7 36 196 7.9 4.89
3 Quetta 67 30.16 1672 6.2 24.1 54 313 10.6 5.14
4 Lyallpur 73.01 31.36 184 17.4 31.6 53 130 7 4.38
5 Zhob 69.46 31.35 1407 12 26.5 45 89 7.6 3.7
6 Sargodha 72.66 32.05 188 16.7 30.9 57 222 7.6 5.03
7 Chilas 74.11 32.41 1250 14.3 26.7 33 56 5.9 3.29
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Sr. No.
Climatic Lon Lat Alt Tmin Tmax RHavg U N PM ETo
Stations DD DD m ◦C ◦C % km/Day Hours mm

8 Parachinar 70.08 33.86 1726 8.8 21.3 47 101 7.2 3.23
9 Islamabad 73.1 33.61 508 14.4 28.4 55 269 7.5 5.06
10 Peshawar 71.58 34.01 360 15.7 29.3 50 156 8.1 4.51
11 Karachi 66.98 24.8 04 20.3 31.6 72 338 7.4 4.64
12 Karachi 67.13 24.9 22 20.3 31.5 62 482 8 5.97
13 Gilgat 74.33 35.93 1454 11.2 22.4 46 37 5.9 2.71
14 Astore 74.9 35.36 2168 4.3 15.5 46 58 4.9 2.5
15 Sakardu 75.61 35.3 2181 4.6 17.1 56 62 6.1 2.69
16 Hyderabad 68.41 25.38 28 21.1 35.1 48 345 8.3 7.05
17 Gupis 73.4 36.16 2156 7.4 18.9 36 62 6 2.85
18 Nawabshah 68.36 26.25 38 18.3 34.8 49 303 7.9 6.69
19 Nokkndi 62.75 28.81 683 16.7 32.2 35 158 7.7 5.28
20 Dal Bandin 64.4 28.88 850 13 30.3 37 158 7.8 5.03
21 Jacobabad 68.46 28.3 56 20.6 34.4 47 266 7.8 6.43
22 Kalat 66.58 29.03 2017 3.7 22.3 43 183 7.9 4.17

Appendix A.2. Linking Functions for the GEP Machine Learning Model

No. Operators Linking Function RMSE (mm/Month)

F1 {+,−,×,÷} Add. 1.94
F2

{
+,−,×,÷, 2

√
x, x2, x3} Add. 2.09

F3
{
+,−,×,÷, 2

√
x, x2, x3, x4} Add. 2.11

F4 {+,−,×,÷, ln, ex} Add. 2.03
F5

{
+,−,×,÷, ln, ex , 2

√
x, x2, x3} Add. 1.78

F6
{
+,−,×,÷, ln, ex , 2

√
x, x2, x3, x4} Add. 1.63

F7 {+,−,×,÷, Sinx, Cosx, Tanx} Add. 1.55
F8 {+,−,×,÷, Sinhx, Coshx, Tanhx} Add. 1.44
F9 {+,−,×,÷, ArcSx, ArcCx, ArcTx} Add. 1.69

F10 {+,−,×,÷, Sinx, Coshx, ArcTx} Add. 1.46
F11 {+,−,×,÷} Mul. 1.47
F12

{
+,−,×,÷, 2

√
x, x2, x3} Mul. 2.13

F13
{
+,−,×,÷, 2

√
x, x2, x3, x4} Mul. 1.97

F14 {+,−,×,÷, ln, ex} Mul. 2.18
F15

{
+,−,×,÷, ln, ex , 2

√
x, x2, x3} Mul. 2.13

F16
{
+,−,×,÷, ln, ex , 2

√
x, x2, x3, x4} Mul. 2.13

F17 {+,−,×,÷, Sinx, Cosx, Tanx} Mul. 1.51
F18 {+,−,×,÷, Sinhx, Coshx, Tanhx} Mul. 2.08
F19 {+,−,×,÷, ArcSx, ArcCx, ArcTx} Mul. 2.37
F20 {+,−,×,÷, Sinx, Coshx, ArcTx} Mul. 1.51

Appendix A.3. Linking Functions for the GMDH Machine Learning Model

Functions Equations RMSE (mm/Month)

Linear 1 variable y = p1 + p2x1 2.11
Linear 2 variables y = p1 + p2x1 + p3x2 2.10
Linear 3 variables y = p1 + p2x1 + p3x2 + p4x3 2.07

Quadratic 1 variable y = p1 + p2x1
2 1.48

Quadratic 2 variables y = p1 + p2x1 + p3x1
2 + p4x2 + p5x2

2 + p1 p3x2 0.83
Cubic 1 variable y = p1 + p2x1 + p3x1

2 + p4x1
3 1.55

Ratio 2 variables y = p1 + p2
x1
x2

1.86
Asymptotic 1 variable y = p1+p2

x1+p3
2.20

Gaussian 1 variable y = p1+p2exp(−(x1−p3 )2

p4
1.48

Logistic 1 variable y = p1+p2
(1+exp(−p3(x1−p4)))

2.10
Exponential 1 variable y = p1 + p2exp(p3(x1 + p4)) 2.14

Product 2 variables y = p1 + p2x1x2 2.11
Log 1 variable y = p1 + p2log((x1 + p3)) 2.23

Note: P1 = Tmax; P2 = Tmin; P3 = RHavg; P4 = N; P5 = U and x1 = 0.876; x2 = 0.7654; x3 = 0.5576.
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Appendix A.4. TB ETo Point Dataset Used for the Interpolation Process

Long Lat Alt Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

74.9 35.36 2168 0.69 0.88 1.46 2.53 3.47 4.45 4.4 4.18 3.43 2.32 1.42 0.72
66.45 30.93 1313 1.81 2.39 3.59 5.04 6.82 7.99 7.95 7.23 6.15 4.67 3.01 1.99
74.11 32.41 1250 0.91 1.4 2.39 3.52 4.31 5.4 6 5.62 4.53 2.87 1.53 1.01
64.4 28.88 850 1.88 2.55 4.07 5.58 7.06 8.11 8.3 7.74 5.93 4.21 2.85 2.06
74.33 35.93 1454 0.74 1.2 2.06 2.99 3.95 4.78 4.8 4.35 3.45 2.21 1.21 0.78
73.4 36.16 2156 0.7 1.05 1.99 3.23 4.14 5.24 5.07 4.67 3.76 2.37 1.25 0.75
68.41 25.38 28 3.62 4.44 6.41 8.43 11.19 11.52 11.83 8.16 8.06 6.57 4.43 3.58
73.1 33.61 508 1.85 3.02 3.86 6.32 8.71 9.99 6.78 5.47 5.19 4.31 3.15 2.07
68.46 28.3 56 2.89 3.95 5.89 8.1 10.34 10.76 8.83 7.58 6.8 5.63 3.73 2.64
66.58 29.03 2017 1.65 2.12 3.26 4.33 5.79 6.61 6.53 6.27 5.22 3.87 2.57 1.86
67.13 24.9 22 4.21 4.78 6.17 7.57 7.86 7.26 6.66 5.93 6 6.08 5.06 4.03
66.98 24.8 4 3.36 3.78 4.78 5.57 6.49 5.77 4.76 4.32 4.76 4.76 3.96 3.43
73.01 31.36 184 1.57 2.38 3.57 5.52 6.85 7.52 6.09 5.54 5.14 3.99 2.59 1.81
71.43 30.2 123 1.8 2.68 4.39 6.44 8.39 10.24 8.02 7.03 6.45 4.6 2.62 1.92
68.36 26.25 38 3.03 4.07 6.02 8.28 10.58 10.96 8.96 8.16 7.36 5.85 4.03 3.01
62.75 28.81 683 2.28 3.07 4.23 5.72 7.29 8.33 8.47 7.98 6.16 4.42 3.07 2.29
70.08 33.86 1726 1.3 1.59 2.45 3.29 4.67 5.36 4.78 4.93 4.03 3.09 1.97 1.35
71.58 34.01 360 1.73 2.29 3.29 4.61 7.38 8.35 7.16 6.04 5.11 3.81 2.59 1.8
66.91 30.26 1621 1.82 2.55 3.75 5.13 7.33 8.69 8.56 7.58 6.46 4.76 3.02 1.99
72.66 32.05 188 1.79 2.61 3.95 6.31 8.42 9.05 7.34 6.26 5.64 4.47 2.69 1.82
75.61 35.3 2181 0.63 0.88 1.72 2.99 3.97 4.88 4.82 4.41 3.67 2.32 1.23 0.72
69.46 31.35 1407 1.37 1.94 3.09 4.18 5.23 6.33 5.93 5.3 4.44 3.22 1.95 1.41
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8. Chakraborty, D.; Başağaoğlu, H.; Winterle, J. Interpretable vs. noninterpretable machine learning models for data-driven
hydro-climatological process modeling. Expert Syst. Appl. 2021, 170, 114498. [CrossRef]

9. Ravindran, S.M.; Bhaskaran, S.K.M.; Ambat, S.K.N. A Deep Neural Network Architecture to Model Reference Evapotranspiration
Using a Single Input Meteorological Parameter. Environ. Process. 2021, 8, 1567–1599. [CrossRef]

10. Zhou, Z.; Zhao, L.; Lin, A.; Qin, W.; Lu, Y.; Li, J.; Zhong, Y.; He, L. Exploring the potential of deep factorization machine and
various gradient boosting models in modeling daily reference evapotranspiration in China. Arab. J. Geosci. 2020, 13, 1–20.
[CrossRef]

11. Deo, R.C.; Wen, X.; Qi, F. A wavelet-coupled support vector machine model for forecasting global incident solar radiation using
limited meteorological dataset. Appl. Energy 2016, 168, 568–593. [CrossRef]

12. Wang, L.; Kisi, O.; Zounemat-Kermani, M.; Hu, B.; Gong, W. Modeling and comparison of hourly photosynthetically active
radiation in different ecosystems. Renew. Sustain. Energy Rev. 2015, 56, 436–453. [CrossRef]

13. Wang, L.; Kisi, O.; Zounemat-Kermani, M.; Salazar, G.; Zhu, Z.; Gong, W. Solar radiation prediction using different techniques:
Model evaluation and comparison. Renew. Sustain. Energy Rev. 2016, 61, 384–397. [CrossRef]

14. Gocic, M.; Trajkovic, S. Software for estimating reference evapotranspiration using limited weather data. Comput. Electron. Agric.
2010, 71, 158–162. [CrossRef]

15. Tabari, H.; Talaee, P. Local calibration of the Hargreaves and Priestley–Taylor equations for estimating reference evapotranspiration
in arid and cold climates of Iran based on the Penman–Monteith model. J. Hydrol. Eng. 2011, 16, 837–845. [CrossRef]

16. Martí, P.; Royuela, A.; Manzano, J.; Palau-Salvador, G. Generalization of ETo ANN Models through Data Supplanting. J. Irrig.
Drain. Eng. 2010, 136, 161–174. [CrossRef]

http://doi.org/10.1016/j.agwat.2007.01.014
http://doi.org/10.1016/j.agwat.2006.03.014
http://doi.org/10.3390/w13040557
http://doi.org/10.1016/j.eswa.2020.114498
http://doi.org/10.1007/s40710-021-00543-x
http://doi.org/10.1007/s12517-020-06293-8
http://doi.org/10.1016/j.apenergy.2016.01.130
http://doi.org/10.1016/j.rser.2015.11.068
http://doi.org/10.1016/j.rser.2016.04.024
http://doi.org/10.1016/j.compag.2010.01.003
http://doi.org/10.1061/(ASCE)HE.1943-5584.0000366
http://doi.org/10.1061/(ASCE)IR.1943-4774.0000152


Water 2022, 14, 1666 28 of 29

17. Rojas, J.P.; Sheffield, R.E. Evaluation of Daily Reference Evapotranspiration Methods as Compared with the ASCE-EWRI
Penman-Monteith Equation Using Limited Weather Data in Northeast Louisiana. J. Irrig. Drain. Eng. 2013, 139, 285–292.
[CrossRef]

18. Sahoo, B.; Walling, I.; Deka, B.C.; Bhatt, B.P. Standardization of Reference Evapotranspiration Models for a Subhumid Valley
Rangeland in the Eastern Himalayas. J. Irrig. Drain. Eng. 2012, 138, 880–895. [CrossRef]

19. Shiri, J.; Nazemi, A.H.; Sadraddini, A.A.; Landeras, G.; Kisi, O.; Fard, A.F.; Marti, P. Comparison of heuristic and empirical
approaches for estimating reference evapotranspiration from limited inputs in Iran. Comput. Electron. Agric. 2014, 108, 230–241.
[CrossRef]

20. Ehteram, M.; Singh, V.P.; Ferdowsi, A.; Mousavi, S.F.; Farzin, S.; Karami, H.; Mohd, N.S.; Afan, H.A.; Lai, S.H.; Kisi, O.; et al. An
improved model based on the support vector machine and cuckoo algorithm for simulating reference evapotranspiration. PLoS
ONE 2019, 14, e0217499. [CrossRef]

21. Sayyahi, F.; Farzin, S.; Karami, H. Forecasting Daily and Monthly Reference Evapotranspiration in the Aidoghmoush Basin Using
Multilayer Perceptron Coupled with Water Wave Optimization. Complexity 2021, 2021, 668375. [CrossRef]

22. Tabari, H.; Talaee, P.H.; Abghari, H. Utility of coactive neuro-fuzzy inference system for pan evaporation modeling in comparison
with multilayer perceptron. Meteorol. Atmos. Phys. 2012, 116, 147–154. [CrossRef]

23. Zakeri, M.S.; Mousavi, S.F.; Farzin, S.; Sanikhani, H. Modeling of Reference Crop Evapotranspiration in Wet and Dry Climates
Using Data-Mining Methods and Empirical Equations. J. Soft Comput. Civ. Eng. 2022, 6, 1–28. [CrossRef]

24. Fooladmand, H.R.; Zandilak, H.; Ravanan, M.H. Comparison of different types of Hargreaves equation for estimating monthly
evapotranspiration in the south of Iran. Arch. Agron. Soil Sci. 2008, 54, 321–330. [CrossRef]

25. George, B.A.; Reddy, B.R.S.; Raghuwanshi, N.S.; Wallender, W.W. Decision support system for estimating reference evapotranspi-
ration. J. Irrig. Drain. Eng. 2002, 128, 1–10. [CrossRef]

26. Sabziparvar, A.A.; Tabari, H. Regional estimation of reference evapotranspiration in arid and semiarid regions. J. Irrig. Drain.
Eng. 2010, 136, 724–731. [CrossRef]

27. Tabari, H. Evaluation of reference crop evapotranspiration equations in various climates. Water Resour. Manag. 2010, 24, 2311–2337.
[CrossRef]

28. Xu, C.Y.; Singh, V.P. Cross comparison of empirical equations for calculating potential evapotranspiration with data from
Switzerland. Water Resour. Manag 2002, 16, 197–219. [CrossRef]

29. Anaraki, M.V.; Farzin, S.; Mousavi, S.-F.; Karami, H. Uncertainty Analysis of Climate Change Impacts on Flood Frequency by
Using Hybrid Machine Learning Methods. Water Resour. Manag. 2021, 35, 199–223. [CrossRef]

30. Farzin, S.; Anaraki, M.V. Modeling and predicting suspended sediment load under climate change conditions: A new hybridiza-
tion strategy. J. Water Clim. Chang. 2021, 12, 2422–2443. [CrossRef]

31. Kumar, M.; Bandyopadhyay, A.; Raghuwanshi, N.S.; Singh, R. Comparative study of conventional and artificial neural network-
based ETo estimation models. Irrig. Sci. 2008, 26, 531–545. [CrossRef]

32. Kumar, M.; Raghuwanshi, N.S.; Singh, R. Artificial neural networks approach in evapotranspiration modeling: A review. Irrig.
Sci. 2010, 29, 11–25. [CrossRef]

33. Landeras, G.; Ortiz-Barredo, A.; López, J.J. Comparison of artificial neural network models and empirical and semi-empirical
equations for daily reference evapotranspiration estimation in the Basque Country (Northern Spain). Agric. Water Manag. 2008,
95, 553–565. [CrossRef]

34. Khoob, A.R. Comparative study of Hargreaves’s and artificial neural network’s methodologies in estimating reference evapotran-
spiration in a semiarid environment. Irrig. Sci. 2007, 26, 253–259. [CrossRef]

35. Chia, M.Y.; Huang, Y.F.; Koo, C.H.; Fung, K.F. Recent Advances in Evapotranspiration Estimation Using Artificial Intelligence
Approaches with a Focus on Hybridisation Techniques—A Review. Agronomy 2020, 10, 101. [CrossRef]

36. Yin, Z.; Feng, Q.; Yang, L.; Deo, R.C.; Wen, X.; Si, J.; Xiao, S. Future Projection with an Extreme-Learning Machine and Support
Vector Regression of Reference Evapotranspiration in a Mountainous Inland Watershed in North-West China. Water 2017, 9, 880.
[CrossRef]

37. Wen, X.; Si, J.; He, Z.; Wu, J.; Shao, H.; Yu, H. Support-Vector-Machine-Based Models for Modeling Daily Reference Evapotranspi-
ration With Limited Climatic Data in Extreme Arid Regions. Water Resour. Manag. 2015, 29, 3195–3209. [CrossRef]

38. Wang, S.; Fu, Z.-Y.; Chen, H.; Nie, Y.-P.; Wang, K.-L. Modeling daily reference ET in the karst area of northwest Guangxi (China)
using gene expression programming (GEP) and artificial neural network (ANN). Theor. Appl. Climatol. 2016, 126, 493–504.
[CrossRef]

39. Sanikhani, H.; Kisi, O.; Maroufpoor, E.; Yaseen, Z.M. Temperature-based modeling of reference evapotranspiration using several
artificial intelligence models: Application of different modeling scenarios. Theor. Appl. Climatol. 2019, 135, 449–462. [CrossRef]

40. Pour, O.M.R.; Piri, J.; Kisi, O. Comparison of SVM, ANFIS and GEP in modeling monthly potential evapotranspiration in an arid
region (Case study: Sistan and Baluchestan Province, Iran). Water Supply 2019, 19, 392–403. [CrossRef]

41. Wu, L.; Peng, Y.; Fan, J.; Wang, Y. Machine learning models for the estimation of monthly mean daily reference evapotranspiration
based on cross-station and synthetic data. Hydrol. Res. 2019, 50, 1730–1750. [CrossRef]

42. Saggi, M.K.; Jain, S. Reference evapotranspiration estimation and modeling of the Punjab Northern India using deep learning.
Comput. Electron. Agric. 2019, 156, 387–398. [CrossRef]

http://doi.org/10.1061/(ASCE)IR.1943-4774.0000523
http://doi.org/10.1061/(ASCE)IR.1943-4774.0000476
http://doi.org/10.1016/j.compag.2014.08.007
http://doi.org/10.1371/journal.pone.0217499
http://doi.org/10.1155/2021/6683759
http://doi.org/10.1007/s00703-012-0184-x
http://doi.org/10.22115/scce.2022.298173.1347
http://doi.org/10.1080/03650340701793603
http://doi.org/10.1061/(ASCE)0733-9437(2002)128:1(1)
http://doi.org/10.1061/(ASCE)IR.1943-4774.0000242
http://doi.org/10.1007/s11269-009-9553-8
http://doi.org/10.1023/A:1020282515975
http://doi.org/10.1007/s11269-020-02719-w
http://doi.org/10.2166/wcc.2021.317
http://doi.org/10.1007/s00271-008-0114-3
http://doi.org/10.1007/s00271-010-0230-8
http://doi.org/10.1016/j.agwat.2007.12.011
http://doi.org/10.1007/s00271-007-0090-z
http://doi.org/10.3390/agronomy10010101
http://doi.org/10.3390/w9110880
http://doi.org/10.1007/s11269-015-0990-2
http://doi.org/10.1007/s00704-015-1602-z
http://doi.org/10.1007/s00704-018-2390-z
http://doi.org/10.2166/ws.2018.084
http://doi.org/10.2166/nh.2019.060
http://doi.org/10.1016/j.compag.2018.11.031


Water 2022, 14, 1666 29 of 29

43. Shiri, J.; Nazemi, A.H.; Sadraddini, A.A.; Marti, P.; Fard, A.F.; Kisi, O.; Landeras, G. Alternative heuristics equations to the
Priestley–Taylor approach: Assessing reference evapotranspiration estimation. Appl. Clim. 2019, 138, 831–848. [CrossRef]

44. Tikhamarine, Y.; Malik, A.; Kumar, A.; Souag-Gamane, D.; Kisi, O. Estimation of monthly reference evapotranspiration using
novel hybrid machine learning approaches. Hydrol. Sci. J. 2019, 64, 1824–1842. [CrossRef]

45. Ferreira, L.B.; da Cunha, F.F.; de Oliveira, R.A.; Filho, E.I.F. Estimation of reference evapotranspiration in Brazil with limited
meteorological data using ANN and SVM—A new approach. J. Hydrol. 2019, 572, 556–570. [CrossRef]

46. Granata, F. Evapotranspiration evaluation models based on machine learning algorithms—A comparative study. Agric. Water
Manag. 2019, 217, 303–315. [CrossRef]

47. Keshtegar, B.; Kisi, O.; Zounemat-Kermani, M. Polynomial chaos expansion and response surface method for nonlinear modelling
of reference evapotranspiration. Hydrol. Sci. J. 2019, 64, 720–730. [CrossRef]

48. Nourani, V.; Elkiran, G.; Abdullahi, J. Multi-station artificial intelligence based ensemble modeling of reference evapotranspiration
using pan evaporation measurements. J. Hydrol. 2019, 577, 123958. [CrossRef]

49. Shiri, J. Modeling reference evapotranspiration in island environments: Assessing the practical implications. J. Hydrol. 2019, 570,
265–280. [CrossRef]

50. Raza, A.; Hu, Y.; Shoaib, M.; Elnabi, M.K.A.; Zubair, M.; Nauman, M.; Syed, N.R. A Systematic Review on Estimation of Reference
Evapotranspiration under Prisma Guidelines. Pol. J. Environ. Stud. 2021, 30, 5413–5422. [CrossRef]

51. Smith, M.; Allen, R.G.; Monteith, J.L.; Pereira, L.S.; Perrier, A.; Pruitt, W.O. Report on the Expert Consultation on Revision of FAO
Guidelines for Crop Water Requirements, Land and Water Development; Division, FAO: Rome, Italy, 1991.

52. Sarfaraz, S.; Arsalan, M.H.; Fatima, H. sRegionalising the climate of Pakistan using Köppen classification system. Pak. Geogr. Rev.
2014, 69, 111–132. Available online: http://www.academia.edu/download/39532009/PGR_2014_Vol_69_No_02_article_05.pdf
(accessed on 25 March 2022).

53. Raza, A.; Shoaib, M.; Khan, A.; Baig, F.; Faiz, M.A.; Khan, M.M. Application of non-conventional soft computing approaches for
estimation of reference evapotranspiration in various climatic regions. Theor. Appl. Climatol. 2020, 139, 1459–1477. [CrossRef]

54. Raza, A.; Shoaib, M.; Faiz, M.A.; Baig, F.; Khan, M.M.; Ullah, M.K.; Zubair, M. Comparative Assessment of Reference Evapo-
transpiration Estimation Using Conventional Method and Machine Learning Algorithms in Four Climatic Regions. J. Pure Appl.
Geophys. 2020, 177, 4479–4508. [CrossRef]

55. Shoaib, M. Impact of Wavelet Transformation on Data Driven Rainfall-Runoff Models. Ph.D. Thesis, University of Auckland,
Auckland, New Zealand, 2016. Available online: http://hdl.handle.net/2292/28463 (accessed on 22 March 2022).

56. Shoaib, M.; Shamseldin, A.Y.; Melville, B.W.; Khan, M.M. Runoff forecasting using hybrid Wavelet Gene Expression Programming
(WGEP) approach. J. Hydrol. 2015, 527, 326–344. [CrossRef]

57. Martí, P.; Manzano, J.; Royuela, A. Assessment of a 4-input artificial neural network for ET o estimation through data set scanning
procedures. Irrig. Sci. 2011, 29, 181–195.

58. Wang, K.; Sun, J.; Cheng, G.; Jiang, H. Effect of altitude and latitude on surface air temperature across the Qinghai-Tibet Plateau.
J. Mt. Sci. 2011, 8, 808–816. [CrossRef]

59. Turgut, E.T.; Usanmaz, Ö. An analysis of vertical profiles of wind and humidity based on long-term radiosonde data in Turkey.
Anadolu Univ. J. Sci. Technol. A-Appl. Sci. Eng. 2016, 17, 830–844.

60. Droogers, P.; Allen, R.G. Estimating Reference Evapotranspiration Under Inaccurate Data Conditions. Irrig. Drain. Syst. 2002, 16,
33–45. [CrossRef]

61. Kisi, O.; Sanikhani, H.; Zounemat-Kermani, M.; Niazi, F. Long-term monthly evapotranspiration modeling by several data-driven
methods without climatic data. Comput. Electron. Agric. 2015, 115, 66–77. [CrossRef]

62. Martí, P.; González-Altozano, P.; Gasque, M. Reference evapotranspiration estimation without local climatic data. Irrig. Sci. 2011,
29, 479–495. [CrossRef]

63. Zhu, B.; Feng, Y.; Gong, D.; Jiang, S.; Zhao, L.; Cui, N. Hybrid particle swarm optimization with extreme learning machine for
daily reference evapotranspiration prediction from limited climatic data. Comput. Electron. Agric. 2020, 173, 105430. [CrossRef]

http://doi.org/10.1007/s00704-019-02852-6
http://doi.org/10.1080/02626667.2019.1678750
http://doi.org/10.1016/j.jhydrol.2019.03.028
http://doi.org/10.1016/j.agwat.2019.03.015
http://doi.org/10.1080/02626667.2019.1601727
http://doi.org/10.1016/j.jhydrol.2019.123958
http://doi.org/10.1016/j.jhydrol.2018.12.068
http://doi.org/10.15244/pjoes/136348
http://www.academia.edu/download/39532009/PGR_2014_Vol_69_No_02_article_05.pdf
http://doi.org/10.1007/s00704-019-03007-3
http://doi.org/10.1007/s00024-020-02473-5
http://hdl.handle.net/2292/28463
http://doi.org/10.1016/j.jhydrol.2015.04.072
http://doi.org/10.1007/s11629-011-1090-2
http://doi.org/10.1023/A:1015508322413
http://doi.org/10.1016/j.compag.2015.04.015
http://doi.org/10.1007/s00271-010-0243-3
http://doi.org/10.1016/j.compag.2020.105430

	Introduction 
	Data Collection and Country Profile 
	FAO PM56 Method and Development of ML Models 
	Tree-Based ML Models 
	Single Decision Tree 
	Tree Boost 
	Decision Tree Forest 

	Neural Network (NN)-Based ML Models 
	Multilayer Perceptron Neural Network (MLPNN) 
	Generalize Regression Neural Network (GRNN) 
	Cascade Correlation Neural Network (CCANN) 
	Radial Basis Function Neural Network (RBFNN) 

	Multifunction (MF)-Based ML Models 
	Gene Expression Programming (GEP) 
	Support Vector Machine (SVM) 
	Global Method of Data Handling (GMDH) 

	Proposed ML Models 
	Model Evaluation Indicators 

	Training Results of Developed ML Models 
	Tree-Based Models 
	Neural Network (NN)-Based ML Models 
	Multifunction (MF)-Based ML Models 

	Evaluation of the Proposed ML Models against the FAO PM56 Method 
	Study Discussion and Comparison with ML Studies 
	Conclusions 
	Appendix A
	Monthly Averages of Climatic Variables and PM ETo 
	Linking Functions for the GEP Machine Learning Model 
	Linking Functions for the GMDH Machine Learning Model 
	TB ETo Point Dataset Used for the Interpolation Process 

	References

