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Abstract: Waterlogging refers to the damage to plants by water stress due to excess soil water in
the crop’s root zone that exceeds the maximum water holding capacity of the field. It is one of
the major disasters affecting agricultural production. This study aims to add a crop waterlogging
identification module to the coupled SWAT (Soil and Water Assessment Tools)-MODFLOW (Modular
Finite Difference Groundwater Flow Model) model and to accurately identify and predict crop water-
logging risk areas under the CMIP6 (Coupled Model Intercomparison Project 6) climate scenarios.
The result showed that: (1) The SWAT-MODFLOW model, which coupled with a crop waterlogging
identification module, had good simulation results for LAI (Leaf Area Index), ET (Evapotranspi-
ration), spring wheat yield, and groundwater level in the middle and lower reaches of the Bayin
River; (2) The precipitation showed an overall increasing trend in the Bayin River watersheds over
the next 80 years under the SSP1-2.6, SSP2-4.5 and SSP5-8.5 scenarios. The temperature showed a
clear increasing trend over the next 80 years under the SSP2-4.5 and SSP5-8.5 scenarios; (3) Under the
SSP1-2.6 scenario, the mountain runoff from the upper reaches of the Bayin River was substantially
higher than in other scenarios after 2041. The mountain runoff in the next 80 years will decrease
substantially under the SSP2-4.5 scenario. The mountain runoff over the next 80 years showed an
initial decrease and then an increasing trend under the SSP5-8.5 scenario; (4) During the historical
period, the crop waterlogging risk area was 10.9 km?. In the next 80 years, the maximum crop
waterlogging area will occur in 2055 under the SSP1-2.6 scenario. The minimum crop waterlogging
area, 9.49 km?2, occurred in 2042 under the SSP2-4.5 scenario. The changes in the area at risk of crop
waterlogging under each scenario are mainly influenced by the mountain runoff from the upper
reaches of the Bayin River.

Keywords: crop waterlogging risk; SWAT-MODFLOW; CMIP6; crop root; groundwater level

1. Introduction

The impact of changes in precipitation and temperature on agricultural production
due to climate change has become a hot research topic [1-3]. Changes in precipitation and
temperature may alleviate or exacerbate temperature and water stress in crops, affecting the
growth period, crop growth [4], and finally the yield [5]. Waterlogging refers to the damage
to plants by water stress due to excess soil water in the crop’s root zone that exceeds the
maximum water holding capacity of the field [6]. It is one of the major disasters affecting
agricultural production [6,7]. Heavy rainfall [8], floods [9], and phreatic rise [10] caused by
climatic factors can cause crop waterlogging.

Mandal et al. [1] in Sundarbans, southwest Bangladesh, showed that climate change
has led to increased rainfall and severe crop waterlogging in the region and suggests that
land reshaping and crop planting restructure might reduce crop waterlogging in the region.
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Baffour-Ata et al. [2] in the northern part of Ghana found that increased temperature
due to climate change enhanced photosynthetic capacity and increased respiratory cycle
duration, thereby shortening crop production time and reducing crop yield and quality.
In addition, excess rainfall induces widespread waterlogging, which further reduced crop
yields. Sun et al. [3] analysed the effects of temperature and precipitation on grain yield in
major grain-producing areas in China based on the Coupled Model Intercomparison Project
6 (CMIP6) global model (BCC-CSM2-Mr) and showed that water stress caused by increased
precipitation would reduce grain yield in some areas. All the studies above assessed and
analysed crop waterlogging as a direct result of climate change. However, few studies
have addressed crop waterlogging indirectly caused by changes in regional temperature
and precipitation. For instance, climate change may increase groundwater recharge in
inland river basins in arid regions, which in turn may raise the regional groundwater
level and eventually cause crop waterlogging in mid- and downstream (high groundwater
level) areas [11].

Groundwater is an important link in the water cycle in inland river basins in arid
regions, and its recharge and discharge determine the changes in regional groundwater
levels [12]. Accurate characterization of groundwater level dynamics in arid regions
is a prerequisite for waterlogging risk assessment and prediction [12]. As one of the
most important tools and means for simulating large regional scale water cycle processes,
hydrological models can reproduce and predict the groundwater recharge and discharge
processes [13]. As a typical, semi-distributed hydrological model, SWAT (Soil and Water
Assessment Tool) has a strong physical basis. Suitable for complex watersheds with
different soil types, surface cover conditions, slopes, and management conditions, it can be
used to simulate crop growth processes and mechanisms of their interaction with the water
cycle [14]. To date, SWAT models have produced good results for predicting disasters such
as floods [15], hydrological droughts [16], and soil erosion [17]. However, their application
in crop waterlogging risk assessment and prediction needs to be expanded.

This study focuses on crop waterlogging caused by rising groundwater levels in inland
river basins in arid regions where groundwater dominates and SWAT has little capability
in simulating groundwater [18]. Currently, researchers have coupled the SWAT model with
a specialized groundwater model, MODFLOW (Modular Finite Difference Groundwater
Flow Model), which combines the former’s advantages in crop growth and surface water
simulation with the latter’s strengths in groundwater simulation [19-21]. The coupled
SWAT-MODFLOW model has been applied to the groundwater-surface water conversion
relationship, groundwater recharge, and groundwater level prediction in the South Platte
River Basin region in Colorado, USA [19], Limpopo River Basin area in Africa [20], and
Shiraz Basin in Southwest Iran [21], outperforming the SWAT model.

The large area of land in the middle and lower reaches of the Bayin River is an
important food production base in the Qaidam Basin (Delingha Irrigation District and Gahai
Irrigation District), where spring wheat and goji (wolfberry) are widely cultivated [19,22].
In recent years, under climate warming and humidification, the groundwater level in this
area has risen significantly and this has caused waterlogging [12]. This study aims to add a
crop waterlogging identification module to the coupled SWAT-MODFLOW model. Based
on an accurate simulation of crop growth and water cycle processes in the middle and
lower reaches of the Bayin River, combining the SSP1-2.6, SSP2-4.5, and SSP5-8.5 climate
change scenarios simulated by the BCC-CSM2-MR model under the CMIP6, the paper aims
to accurately identify and predict changes in groundwater levels, crop growth and crop
waterlogging risk areas under the different scenarios. This methodology will provide an
important decision support tool for regional waterlogging prevention and management.

2. Materials and Methods
2.1. Research Area Overview

The city of Delingha (Delhi) is situated on the northeastern edge of the Qaidam Basin,
at 96°15’-98°15' E and 36°55'-38°22" N (geographical system used: WGS84). It is connected
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to the Zongwulong Mountains in the north, the Denan Hills in the south, the Buhete
Mountain in the east, and the Huaitou Tara in the west, with an average altitude of 2980 m
and an area of approximately 27,700 km? [23]. The area has a typical plateau-continental
climate, with an average annual temperature of approximately 3 °C, annual precipitation
of ~100 mm, evaporation of ~2400 mm, strong solar radiation, sufficient sunshine duration,
and a large diurnal temperature fluctuation [12,23]. As an important agricultural oasis and
food production base in the Qaidam Basin, the region has an arable land area of ~8529 hm?,
the special geographical and climatic conditions which nurture crops, primarily spring
wheat and goji berries. Spring wheat is the largest crop type in the sown area, followed by
goji, which is a pioneer tree species and a featured cash crop for ecological restoration and
conservation in the region [12,19,22]. The present study focused on the middle and lower
reaches of the Bayin River (including the Delingha Irrigation District and Gahai Irrigation
District) in the southern part of Delingha City (Figure 1). In recent years, climate change
has led to increased precipitation, increased streamflow, and rising groundwater levels in
the area, causing severe crop waterlogging [12].
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Figure 1. Overview map of the research area.

2.2. Model and Validation
2.2.1. The SWAT-MODFLOW Model

SWAT is a physically-based, semi-distributed hydrological model consisting of mod-
ules for hydrology, climate, sediment transport, soil temperature, crop growth, nutrients,
and agricultural management [24]. SWAT divides subwatersheds into hydrological re-
sponse units (HRUs) with the same soil type, land use/land cover, and slope uniformity [25].
For each HRU, surface runoff, sediment content, and sediment transport were calculated
independently for individual subwatersheds, and the yield of hydrological units of all
subwatersheds was aggregated to obtain the total sum of runoff, sediment content, and
sediment transport at the outlet of the basin [26]. The agricultural management module of
the SWAT model can realistically represent the agricultural flood irrigation mode on soil
slopes [26]; nevertheless, the SWAT model is largely incapable of simulating groundwater
movement processes [27].

MODFLOW is a physically-based, distributional, three-dimensional (3D) groundwater
model that uses the finite difference method to solve the differential equation of ground-
water flow, aiming to simulate and predict the complex groundwater flow system [28].
However, the limitations of the MODFLOW model are manifested in its dependent op-
erations on the input of some specific conditions (such as recharge and evapotranspira-
tion) [29,30]. MODFLOW usually presents these specific conditions in terms of parameters,
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the values of which are determined during the model calibration process. These parameters
are calibrated to match realistic conditions in order to improve the accuracy of the final
groundwater simulation, which is very challenging [29,30].

The SWAT-MODFLOW coupled model takes advantage of the respective strengths of
the above two models by feeding an input of HRU-based groundwater recharge calculated
by the SWAT model to the MODFLOW model, and MODFLOW calculates the groundwater
flow between the aquifer and the river channel and returns it back to SWAT [31,32]. In this
way, the spatiotemporal characteristics of the groundwater-dominated watersheds can be
reasonably displayed, and the water cycle processes can be more accurately modelled.

2.2.2. The SWAT Crop Growth Module

The SWAT crop growth module simulates the growth and yield formation of various
crops [26]. The module mainly converts solar radiation energy into dry matter mass, which
is estimated by observing the dynamics of leaf area change under potential and ideal condi-
tions, involving parameters such as radiation utilization, maximum leaf area index (LAI),
canopy height, root depth, and nitrogen and phosphorus uptake, and biomass [26]. The
simulation process is shown in Figure 2. The crop growth module distinguishes between
annual and perennial crops to determine root water and nutrient uptake, transpiration, and

crop yield [26].
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Figure 2. Flow chart of SWAT crop growth simulation.

SWAT assumes a perennial crop with roots that penetrate to the maximum rooting
depth of the soil throughout the growing season [26].

Zroot = Zroot,mx (1)

Root depth simulations for annual crops showed a linear change from 10.0 mm at the
beginning of the growing season to the maximum root depth at frpg; = 0.40 [26].

Zroot = 2.5 X fTppr X Zroot,mx if frogy < 0.40 2)

Zroot = Zroot,mx if f?’pHu>0.40 (3)

In Equations (1)—(3), zreot refers to the depth at which roots develop in the soil (mm),
Zroot, mx Tefers to the maximum depth at which roots develop in the soil (mm), and frpp;
is the proportion of potential accumulated heat units of the plant on a certain day of the
growing season [26].



Water 2022, 14, 1956

50f21

2.2.3. The SWAT Crop Irrigation Module

Irrigation in the HRU can be scheduled by the user (manual irrigation) or performed
automatically by SWAT in response to soil water deficit (automatic irrigation) [26]. The
manual irrigation module triggers its operation by schedule or thermal unit [26]. The
automatic irrigation module triggers the irrigation event via a water stress threshold or a
soil water deficit threshold [26]. When water stress causes actual crop growth to be lower
than the growth corresponding to the threshold, automatic irrigation will be triggered until
the amount of water used equals the maximum amount input by the user [26]. When based
on the soil water deficit threshold, automatic irrigation will be triggered if the profile soil
water content is below the field water holding capacity but greater than the soil water
deficit threshold [26].

2.2.4. Crop Waterlogging Identification Module

Crop waterlogging stress is mainly caused by excess water in the root zone, which
inhibits gaseous exchange with the atmosphere, resulting in an oxygen-deficient (anaerobic)
environment for the root system [33]. The SWAT model’s crop growth module considers
only the water stress by soil water deficit, not the water stress by excess soil water. There-
fore, the SWAT-MODFLOW model cannot be used to directly simulate and predict crop
waterlogging due to rising groundwater levels.

In this study, we added a crop waterlogging identification module to the existing
SWAT-MODFLOW model (Figure 3). The process of identifying and predicting crop
waterlogging risk areas under different climate scenarios was: (1) The SWAT model’s crop
growth module was first used to simulate the growth of wheat and goji under different
climatic conditions in an automatic irrigation mode, and the irrigation water consumption
was recorded, which was used as the assumed optimal irrigation amount for crop growth.
(2) We assumed in addition to precipitation and optimal irrigation water, groundwater
recharge of soil water in the crop root zone was defined as “excess” water. Under this
assumption, the SWAT-MODFLOW model was applied to simulate the water cycle and crop
growth process based on optimal irrigation in the research area under different climatic
conditions and to determine the risk of crop waterlogging according to the difference
between daily groundwater depth and crop root depth. A positive difference represents a
waterlogging risk unit and the corresponding grid was recorded. Negative differences were
not recorded. (3) Geographic information system (GIS) technology was used to gather all
waterlogging risk units and outlined their boundaries to confirm waterlogging risk areas.

Different climate modes
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SWAT model

“ Output

Irrigation water

P Input
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Figure 3. Identification scheme for crop waterlogging risk areas caused by groundwater level change
under different climatic conditions.
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2.2.5. SWAT-MODFLOW Modelling and Validation

In this paper, we built a SWAT model using selected input data such as daily pre-
cipitation, temperature, relative humidity, wind speed, and solar radiation data from the
Delingha station, combining other data, including the 30 m resolution digital elevation
model (DEM) data (http://gdex.cr.usgs.gov/gdex/) (accessed on 15 September 2021)
(Figure 4a), national 1:4 million soil type data (Figure 4b), and land use type data based on
the Landsat 30 m Remote Sens. image, with a classification accuracy of >90% (Figure 4d). Soil
attribute data were acquired from the Soils of Qinghai [34] and the Delingha City Journal [35].
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Figure 4. SWAT modelling data.

We used groundwater level observation data, river network data, DEM data, and
related hydrogeologic parameters, etc., reported in [36] to build the original MODFLOW
model. Sources and sinks for the model include time-dependent and spatially variable
recharge reported in [36], evapotranspiration from shallow groundwater, groundwater flow
to adjacent basins, and groundwater interaction with the stream network employing the
Stream package (Figure 5). The original MODFLOW model encompasses the entire study
area. The region was discretized into finite different grid cells with a lateral dimension
of 100 m by 100 m, aligned in a grid consisting of 628 rows and 680 columns (Figure 5).
Figure 6 shows the hydrogeological cross-section of the study area. The aquifer of the study
area is mainly upper and middle Pleistocene of Quaternary with sand and gravel. While
the lower Pleistocene of Quaternary and its lower bedrock could be set as aquifuge because
of the poor water storage. Thus, the aquifer discretized vertically into one layer [36]. The
simulation period of the model is from 2001 to 2020.
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Figure 5. Sources and sinks for the MODFLOW.
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Figure 6. Hydrogeological portrait (a) and transverse (b) cross-section of the study area [36].

The original MODFLOW was calibrated by the following steps:

(1) Distribute the study to different areas based on observed hydrogeologic conditions
and sediment characteristics of the Quaternary System. Then, define the initial values
for the specific yield (i) and transmissibility (T) for each area.

(2) Calibrate the transmissibility (T) for each area based on observed annual average river
water leakage, spring spillage in lower reaches, and groundwater level counter.

(8) Calibrate the specific yield (i) for each area based on the observed annual groundwa-
ter variation.
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(4) Repeat steps 2 and 3 until the simulated groundwater level better matches the ob-
served groundwater level.

The calibrated transmissibility (T) and specific yield () in different areas can be seen
in Figure 7a,b, respectively. In addition, the observed and simulated groundwater counter
can be seen in Figure 7c.

T=18,000

‘The observed groundwater counters

The simulated groundwater counters

[] The study area

Figure 7. The calibrated transmissibility (a) and specific yield (b), the observed and simulated
groundwater counter (c).

The average annual recharge of the groundwater is 2.865 x 108 m?/a, that includes
recharges from streams (2.367 x 10% m3/a), irrigation (0.161 x 10% m3/a), mountain
(0.279 x 108 m3/a) and precipitation (0.058 x 10® m3/a). The average discharge of the
groundwater is 2.796 x 108 m3/a, which includes discharges by streams (1.851 x 108 m3/a),
ET (0.594 x 108 m3/a), and groundwater flow (0.351 x 108 m3/a). While the section runoff
of the entire area is 2.837 x 108 m3/a. The three values are almost equal, and the relative
error is within 5%. That means the hydrology, meteorology and the related parameters
are reliable.

A combination of data was used to calibrate the SWAT-MODFLOW model, including
the evapotranspiration data (https://www.usgs.gov/) (accessed on 15 September 2021)
based on remote sensing SSEBop (the Operational Simplified Surface Energy Balance), the
leaf area index from 30 m on the Qinghai-Tibet Plateau (https://data.tpdc.ac.cn)(accessed
on 20 September 2021), groundwater level observation data, and spring wheat yields in
the research area in the last five years. We also used the coefficient of determination (R?),
Nash-Sutcliffe efficiency (NSE), and percentage of bias (PBIAS) to evaluate the applicability
of the model [37,38].

We adopted SSP126 (SSP1 + RCP2.6, green development pathway), SSP245 (SSP2 + RCP4.5,
intermediate development pathway), and SSP585 (SSP5 + RCP8.5, advanced development
pathway) under the BCC-CSM2-MR mode in CMIP6 (https:/ /esgf-node.lInl.gov/search/
cmip6) (accessed on 20 October 2021) as future climate change scenarios in this study.
The BCC-CSM2-MR model provides sound simulation effects in arid and semi-arid re-
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gions [39—41]. In addition, we also used measured precipitation and temperature data from
2015-2020 in this study to calibrate the data under each climate scenario.

3. Results
3.1. Simulation of Runoff from the Upper Bayin River

The upstream runoff of the Bayin River is the main source of water in the middle and
lower reaches of the river. In order to accurately predict the changes in runoff from the
upper reaches of the Bayin River in the next 80 years under different climate scenarios,
we applied the measured runoff rate from the upper exit pass of the Bayin River from
2001 to 2020 to determine the runoff-related parameters of the SWAT model [42]. Figure 8
shows the mountain runoff simulation effect of the SWAT model after the parameter rate
calibration. The R? and NSE values reached 0.84 and the PBIAS value was 3.5%, indicating
that the SWAT model provided sound outflow simulation results.

92 r
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80 k Observed Simulated NSE=0.84
| PBIAS=3.5%
70 F |
Z60 “
5 ‘ J‘\ ‘ | \“
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Figure 8. Simulation effect of the Soil and Water Assessment Tool (SWAT) model for out-of-
mountain runoff.

3.2. Evaluation of LAI Simulation Results

LAI characterizes crop growth status and is an important factor in modelling the
crop growth process [15]. The accuracy of the LAI calculated by the SWAT model hinges
on a large number of parameters. In general, the LAI that is calculated based on default
parameter values has poor applicability in different regions. In this study, we used the
remote sensing-based, high-resolution LAI dataset from 2001 to 2020 to calibrate LAI-
related parameters for the SWAT model (Table 1). Figure 9a shows the spatial distribution
of the July average LAI as reflected by the remote sensing data, and Figure 9b shows the
HRU-scale July average LAI simulated by the SWAT model. Good agreement was obtained
between the two measurements. Good agreement occurred between the basin-wide average
LAI for January through December (Figure 9c), especially from June to September, i.e., after
the crop began growing and before harvest.

Table 1. Leaf area index (LAI)-related parameters.

Parameter Name

Parameter Description

BLAI
LAIMX_1
FRGRW1
LAIMX_2
FRGRW2

DLAI

BIO_E
EXT_COEF
GSI
HVSTI
T-BASE

Potential maximum LAI
The ratio of LAI corresponding to the first point on the LAI curve
The ratio of accumulated temperature corresponding to the first point on the LAI curve
The ratio of LAI corresponding to the second point on the LAI curve
Proportion of accumulated temperature corresponding to the second point on the LAI curve
The ratio of accumulated temperature at which the LAI begins to decay
Photosynthetic radiation utilization rate
Extinction coefficient
Maximum stomatal conductance
Harvest index (HI)
Crop basal temperature
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Figure 9. LAI simulation results. Remotely sensed LAI (a), SWAT simulated LAI (b) and comparision
of remotely sensed and SWAT simulated monthly average LAI (c).

3.3. Spring Wheat Yield Simulation Effects

Spring wheat is the major crop in the middle and lower reaches of the Bayin River.
In reference to similar studies [15,43], the crop growth parameters (Table 2) of HRU were
calibrated with the field trial data in the research area and the spring wheat yield data in
Delingha Irrigation District and Gahai Irrigation District in the middle and lower reaches of
Bayin River from 2016-2020, so as to accurately simulate the growth process of spring wheat
in the present study (Figure 10). The actual spring wheat yield averaged 4745.19 kg/hm?
in the research area and the simulated spring wheat yield averaged 4949.21 kg /hm?, with
a mean error of 204.02 kg/hm?. The simulated spring wheat yields were higher than
actual yields.

Table 2. Crop growth-related parameters.

Parameter Name Parameter Description

BIO_E Photosynthetic radiation utilization rate
EXT_COEF Extinction coefficient
GSI Maximum stomatal conductance
HVSTI Harvest index (HI)
T-BASE Crop basal temperature
IRR_EFM Irrigation efficiency
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Figure 10. Spring wheat simulation results.

3.4. Evaluation of Evapotranspiration (ET) Simulation Results

Evapotranspiration plays an important role in the water cycle of inland river basins in
arid regions. In this study, we first conducted a sensitivity analysis of parameters related to
evapotranspiration in the middle and lower reaches of the Bayin River, followed by cali-
bration of the top 10 sensitive parameters (Table 3) with the remote sensing-based SSEBop
evapotranspiration data from 2001 to 2020. Figure 11 shows the results of the subwatershed-
scale evapotranspiration simulations. All subwatersheds have NSE values above 0.74, with
some subwatersheds in the southern part of the basin above 0.91 (Figure 11a). The R?
values were above 0.72 in all subwatersheds, with high values occurring in the south part
of the watershed (Figure 11b). The PBIAS values were between -15% and 15% in all but a
few subwatersheds (Figure 11c). Overall, our results indicate that the SWAT-MODFLOW
model is more effective in simulating ET, especially in the southern part of the watershed.
The simulated annual average ET is 240.5 mm, and the remotely sensed annual average ET
is 233.4 mm.

Table 3. Parameters related to evapotranspiration.

Parameter Name Parameter Description
SOL_BD Soil wet bulk density
SLSUBBSN Mean slope length
SOL_K Soil saturation permeability coefficient
ESCO Soil evaporation compensation factor
CH_K2 Effective permeability coefficient of the main river channel
SOL_AWC Effective soil water content
SNOCOVMX Minimum snow water content at 100% snow cover
ALPHA_BF Baseflow factor
CH_N2 Manning’s coefficient for the main channel

CN2 Number of initial SCS runoff curves at moisture condition II
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Figure 11. Evapotranspiration (ET) simulation results. NSE value (a), RZ value (b) and PBIAS value (c).

3.5. Evaluation of Groundwater Level Simulation

The groundwater level data in the research area did not cover the whole simulation
period because observation well 1 only had year-round observation data from 2009-2011;
for observation wells 2, 3, and 4, only monthly data from 2013-2015 were available; and
for observation well 5, only monthly observation data from 2004-2005 were available. For
well 6 to well 20, monthly data from 2001-2014 were available. The spatial distribution
of the 20 wells can be found in Figure 4c. The groundwater-related parameters of the
SWAT-MODFLOW model were adjusted (Table 4) based on the above observation data.
For parameters duplicated from Table 3, fine adjustments were made to ensure that ET
simulation results remained unchanged. The results of the groundwater level simulations
are shown in Figure 12. The R? value of each observation well was > 0.90 with an error of
less than 1 m.

Table 4. Groundwater-related parameters.

Parameter Name Parameter Description

ALPHA_BF Baseflow factor
GW_DELAY Groundwater time delay
GWQMN Shallow water level threshold required for return flow to occur
GW_REVAP Groundwater revap factor
CH_K2 Effective permeability coefficient of the main river channel
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Figure 12. Groundwater level simulation results.

3.6. Assessment and Prediction of Crop Waterlogging Risk under Different Climate Scenarios
3.6.1. Variation in Precipitation and Temperature under Different Climate Scenarios

Based on the historical period (2001-2020), we divided the next 80 years (2021-2100)
into cycles of 20 years and analysed the trends in multi-year average precipitation and
multi-year average temperature. Figure 13 shows the average precipitation in the middle
and lower reaches of the Bayin River over the past 20 years and the anticipated changes in
multi-year average precipitation over the next 80 years (2021-2040, 2041-2060, 2061-2080,
and 2081-2100) under the SSP1-2.6, SSP2-4.5 and SSP5-8.5 scenarios simulated by the
BCC-CSM2-MR model. The future 80-year average precipitation in the Bayin River basin
under all scenarios showed a decreasing trend followed by an increasing trend, with an
overall increasing trend. The multi-year average precipitation for 20412060 decreased
more significantly under the SSP2-4.5 scenario. The future multi-year average precipitation
under the SSP1-2.6 and SSP5-8.5 scenarios was higher than the values under the SSP2-4.5
scenario and the historical observed value.

Figure 14 shows the annual average temperature in the middle and lower reaches of the
Bayin River over the past 20 years and the changes in the multi-year average temperature
over the next 80 years under the SSP1-2.6, SSP2-4.5 and SSP5-8.5 scenarios simulated
by the BCC-CSM2-MR model. The temperature shows a clear increasing trend over the
next 80 years under the SSP2-4.5 and SSP5-8.5 scenarios, with the temperature displaying
the fastest and most pronounced increase under the SSP5-8.5 scenario. The temperature
showed an increasing and then decreasing trend under the SSP1-2.6 scenario, with an
overall increasing trend. The future 80-year average temperatures under each scenario
were higher than the historical value.
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Figure 13. Changes in average multi-year precipitation over historical time and future years under
the SSP1-2.6, SSP2-4.5 and SSP5-8.5 scenarios simulated by the BCC-CSM2-MR model.
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Figure 14. Changes in average temperature over historical time and future years under the SSP1-2.6,
SSP2-4.5 and SSP5-8.5 scenarios simulated by the BCC-CSM2-MR model.

3.6.2. Changes in Upstream Mountain Runoff under Different Climate Scenarios

River seepage is the main source of groundwater recharge in the middle and lower
reaches of the Bayin River. The middle and lower reaches of the Bayin River are flat and
thus do not produce much runoff. Water in the river channel is mainly derived from
upstream mountain runoff. Therefore, upstream mountain runoff of the Bayin River over
the next 80 years was simulated in this study based on the SWAT model. Compared to the
average mountain runoff over the past 20 years, the outflow over the next 80 years was
significantly reduced under the SSP2-4.5 scenario (Figure 15). The mountain runoff over
the next 80 years showed an increasing and then decreasing trend, followed by a slight
increase under the SSP1-2.6 scenario, and was substantially higher than the other scenarios
after 2041. The mountain runoff over the next 80 years showed an increasing and then
decreasing trend under the SSP5-8.5 scenario.
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Figure 15. Simulated changes in multi-year average mountain runoff from the Bayin River in history
and in future years, based on the SWAT model.

3.6.3. Changes in Groundwater Recharges under Different Climate Scenarios

Figure 16 shows the changes in groundwater recharges. Under the different scenar-
ios, the groundwater is mostly recharged by streams. Compared to Figure 15, changes
in groundwater recharges are determined by the inflow from the upper reaches of the
Bayin River.
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Figure 16. Simulated changes in groundwater recharges under different climate scenarios.

3.6.4. Identification and Prediction of Crop Waterlogging Risk Areas in the Middle and
Lower Reaches of the Bayin River under Different Climate Scenarios

Figure 17 shows the risk areas for crop waterlogging in the middle and lower reaches
of the Bayin River for the historical period, i.e., 2001-2020, and over the next 80 years
under the SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios. Crop waterlogging under all climate
scenarios occurred in the Gahai irrigation district. Among those, the maximum area of crop
waterlogging for the historical period (2001-2020) was 10.9 km?. The observed maximum
water logging area of the farmland for the historical period is 10.17 km?, a little lower than
the simulated one. The maximum area of crop waterlogging under the SSP1-2.6 scenario
was 11.52 km?2, which occurred in 2055 in the 2041-2060 period and the minimum area
was 10.9 km? which occurred in 2073 in the 2061-2080 period. The maximum area of
crop waterlogging was 11.48 km? under the SSP2-4.5 scenario, which occurred in 2035 in
the 2021-2040 period and the minimum area of crop waterlogging was 9.49 km?, which
occurred in 2042 in the 2041-2060 period. The maximum area of crop waterlogging under
the SSP2-8.5 scenario was 11.5 km?, which occurred in 2028 in the 2021-2040 period and
the minimum area was 10.87 km?2, which occurred in 2090. Overall, the maximum crop
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waterlogging area occurred in 2055 under the SSP1-2.6 scenario, whereas the minimum
crop waterlogging area occurred in 2042 under the SSP2-4.5 scenario.
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Figure 17. Historical (2001-2020) and future crop waterlogging risk areas in the middle and lower
reaches of the Bayin River, under the SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios.

4. Discussion

The SWAT model has been successfully implemented in many surface runoff domi-
nated areas [15-17]. In this research, it also performed well in out-of-mountain streamflow
simulation in the upper reaches of the Bayin River, which is a surface runoff dominated
area. The middle and lower reaches of the Bayin River are in a radial flow dissipation zone,
with low river runoff volumes. It is difficult to apply the traditional parameter calibration
method based on river channel runoff [44]. In this study, we deployed remote sensing-
based LAI data [44], evapotranspiration (ET) data [45], spring wheat yield data [46], and
point-scale groundwater level data [47] to calibrate relevant parameters of the middle and
lower reaches of the Bayin River at the HRU-scale, subwatershed-scale, and point-scale,
respectively, in order to accurately simulate the crop growth process and the watershed
hydrological process. This multi-scale and multi-process model calibration approach pro-
vides a reference for the simulation of ecological-hydrological processes in regions where
information is deficient.
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The LAl is a key parameter that connects plant growth to hydrological processes [44].
However, the default LAI calculation results of the SWAT model are inaccurate in both
the temporal and spatial scales [44]. It will further impact the water budget. This research
used remotely sensed LAI to calibrate the LAl-related parameters and the result showed
that the SWAT performed well in LAI simulation from June to September, and this period
is our concern. The rest months are dormancy periods for the plants in SWAT and the
LAl value is zero. The simulated spring wheat yields were higher than the actual yields
in this research. The SWAT model incorporated the EPIC (Erosion Productivity Impact
Calculator) model to calculate the crop yield. Several studies have reported poor yield
prediction using the SWAT model [43]. In this research, SWAT appears to have similar
problems in crop yield prediction as well. The calibration of crop yield-related parameters
is still needed because this process would make the crop growth prediction more reliable
than the uncalibrated model [43]. ET is one of the most important components of the water
balance; approximately 60-70% of precipitation returns to the atmosphere from the land
surface [46]. Many studies concluded that the catchment water balance would be better
reproduced when satellite-based ET served as the calibration target in watersheds with a
lack of hydrological and meteorological data [46]. In this research, remote sensing-based
SSEBop evapotranspiration data was used to calibrate the SWAT-MODFLOW model and
the model performance was pretty good in ET simulation. Further, the water budget
would be more efficient. The original MODFLOW model was built based on an existing
study [36]. After being coupled with the SWAT model, the groundwater-related parameters
were further calibrated based on observed groundwater level data from 20 wells. All of
the above calibrations could make the SWAT-MODFLOW more efficient in surface and
groundwater budget and crop growth. Finally, the simulated waterlogged farmland area is
10.9 km?, and the value is close to the measured one. In addition, the annual average LAI of
the waterlogged farmland is 1.58 and for the non-waterlogged farmland, the value is 2.61
(Figure 18). That may be because the crop health in waterlogged farmland was damaged.
All of the above means our model is reliable.

. Water logged farmland

Farmland

Annual average LAI

.4.18

-,

Figure 18. Annual average LAI of the study area.

The simulation result of the SWAT-MODFLOW model shows in the historical period
and all of the climate scenarios, changes in groundwater levels in the middle and lower
reaches of the Bayin River were mainly influenced by the streamflow from the upper
reaches. The water budget study based on hydrochemistry and stable isotopes shows
the same result [48]. That means, the SWAT-MODFLOW built in this study is reliable in
groundwater generation mechanism modelling. Furthermore, we could reduce the risk of
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crop waterlogging by controlling the streamflow in the upper reaches of the Bayin River
and other similar inland river watersheds.

As aforementioned, waterlogging refers to the damage to plants by water stress due to
excess soil water in the crop’s root zone that exceeds the maximum water holding capacity
of the field [6]. Thus, wheat and goji (wolfberry) root depth is one of the main factors
influencing the identification of waterlogging risk areas in the middle and lower reaches
of the Bayin River. The maximum root depth in the SWAT model, in addition to some
hydrothermal parameters, is an important parameter that affects the simulation of the
root growth process [45]. Spring wheat is an annual crop, and its performance variation is
seasonal. A maximum root depth of 1600 mm was obtained for spring wheat in the middle
and lower reaches of the Bayin River based on preliminary field observations. The default
plant database of the SWAT model does not include goji berry (wolfberry), a perennial
shrub. We applied shrub-related parameters from the SWAT plant database for goji berry.
Based on preliminary field observations, most of the goji berry trees planted in the Gahai
irrigation area were four years old or older and the roots would have reached the deepest
level. We set the root depth to 4000 mm, which only varied with the thickness of each
HRU soil layer. The reliable modelling of the groundwater generation mechanism and the
crop’s root depth would make the assessment and prediction of the crop waterlogging risk
more efficient.

To our knowledge, this is the first study to assess the crop waterlogging risk caused by
rising groundwater levels in inland river basins in groundwater dominate arid regions. We
expanded the application of the hydrological model in crop waterlogging risk assessment
and prediction and provided a comprehensive view of the impact of climate change
on water cycle processes and crop growth in the watersheds, including the changes in
irrigation water volume in the middle and lower reaches of the Bayin River. However, in
practice, due to the lagging irrigation system and facilities, the middle and lower reaches
of the Bayin River adopt a relatively crude approach of “heavy flood irrigation”. This
irrigation approach may have a non-negligible impact on the groundwater level in the
watersheds [49]. However, the amount of irrigation water under this irrigation method
is also challenging to obtain accurately. The amount of irrigation water automatically
determined based on the amount of water held in the field used in this study may differ
significantly from the actual amount of irrigation water.

The SWAT model only takes into consideration the water deficit on crop growth
inhibition but not the effect of excess water on crop growth [50]. The crop waterlogging risk
identification module developed in this study first set aside groundwater recharge of soil
water in the root zone to obtain the optimal amount of irrigation water volume for a crop
without the influence of groundwater and assumed that the crop is neither water-deficient
nor water-surplus under this irrigation model. This irrigation volume was then fed into the
SWAT-MODFLOW model to simulate changes in the groundwater level. In fact, the effect
of “excess water” was categorized as crop waterlogging in this module and the mechanisms
involved were neglected. For future research, the mechanism of the crop waterlogging risk
identification module will be improved based on field trial data. In addition, salinization
caused by groundwater levels increasing also should be considered in future research.

5. Conclusions

In this study, we have developed a crop waterlogging identification module based on
the SWAT-MODFLOW coupled model. Based on the accurate simulation of crop growth
and the water cycle process in the middle and lower reaches of the Bayin River, the SSP1-2.6,
SSP2-4.5, and SSP5-8.5 climate change scenarios simulated by the BCC-CSM2-MR model
under CMIP6 were combined to accurately identify and predict the risk areas for crop
waterlogging in the study area under different scenarios. We have concluded:

(1) The SWAT-MODFLOW model had satisfied simulation results for LAI, ET, spring
wheat yield, and groundwater level in the middle and lower reaches of the Bayin
River. Furthermore, the groundwater generation mechanism and the crop’s root depth
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were reliable modelling and would make the assessment and prediction of the crop
waterlogging risk more efficient.

(2) The precipitation showed an overall increasing trend in the Bayin River watersheds
over the next 80 years under the SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios. The
temperature showed a clear increasing trend over the next 80 years under the SSP2-4.5
and SSP5-8.5 scenarios.

(3) Under the SSP1-2.6 scenario, the mountain runoff from the upper reaches of the Bayin
River was substantially higher than in other scenarios after 2041. The mountain
runoff in the next 80 years will decrease substantially under the SSP2-4.5 scenario.
The mountain runoff over the next 80 years showed an initial decrease and then an
increasing trend under the SSP5-8.5 scenario.

(4) During the historical period, the crop waterlogging risk area was 10.9 km?. In the next
80 years, the maximum crop waterlogging area will occur in 2055 under the SSP1-2.6
scenario. The minimum crop waterlogging area, 9.49 km?, occurred in 2042 under the
SSP2-4.5 scenario. The changes in the area at risk of crop waterlogging under each
scenario are mainly influenced by the mountain runoff from the upper reaches of the
Bayin River.
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