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Abstract: Precipitation elasticity provides a basic estimate of the sensitivity of long-term streamflow
to changes in long-term precipitation, and it is especially useful as the first assessment of climate
change impact in land and water resource projects. This study estimated and compared the precipita-
tion elasticity (εp) of streamflow in 86 catchments within Pakistan over 50 major rivers using three
widely used analytical models: bivariate nonparametric (NP) estimator, multivariate NP analysis,
and multivariate double logarithm (DL) model. All the three models gave similar values of elasticity
in the range of 0.1–3.5 for over 70–75% of the catchments. This signifies that a 1% change in the
annual mean precipitation compared to the long-term historic mean annual precipitation will amplify
the streamflow by 0.1–3.5%. In addition, the results suggested that elasticity estimation of streamflow
sensitivity using the multivariate DL model is more reliable and realistic. Precipitation elasticity of
streamflow is observed high at altitudes ranging between 250 m and 1000 m while the longitudinal
and latitudinal pattern of εp shows higher values in the range of 70–75 and 32–36 decimal degrees, re-
spectively. The εp values were found to have a direct relationship with the mean annual precipitation
and an inverse relationship with the catchment areas. Likewise, high εp values were noticed in areas
where the mean annual temperature ranges between 15 and 24 ◦C.

Keywords: climate change; elasticity; streamflow; precipitation; temperature; water management;
Indus River basin

1. Introduction

According to the Intergovernmental Panel on Climate Change (IPCC) (2018), the
magnitude of the global mean surface temperature has increased by 1.0 ◦C, and the increase
is expected to reach 1.5 ◦C by year 2030–2052 if human activities responsible for global
warming continue at the current rate [1]. Global warming is noticed at the global scale and
has caused increasing vulnerability to human settlements worldwide; this could be due
to an increase in the frequency and intensity of meteorological events, high temperature,
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or rising sea levels [2]. Global warming is responsible for intensifying the hydrological
cycle, which consequently causes more frequent and intense drought and flood events in
response to drier soil conditions and higher humidity [3].

Climate change studies allude that variability in hydrological systems will affect
important sectors, including hydropower generation, water supplies of households, and
irrigation, as well as industrial demands [4–6]. Streamflow alteration and subsequent
change in long-term averages, seasonality, and extremes (e.g., floods and droughts) may
affect water security, which is a major concern in many watersheds across the globe [7].
Similarly, a lot of studies confirm that South Asia is suffering from climate change which
will cause severe threats to natural environments and water resources of South Asia [7–11].
The Indus basin, which starts in the Hindukush–Karakorum–Himalayan (HKH) territory,
is highly prone to aggressive climate events and is reported to suffer from huge losses in
terms of infrastructure, economics, and human lives [12]. The average surface temperature
increase in the HKH territory as projected by 2100 is predicted to exceed the global average
surface temperature, which will change the weather pattern and the hydrological cycle of
the territory [13].

Climate change, rising temperatures, shifting precipitation patterns, and the increase
in the frequency of extreme weather events have a negative impact on food and livelihood
security, resulting in land degradation and increasing displacement [1,14,15]. Fifteen per-
cent of people globally feel climate hazards constitute the greatest risk to their safety [16].
Women, the young, the old, and the impoverished are the most disadvantaged and vul-
nerable to the effects of climate change in the least developed countries [1,14]. Pakistan
is one of the top nine countries most vulnerable to climate change [16]. Between 1999
and 2018, Pakistan was classified as the world’s fifth most afflicted country by extreme
weather events [17]. Pakistan’s economy relies heavily on agriculture, and any changes
in temperature and disruptions in water availability and monsoon patterns can wreak
havoc on the livelihoods of millions of people [18]. Climate change and extreme weather
events worsen the country’s already serious poverty and food security challenges. From
1998 to 2018, Pakistan witnessed 152 extreme weather events, lost 9989 lives, and suffered
economic losses worth $3.8 billion [19].

High uncertainty and vulnerability of water resources in the context of climate change
have become a popular research area and are considered as a burning issue. Many hy-
drological studies are available that assessed streamflow sensitivity in response to climate
variables, particularly precipitation and evapotranspiration [7,20–24]. A large share of
these studies utilized suitable hydrological models by calibrating input parameters against
historical streamflow data to foresee the resulting changes in water assets and the fu-
ture streamflow of the region [25–29]. Many scholars worked on the quantification of
water assets of Pakistan with the primary purpose of seeking the impact of shifting cli-
matic conditions upon its water resources [5,12,13,30–34]. Overall, the above studies were
mostly conducted for the Upper Indus basin (UIB), utilizing a suitable modelling technique,
e.g., the snow runoff model (SRM), Soil and Water Assessment Tool (SWAT), Hydrolo-
giska Byrans Vattenbalansavdelning (HBV) model, and water and energy budget-based
distributed hydrological model (WEB-DHM). The choice of the modelling technique is
relatively more reliable in giving estimates of streamflow sensitivity subject to proper
calibration of a suitable model [35]. Hydrologic modelling requires accurate precipitation
data at a high spatial resolution, which is often limited in many regions of the globe [7,36].
Moreover, the main problem with the modelling approach is the presence of outliers and
the requirement for a continuous and comprehensive historical record of different climatic
and non-climatic parameters [37]. Schaake (1990) was the first to introduce to the scholarly
world the concept of elasticity in the estimation of streamflow sensitivity [25]. He reported
a 20% increase in the annual streamflow of the Animas River at Durango, Colorado, by
keeping temperature and potential evapotranspiration constant. The concept of elasticity is
very simple and can be described with a ratio between the proportional changes occurring
in the streamflow (Q) to the corresponding proportional changes occurring in any climate
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variables, i.e., precipitation (P), temperature (T), evapotranspiration (ET), etc. Schaake
(1990) represented precipitation elasticity as follows:

εp(P, Q) =

dQ
Q
dP
P

=
dQ
dP

P
Q

(1)

Sankarasubramanian (2001) highlighted that elasticity values are often estimated using
a suitable model, and it is always difficult because the model structure in the majority
of cases is unknown, and validation is always a basic problem in such models [38]. This
uncertainty can be reduced by directly using historical climate and discharge data by
employing an NP estimator [38].

Subsequently, many researchers utilized the climate elasticity concept for measuring
precipitation elasticity of streamflows (both via bivariate and multivariate approaches) us-
ing an NP estimator or regression coefficients for the quantification of water resources in
a given country/region and successfully analysed the climate change impacts in a given
country/region using precipitation elasticity [6,29,35,38–45]. Numerous studies made a com-
parison of climate elasticity with other popular available models for streamflow sensitivity
and found a robust coherence between them [40,44,46,47]. Similarly, Fu et al. (2007) studied
the impacts of climate variability upon the streamflow in the Spokane River basin in the
United States of America and the Yellow River basin in China by using two parameters, i.e.,
precipitation (P) and temperature (T) [48].

It is well-understood that hydrological data suffer from various sources of uncertainty
even under the most rigorous measurement settings. The absence of a complete understand-
ing of the hydrological phenomena and processes involved causes hydrological uncertainty.
The hydrological cycle is primarily driven by precipitation, and the hunt for consistent and
precise worldwide precipitation estimates is, for the most part, a story of compromise [49].
Every dataset has strengths and weaknesses that are inextricably linked [50]. Ground-based
precipitation measurements, such as rain gauge and radar networks, are either few or
non-existent in many parts of the world, including in the developing countries, owing to
the high costs of constructing and maintaining the infrastructure. This problem is worsened
in areas with complex topography, where precipitation has a high degree of spatiotemporal
unpredictability [51]. Thus, in complex terrain regions, precipitation estimates can be asso-
ciated with significant errors due to variability and uncertainty introduced by orographic
effects [51–53]. Precipitation over various types of terrain has long been recognized as
having a significant impact on local weather [54–56], as well as on the interaction between
land surface and atmosphere, which influences large-scale atmospheric circulation and
even global climate [57–60].

In this study, an effort was made to utilize ground-based observation stations for
climate data instead of satellite-based stations because the latter ones are more susceptible
to errors and need proper calibration and correction factors before use in climate change
research [61–63]. Since Pakistan is a developing country where datasets for many meteo-
rological factors for conducting the streamflow sensitivity analysis using a hydrological
model at the country level are not available, which forced the authors to use the elasticity
approach to bring streamflow sensitivity at the country level to the forefront. Moreover,
based on the available literature [5,12,13,30–34], it is believed that there had been no re-
search to gauge the potential climate change effects upon the water resources of Pakistan
on a large scale using analytical models, i.e., climate elasticity models. This research study
aimed to suggest that naïve utilization of precipitation elasticity of the streamflow without
wise consideration of the precipitation–streamflow relationship yields false, deceptive,
improbable, and impractical results. Additionally, our purpose of carrying out this study
was to devise a robust and low-biased estimator for gauging stream sensitivity to climate
change that can provide reliable results of streamflow sensitivity.
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2. Materials and Methods
2.1. Study Area

This research was carried out on 86 catchments with a streamflow monitoring station
at their outlets (Table A1 of Appendix A), 48 precipitation and 34 temperature monitoring
stations (Table A2 of Appendix A) covering 50 major and minor rivers of Pakistan and their
main tributaries (Figure 1). The sub-basins of the study area are shown in Figure A1 of
Appendix A.
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Figure 1. Study area map showing location of the streamflow and meteorological gauging stations.

The Köppen–Geiger climate classification system can be used to better understand
the climatic conditions of the study area. S. Sarfaraz et al. (2014) successfully produced
Köppen–Geiger climatic zones of Pakistan by using the 30-year monthly normal area-
weighted precipitation and temperature dataset of 59 meteorological sites well-spread
across Pakistan. The climatic variables used in the Köppen–Geiger system were calculated
at each of the 59 meteorological stations. The result clearly manifests that the climate of
more than three-fourths of Pakistan is arid or semiarid (central and southern Pakistan). It
is characterized by high temperatures and low rainfall. About 17% of the meteorological
stations used in the study are in the temperate climate (submountain areas in the north), and
just over 5% fall under the cold-type climate (in northeastern Pakistan, three GB stations
are in the D type climate). S. Sarfaraz et al. (2014) concluded that, in total, the calculated
Köppen climate classes across Pakistan come out to be 12 classes as shown in Figure 2 [64].
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Figure 2. Pakistan climate classification map based on the Köppen climate classification system
showing the spatial distribution of 12 Köppen climate classes with the dominant one being BWhw,
followed by the rest [64].

The primary focus of this study is the Indus River basin in Pakistan. The Indus
River basin, which is ranked as one of the mightiest basins of the world, covers areas of
Afghanistan, China, Pakistan, and India. Pakistan contributes 56% of the total area of
the Indus basin, which is the largest amongst all the other neighbouring countries [65].
The Indus River basin in Pakistan covers 520,000 km2, which is 65% of the total area
of Pakistan [66]. The climatic conditions of the Indus basin features high variability,
from subtropical arid and partial arid to moderate subhumid over the plain areas of two
provinces, Sindh and Punjab [67]. The historical record shows an annual precipitation in
the range of 100–500 mm in the plain areas compared to the highest value of 2000 mm
on alpine slopes [67]. Snowfall is the major source of river runoff at higher elevations of
almost 2500 m [68].

The main source of revenue generation in the economy of Pakistan is reliant on
agriculture, which depends upon the water resources of the Indus River [33]. The increase
in population and industrial growth has caused a drop in water availability from 5600 cubic
meters in 1947 to 1017 cubic meters per capita in 2015, which is anticipated to further
decrease under the existing infrastructure and organizational conditions [69]. The majority
of the water demand of Pakistan is fulfilled through the Indus River and its contributing
tributaries, for which the primary source of feeding are precipitation and snowmelt in the
HKH mountainous region [70].

2.2. Datasets Collection

The research objectives were achieved with the help of the river’s mean annual stream-
flow data, mean annual precipitation data, mean annual temperature data, and geospatial
datasets. Geospatial datasets of the digital elevation model (DEM) were obtained from the
USGS website [71]. The Shuttle Radar Topography Mission (SRTM) DEM was downloaded
in 30 × 30 m resolution. Similarly, hydroclimatic datasets include data on streamflow,
precipitation, air temperature, etc. The annual streamflow data are made available from



Water 2022, 14, 2033 6 of 30

the Surface Water Hydrology Project of the Water and Power Development Authority
(WAPDA) and the Global Runoff Data Centre (GRDC). A summary of the data that pro-
vides resolution (temporal and spatial) and sources of the data is given in Table 1. Based on
the available record, the mean annual streamflow data was acquired for different durations
at different stations from 1963 to 2009. In this study, 86 stations were chosen across different
rivers, keeping in mind the maximum data availability at a particular flow station. The flow
station locations are the outlets of catchments. The details of all these catchments along the
different rivers of the study area are given in Appendix A of the manuscript. The datasets
of annual precipitation and temperature were acquired from the Pakistan Meteorological
Department (PMD). Precipitation data were obtained from 47 meteorological stations,
while temperature data—from 34 stations within the study period, i.e., in 1963–2009. For
precipitation, every catchment was to have at least one precipitation station within its
boundaries contributing to Thiessen weighting at a distance of not more than 200 km in
plain areas and 150 km in hilly areas [72], although for the majority of the catchments, the
distance is less than 100 km from the precipitation station. For temperature data, in plain
areas, every catchment was to have at least one temperature gauging station at a distance of
300 km in the vicinity of the catchment boundary contributing to Thiessen weighting [72].
Again, here, for the majority of the catchments, the distance is less than 100 km from the
temperature station because the data of all the 34 temperature stations were acquired at the
same weather stations at which the precipitation data were acquired.

Table 1. Summary table indicating data resolution (temporal and spatial) and sources of the data.

S. No. Data Type Resolution
(Temporal/Spatial) Source

1 Precipitation data Annual data Pakistan Meteorological Department
(PMD) [73]

2 Temperature data Annual data Pakistan Meteorological Department
(PMD) [73]

3 Discharge data Annual data

1. Water and Power Development
Authority (WAPDA) [74]

2. Global Runoff Data Centre’s
(GRDC) website [75]

4 Spatial data (digital elevation
model (DEM) data) 30 × 30 m USGS Website [71]

2.3. Data Preparation

The annual mean values of streamflow for the available record at each catchment
outlet were computed. Similarly, the annual mean values of precipitation and temperature
were calculated for all the selected stations and are given in Table A2 of Appendix A.

These values were arranged in a proper format and set ready for the application of a
suitable interpolation technique in ArcGIS. The ArcGIS 10.2 platform provides several inter-
polation techniques that can be used for interpolating climate variables. Many researchers
utilized different interpolation techniques for different climate parameters [23,40,48]. For
this study, we estimated the basin-averaged precipitation by applying the Thiessen polygon
method to the subbasin [71–76], whereas an inverse distance-weighted (IDW) model was
adopted for the interpolation of both precipitation and temperature elasticity data in ArcGIS
10.2. The interpolated annual mean time series values of precipitation and temperature
were extracted for the all the 86 catchments within the study period of 1963–2009.

2.4. Data Uncertainty

The streamflow, precipitation, and temperature data were checked for data quality
(missing values), which is indicated by −1 or −100 in the available data record for the
streamflow, precipitation, and minimum and maximum temperature values. For this study,
the historic record showed that the found missing values in each month of an individual
year were fewer than 15 at all the stations. These missing values were linearly interpolated
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to all such stations [23]. Thus, for this study, it is believed that the influence of time series
inhomogeneity on the results was very meagre.

2.5. Methods

In this study, precipitation elasticity of the streamflow was calculated analytically by
using long-term hydroclimatic datasets of streamflow, air temperature, and precipitation.
Here, we applied the NP bivariate elasticity model, the multivariate NP analysis model, and
the multivariate DL analysis model for the estimation of elasticity through NP estimator εp.

2.5.1. NP (NP) Bivariate Model

The NP bivariate elasticity model of Sankarasubramanian et al. (2001) [28] was used
for the determination of precipitation elasticity in all the 86 catchments. The NP bivariate
model for streamflow elasticity is given below.

εp = median(
Qt − Q
Pt − P

)
P
Q

(2)

In Equation (2), variables P and Q are quite general and can be used as instantaneous,
monthly, or annual values [77–79]. In this study, the mean annual values of streamflow Q
and precipitation P for the estimation of εp were utilized. Where P and Q are the long-term
historical means of time data series of the annual mean values of precipitation P and
streamflow Q, respectively, at a particular catchment outlet. Precipitation elasticity εp is
estimated for each set of Qt and Pt for an individual year in the annual time series data.
The median value of all the calculated elasticity values of the available historic record
at a particular catchment outlet is NP precipitation elasticity εp. The main advantage of
this relation is nonparametric and it has low biasness so this is the major advantage of
this relationship.

2.5.2. Multivariate NP Analysis Model

Multivariate NP analysis calculates multiple “factor” elasticities in the form of regres-
sion coefficients as a result of the multivariate regression model. The multivariate function
describes the mutual relationship within climatic variables (precipitation, temperature,
humidity, land use, etc.) and streamflow Qi (i indicates the mean flow) [39]. This can be
expressed for precipitation and temperature elasticity mathematically in the form of the
following equation:

Qi = f(P, T) (3)

The NP multivariate model is developed by using the chain rule on Equation (3) and
supposing that an absolute change in streamflow Q is a linear combination of an absolute
change in precipitation P and temperature T.

dQ =
∂Q
∂P

dP +
∂Q
∂T

dT (4)

Inserting the absolute change in every term of Equation (4) for their difference from
the mean value, we get the following:

Q − Q =
∂Q
∂P

(
P − P

)
+

∂Q
∂T

(
T − T

)
(5)

On rearrangement of Equation (5) we get the following:

Q − Q
Q

=
∂Q
∂P

P
Q

(
P − P

P

)
+

∂Q
∂T

T
Q

(
T − T

T

)
(6)
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Applying the definition of elasticity to Equation (6), we can substitute the correspond-
ing elasticity estimator for precipitation and temperature as follows:

Qt − Q
Qt

= εP

(
Pt − P

Pt

)
+ εT

(
Tt − T

Tt

)
(7)

In Equation (7), εP and εT gives the mean “factor” elasticities of streamflow Q, where P
and Q are the long-term historical means of the time series data of the annual mean values
of streamflow Q, precipitation P, and temperature T, respectively. Precipitation elasticity εp
and temperature elasticity εT were obtained as coefficients of the ordinary least squares
(OLS) regression. The OLS regression was performed on the values obtained from each

set of Qt−Q
Qt

, Pt−P
Pt

, and Tt−T
Tt

, for one complete year time t in the time series data. During
calculations of regressions, the intercept term was put unadjusted, i.e., the intercept term
was taken as zero.

2.5.3. Multivariate DL Analysis Model

The multivariate DL analysis model is also employed in order to get a comparison
of the precipitation elasticities obtained through different models and seeks a conclusion
as to which model is the most suitable. A more recent study [39] evaluated the impact of
the regional factor on streamflow Q by utilizing multivariate regression analysis. It was
assumed that the effect of this regional factor on streamflow Q is a dimensionless indicator
and so can be marked as factor elasticity of streamflow εXj as follows:

εXj =

(
∂Q
Q

)
(

∂Xj
Xj

) (8)

In Equation (8), Xj shows the j factor (climate variable, i.e., precipitation and temperature
in our case) that influences streamflow Q, where εXj represents a ratio of proportional change
in streamflow to proportional change in Xj. Considering the functional form of Equation (3),
we modified the equation introduced by Tsai [39] for evaluating the precipitation elasticity of
streamflow as follows:

Q = PβP TβT (9)

Taking logarithm of both sides of Equation (9), we get the following:

LogQ = βPLogPt + βTLogTt (10)

where βP in Equation (8) is equal to the precipitation elasticity of streamflow εp and βT is
equal to temperature elasticity εT. The values of εp and εT were estimated as coefficients
of the ordinary least squares (OLS) regression analysis that is performed on the values
obtained for each set of LogQt, LogPt, and LogTt for one complete year time t in the time
series data. During calculations of regressions, the intercept term was put unadjusted,
i.e., the intercept term was taken as zero.

3. Results
3.1. Precipitation Elasticity εp and Different Models

Precipitation elasticity was calculated using all the three models as mentioned in
the methodology section. It was observed that for Sankarasubramanian’s NP bivariate
elasticity model, the εp values were observed in the range from −1.8 to +3.5 with a positive
εp value for 77 catchments and a negative εp value for nine catchments. The multivariate
NP analysis model resulted in εp values within the range of −2.8 to +3.7 with 74 positive εp
catchments and 12 negative εp catchments. Similarly, the multivariate DL analysis model
estimated the εp values within the range from −2.7 to +3.9, with 76 positive εp catchments
and 10 negative εp catchments.
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Two-dimensional (2D) line plots were also produced for the models stated above so as
to give us a better understanding of the different precipitation elasticity models (Figure 3).
It can be seen from Figure 3 that precipitation elasticity εp of all the 86 catchments (at
their outlets) are almost the same for the three employed models, i.e., the εp values closely
matched one another at the majority of the stations.
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Figure 3. Precipitation elasticity εp using the three different models.

Furthermore, nearly all the three employed models showed homogeneity in estimating
positive and negative elasticity values in the majority of the catchments. For all the three
models, the estimated elasticity values are in the range of 0.1–3.5 for over 70–75% of the
catchments. It means that 10% change causes 10–35% change in streamflow for over
70–75% of the catchments. The elasticity estimates of our study were in line with other
recent studies that had been conducted on streamflow sensitivity analysis in response to
precipitation elasticity for a few subbasins situated within our study area [74,75]. The
results of our study are very similar to their findings, for example, Shah et al. (2021) found
that 10% variation in precipitation produces 12–20% change in streamflow in six major
rivers situated in Khyber Pakhtunkhwa province of Pakistan [74], while in our case, 10%
change caused 10–35% change in streamflow for over 75% of the catchments. The spatial
spot variation of precipitation elasticity in all the 86 catchments at their outlets is presented
in Figure 4 which further clarifies the scenarios through specifying ranges for precipitation
elasticity for all the three employed models.

Pakistan is a country with complex topography where precipitation has a high degree of
spatiotemporal unpredictability and precipitation elasticity estimates are of variable nature,
lacking a clear trend. In general, catchments in the UIB are less sensitive to precipitation
elasticity (εp ≤ 0.5) because the precipitation in this area is usually in the form of snow, and so
the proportion of rainfall contribution to the streamflow within this area is too meagre. On the
other hand, elasticity values are relatively higher (εp = 0.1–3) near the federal capital territory
and the boundary between Khyber Pakhtunkhwa and Punjab provinces as these areas usually
receive more rainfall annually. Similarly, the southern part of Pakistan has moderate elasticity
(εp = 0.1–1) with a few exceptions of high-elasticity catchments.

In order to get an idea of data spread and further elaborate the comparison of the
three analytical models for the estimation of precipitation elasticity, we applied statistical
tools, i.e., the mean (Figure 5a) and the median (Figure 5b) to the data values of εp. The
mean and median values suggest that all the three models almost equally estimated the
precipitation elasticity values.
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Figure 4. Precipitation elasticity εp of the streamflow: (a) NP bivariate model, (b) multivariate NP
model, (c) multivariate DL model.
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for the multivariate regression models the corresponding plots were checked individually 
during calculation for every catchment and was found that in all cases the linear regres-
sion does not give significant results. The negative values of climate elasticity and the 
same shortcoming of regression analysis for shorter span data is evident from climate 
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Figure 5. (a) Boxplots of the mean values of precipitation elasticity, (b) boxplots of the median values
of precipitation elasticity. Boxplot A: Sankarasubramanian’s bivariate model, boxplot B: multivariate
NP analysis model, boxplot C: multivariate DL analysis model.

It was observed for all the models that the εp values for the catchments with a consistent
and longer historical record in the northern areas of Pakistan, i.e., the UIB, are generally
below 0.5 (except a few stations with a shorter record and misleading results). This is because
the precipitation in this area is usually in the form of snow, and thus the precipitation
elasticity shows less sensitivity of the streamflow as the proportion of rainfall contribution in
the streamflow within this area is too meagre. The negative values were observed for stations
with a relatively shorter data span (10 or less than 10 years, which is evident from Table A3 of
Appendix A) and limited streamflow anomaly ∆Q. Similarly, for the multivariate regression
models the corresponding plots were checked individually during calculation for every
catchment and was found that in all cases the linear regression does not give significant
results. The negative values of climate elasticity and the same shortcoming of regression
analysis for shorter span data is evident from climate elasticity literature [45]. Negative
elasticity may also be due to the following: (a) there exist storage reservoirs in the catchments
or inter-catchment transfer ahead of the catchment gauge outlet; (b) the averaging period is
not long enough, i.e., the rainfall has increased but the water has not yet got to the outlet;
(c) evaporation exceeding precipitation (might be due to change in land use in the catchment
in terms of afforestation or increased vegetation); (d) erroneous measurement of streamflow,
climate variables (e.g., precipitation, temperature, evaporation, etc.) or both.

3.2. Comparison of Multivariate NP Analysis Model and Multivariate DL Model

In order to obtain the statistical solution for investigating the best model, the statistics
of the two regressions were checked and compared for identifying the best model. A variety
of statistical tests are available to test the results for the goodness of fit for regressions. Tsai
(2017) applied adjusted R2, probability plot correlation coefficients (PPCC), and variance
inflation factors (VIFs) to assess regression goodness of fit. The adjusted R2 is an indicator
of the overall performance of a regression model [39]. In this study, the regression of the
two multivariate models, i.e., multivariate NP analysis and multivariate DL models, was
tested against their adjusted R2 values as shown in Figure 6a.
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Figure 6. (a,b) show adjusted R2 and R2 boxplots for the multivariate NP analysis and multivariate
double logarithm models, respectively.

Since the values of precipitation elasticity obtained by the regression of the multivariate
double logarithm showed higher adjusted values, i.e., higher explanatory power, we can
say that for this study, the multivariate DL results were more reliable than the multivariate
NP analysis model. This statement is made more worthy by comparison of the boxplots
of the R2 values of the multivariate NP analysis and multivariate DL models as shown in
Figure 6b. The plot suggests that the values of the multivariate DL model are more concise
and are higher, approaching one, which means that it is comparatively more reliable in this
case than the multivariate NP model.

3.3. Bivariate Versus Multivariate Analysis

The justification of Sankarasubramanian et al. (2001) [28] regarding the bivariate NP
estimator highlights that the median values of precipitation elasticity of the streamflow

calculated using an analytical model, i.e., εp = median(Qt−Q
Pt−P

) P
Q

, is more superior com-
pared to a calibrated deterministic hydrological model, though later research on climate
elasticity suggested that the result obtained through a single variable does not give true
representation of elasticity; rather, it provides misleading information on εp [48]. It was
mentioned that the εp values using a bivariate model on a single variable do not account
for certain other important hydroclimatic factors and catchment characteristics like tem-
perature, land use, humidity, slope, etc. Similarly, it was also found that the regression
analysis that includes temperature improves the coefficient of determination (R2) [40].
Since all the subsequent research based on multivariate models suggests that multivariate
models are more reliable than bivariate elasticity models [39,42,48,73–82], it is believed
that the multivariate elasticity results of our study are more authentic than the bivariate
elasticity results, although there is very small difference between the results as discussed in
Section 3.1 above.

3.4. Consequences of Instability Precipitation Elasticity εp

This section discusses the correlations of the three different analytical models, i.e., the
NP bivariate elasticity model, the multivariate NP analysis model, and the multivariate DL
model of precipitation elasticity against the catchment and hydroclimatic characteristics.
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3.4.1. Precipitation Elasticity εp and Length of the Available Historical Record

Overall, no significant trend was observed; it can be seen from Figure 7 that in all
the three models, negative and outlier behaviour of the precipitation elasticity values was
obtained where the historical record was equal to or shorter than 10 years.
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Figure 7. Precipitation elasticity εp and length of study plots: (a) NP bivariate model; (b) multivariate
NP analysis model; (c) multivariate DL model.

Although negative elasticity values were also seen for few catchments where the
available length of record was quite larger, their values were very small, near zero, and
thus were not significant. The possibility of negative values of elasticity in the estimation of
precipitation or temperature elasticity indicates that streamflow decreases with an increase
in precipitation or temperature [40,41,45].

3.4.2. Precipitation Elasticity εp and Catchment Area

The catchment areas of 80% of the catchments (79 out of the 86 catchments) are less
than 25,000 square km, which is evident in Figure 8. Moreover, it is depicted in the plots
that elasticity shows a strong relationship with the catchment area. In all the three models,
the elasticity values were found higher for smaller catchment areas compared to the larger
catchment areas. This means that for smaller catchments, runoff and snowmelt water
takes less time to reach the catchment outlets and thus results in higher elasticity values.
Conversely, the elasticity values of larger catchment areas show relatively smaller values.
This might be due to the losses caused in terms of evaporation, local reservoirs (ponds,
lakes, etc.), and vegetation.
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3.4.3. Precipitation Elasticity εp and Mean Annual Temperature

Logically, there exists a dual relationship between precipitation elasticity and tempera-
ture. When temperature increases, evaporation increases, which causes a decrease in runoff
water to join the streamflow. On the other hand, the situation is opposite in snow and
glacier regions where an increase in temperature causes an increase in runoff and snowmelt
and thus boosts the streamflow. The scatterplots in Figure 9 show that there exists relatively
lower precipitation elasticity εp in cold areas where the mean annual temperature is lower
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because of the existence of glaciers and snowfall as the main source of precipitation [28].
The lower elasticity values in cold areas are also because of less energy available for snow
melting [72]. Similarly, an increasing trend of elasticity values was seen from 15 to 22 ◦C,
followed by a decreasing trend (southern part) where the higher temperature causes a
reduction in the streamflow due to evaporation.
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3.4.4. Precipitation Elasticity εp and Mean Annual Precipitation

It is understood that precipitation has a direct impact on streamflow sensitivity and is
without any doubt the primary source of river streamflow. The same phenomenon was
observed when plots showing the relationship of precipitation elasticity εp and the mean
annual precipitation were produced as shown in Figure 10a–c.
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Figure 10. Precipitation elasticity εp vs. the mean annual precipitation (mm) plots: (a) NP bivariate
model; (b) multivariate NP analysis model; (c) multivariate DL model.

It is visible from the plots that precipitation elasticity showed a relatively higher sensi-
tivity in an increasing trend with an increase in the mean annual precipitation. Although
some of the catchments in northern areas showed smaller elasticity values in spite of having
a higher mean annual precipitation, this is because the precipitation usually occurs in the
form of snow or accumulated snow which usually retains water and does not directly
contribute to the streamflow.

3.4.5. Precipitation Elasticity εp and Mean Annual Streamflow

The mean annual streamflow is dependent on several catchment characteristics like
catchment’s slope, terrain, size, shape, altitude, vegetation, land use, etc. Similarly, rainfall
intensity, frequency, distribution, and air temperature also significantly affect streamflow,
and thus precipitation elasticity εp. The plots shown in Figure 11 demonstrate a clear
understanding of the probable relation of precipitation elasticity and the mean annual
streamflow. It is obvious from the plots that relatively higher elasticity values were found
in the catchments with lower mean annual flows. The εp values are generally lower
than 1.0 where the streamflow is higher [72]. Higher εp values were mostly found for
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smaller catchments where runoff water reaches the gauging station faster. As a result, the
streamflow sensitivity becomes high due to less time of concentration and smaller losses in
the form of infiltration, inundation, interception, evaporation, etc.
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3.4.6. Precipitation Elasticity εp and Altitude

The altitude is an important factor in precipitation elasticity and sensitivity of the
streamflow as precipitation patterns and air temperature substantially vary with the altitude
of a given region. The plots presented in Figure 12 reveal that the εp values initially
increased with altitude and reached the highest level at an altitude of 250–1000 m because
precipitation is more likely at higher altitudes due to a higher chance of lower temperature
and more condensation [28,72]. With a further increase in altitude, the values follow a
declining trend, which is an indicator of snow and glacier zones in the northern parts of
Pakistan, particularly the UIB.
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3.4.7. Precipitation Elasticity εp and Spatial Trends

It was observed from the plots in Figure 13 that longitude-wise, higher elasticity values
were found between 70 and 75 decimal degrees, while latitude-wise, higher elasticity values
were found between 32 and 36 decimal degrees.

This spatial trend of precipitation elasticity is further elaborated by interpolating
the elasticity values by using the inverse distance weighting (IDW) technique for the NP
bivariate model, the multivariate NP analysis model, and the multivariate DL model in
Figure 14a–c, respectively.
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The streamflow sensitivity obtained using the three employed models in this study is
reinforced by the almost matching results of another study for Pakistan [80] with approxi-
mately the same study period, i.e., 1951–2010 (Figure 14d).

Almost 60% of the total mean annual water is contributed by headwaters of the Indus
basin, out of which approximately 80% of the annual total water joins the system from June
to September every year, which is called the monsoon season in Pakistan [70].

By comparing the precipitation elasticity maps in Figure 14a–c with the monsoon
rainfall trend map as shown in Figure 14d (Hanif et al. (2013) [80]), a close resemblance
was observed among the areas of higher precipitation elasticity and the areas with higher
monsoon rainfall. Since rainfall is the most important and governing climate parameter
that contributes to river flows, it is more likely that areas receiving more precipitation will
possesses higher streamflow sensitivity due to greater runoff generation and might yield
high εp. The results of this study show higher sensitivity in areas where the monsoon
rainfall intensity is higher and vice versa which proves the authenticity of this study and
elasticity models.

3.5. Temperature Elasticity εT

In addition to precipitation elasticity, temperature elasticity was also evaluated using
three models i.e., Sankarasubramanian’s NP bivariate model, the multivariate NP analysis
model, and the multivariate DL model to check the response of the streamflow to the mean
temperature. Temperature elasticity εT estimates for all the three models are shown in
Figure 15.
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It was observed that εT ranged between −17.9 and +16 for Sankarasubramanian’s NP
bivariate model and the multivariate NP analysis model, while for the multivariate double
logarithm model, the εT values were in the range of +2.3–+4.7. In the case of temperature
elasticity, there exist large variations of the maximum and minimum values between the
multivariate DL model and the other two models, i.e., Sankarasubramanian’s NP bivariate
model and the multivariate NP analysis model. The linear trend in the values of the double
logarithm was due to the log transformation behaviour which smoothened the variation in
regression. Sankarasubramanian’s NP bivariate model and the multivariate NP analysis
model showed relatively similar results at the majority of the catchments.
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The estimations of Sankarasubramanian’s NP bivariate elasticity model and the multi-
variate NP analysis model suggest that about 65% of the catchment showed negative values
of εT. This means that the increase in temperature caused a decrease in the streamflow,
which is logical as the increase in temperature accelerates the evaporation process and
results in a decreased streamflow. Overall, the values obtained using all the three models,
which are comprised ofillogical and unrealistic values. Thus, the results of temperature
are not reliable and are misleading. Furthermore, the existing literature also suggests that
there is no significant impact of residual temperature on the streamflow compared to the
direct and much more significant impact of precipitation on the streamflow, all because of
the opposite correlation between precipitation and temperature [76–82].

3.6. Recommendations Regarding Water Management and Policy-Making Based on Elasticity

Although in this study only a relatively straightforward targeting approach was un-
dertaken, the results of the various comparisons made in the study point to the daunting
challenges that will exist in the future for developing and implementing watershed manage-
ment plans that are effective in improving water management practices in stream systems
throughout the country. Generally, the elasticity value is an indicator of sensitivity of
the streamflow. The higher the elasticity value, the higher the sensitivity, and vice versa.
Consequently, catchments having higher elasticity values are prone to aggressive climate
events in the form of flash floods, and thus the existing infrastructure needs proper design
to protect the inhabitants and flora and fauna of the catchments against the expected flood
risks. Similarly, a lower elasticity value is an indicator of drought, and policymakers need to
adopt necessary actions for coping with the drought situation through water management
techniques. The smaller catchments were found to be more sensitive, with higher elasticity,
and so the water supply schemes and cultivable agricultural land are more susceptible to
flooding events and calamities; thus, best management practices must be ensured in all
such areas.

4. Conclusions

The design, planning, and management of various preliminary hydrological studies
require annual runoff volume for watersheds. For such purposes, regional methods that
link streamflow to climate characteristics can offer a better solution. This study presents
the estimates of precipitation elasticity εp of the streamflow in 86 catchments of Pakistan
using the NP bivariate model, the multivariate NP analysis model, and the multivariate DL
analysis model. Based on the results of statistical tests, it was concluded that the higher
explanatory power of the multivariate DL model suggests that it gave more reliable values
of precipitation elasticity εp compared to Sankarasubramanian’s NP bivariate elasticity
model and the multivariate NP analysis model within the study area.

Additionally, all the employed models showed relatively similar results indicating
elasticity in the range of 0.1–3.5 (observed in almost 70% of the total catchments using the
multivariate NP analysis model and 75% of the catchments for both Sankarasubramanian’s
NP bivariate elasticity model and the multivariate double logarithm model). Precipitation
elasticity of the streamflow is defined as the percentage of change in the mean annual
streamflow for a given percentage change in the mean annual precipitation. This means that
a 1% change in precipitation with respect to long-term historic mean annual precipitation
will change the streamflow by εp%, i.e., by 0.1–3.5% in our case. Similarly, if this change is
assumed, a 10% change with respect to long-term mean annual precipitation will amplify
the streamflow by 1–35%.

The study further revealed that the elasticity estimates of the catchments having a
shorter historical record, i.e., usually less than 10 years, yielded misleading values and
showed an outlier behaviour, i.e., either overestimating or underestimating the elasticity.
Similarly, it was found that εp is relatively higher at an altitude ranging between 250 and
1000 m and at the catchments where the mean annual temperature is relatively high, i.e.,
from 15 ◦C to 22 ◦C. The longitudinal and latitudinal pattern of εp showed high elasticity
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in the range from 70 to 75 and from 32 to 36 decimal degrees, respectively. Furthermore,
the precipitation elasticity was found to have a direct relationship with the mean annual
precipitation and an inverse relationship with the catchment areas. The study also found
that the temperature elasticity values in the majority of the catchment areas were not
significant and showed outlier or unrealistic behaviour, and thus the results of temperature
elasticity cannot be significantly utilized in analysing streamflow sensitivity; however, it
improved the results of precipitation elasticity in multivariate approaches.
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Appendix A

Table A1. Complete details of the streamflow monitoring stations.

Station No. River and Catchment Outlet
Name X Outlet DD Y Outlet DD Standard Elevation

(m.a.s.l)
Available

Record (yrs)
Catchment

(km2)

1 Indus River at Kharmong 76.1834 34.9728 2436 27 67,858

2 Shyok River at Yugo 75.9742 35.2050 2308 37 33,670

3 Shigar River at Shigar 75.7130 35.3993 2222 14 4144

4 Indus River at Kachura 75.4627 35.4449 2219 40 112,664

5 Indus River near Gunji Bridge 74.8102 35.7148 1591 7 785

6 Hunza River at Dainyor Bridge 74.2933 35.9458 2028 40 13,157

7 Gilgit River at Gilgit 74.1821 35.9452 3140 40 12,095

8 Gilgit River at Alam Bridge 74.5710 35.7816 1365 40 26,159

9 Indus River at Partab Bridge 74.6359 35.6913 1298 31 142,708

10 Sai Nallah at Urkakai 74.4870 35.7913 2421 8 554

11 Indus River near Bunji Bridge 74.6193 35.6102 1305 11 97

https://www.bafg.de/GRDC/EN/Home/homepage_node.html
https://www.bafg.de/GRDC/EN/Home/homepage_node.html
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Table A1. Cont.

Station No. River and Catchment Outlet
Name X Outlet DD Y Outlet DD Standard Elevation

(m.a.s.l)
Available

Record (yrs)
Catchment

(km2)

12 Astore River at Doyian 74.7380 35.5297 1668 36 4040

13 Indus River at Raikot 74.1948 35.4058 1052 4 385

14 Indus River at Shatial Bridge 73.4830 35.5409 922 25 129,499

15 Gorbund River at Kabora 72.8292 34.9242 749 30 635

16 Indus River at Bisham Qila 72.8902 34.8819 638 39 162,392

17 Brandu River near Dagger 72.5254 34.4902 669 36 598

18 Siran River near Phulra 73.0710 34.3079 829 37 1057

19 Golan Gol River at Bubka 72.1346 35.9687 3567 6 541

20 Golan Gol River at Mastuj Bridge 72.0148 35.9234 2270 12 518

21 Siran River near Thapla 72.8333 34.1229 430 9 2797

22 Chitral River at Chitral 71.7873 35.8339 1471 42 11,396

23 Kabul River at Warsak 71.2482 34.2581 650 9 67,340

24 Swat River near Kalam 72.6033 35.3647 1748 43 2020

25 Swat River at Chakdara 72.0369 34.6741 726 43 5776

26 Panjkora River at Zulam Bridge 71.7865 34.7594 645 8 597

27 Swat River at Munda Dam 71.5119 34.4079 580 8 392

28 Bara River at Jhansi Post 71.2955 33.8325 707 43 1847

29 Kabul at Nowshehra 71.8536 33.9839 328 43 88,578

30 Kalpani River near Risalpur 72.0654 34.0488 294 8 722

31 Indus River at
Khairabad/Mandori 72.2286 33.8317 291 36 264,179

32 Haro River at Dhartian 73.0497 33.8574 773 7 621

33 Nilan Kass River at Najaf Pur 73.0037 33.7370 830 7 57

34 Haro River near Khanpur 72.8911 33.7899 539 28 777

35 Haro River near Sanjawal 72.3814 33.7483 313 9 1800

36 Haro River at Gariala 72.2168 33.7653 271 37 3056

37 Kohat Toi at Jarma Weir 71.5844 33.4278 350 6 1541

38 Soan River at Chirah 73.2995 33.6505 576 43 326

39 Ling River near Kahuta 73.3203 33.5603 533 9 153

40 Soan at Gorakh Pur Bridge 72.5949 33.1650 323 12 326

41 Soan River near Rawalpindi 73.0615 33.4915 399 31 1683

42 Sil River near Chahan 72.7874 33.3643 361 43 241

43 Soan River at Dhok Pathan 72.2099 33.1237 283 42 6475

44 Indus River at Massan 71.4547 32.8880 199 33 287,489

45 Kurram River at Thal 70.4857 33.4261 806 39 5543

46 Tochi River at Tangi Post 70.4930 32.8734 381 25 5128

47 Tank Zam near Jandola 70.1767 32.3073 604 23 2176

48 Zhob River at Sherik Weir 69.4283 31.4473 1304 10 10,360

49 Gomal River at Khajurikach 69.8628 32.1003 729 22 29,008

50 Gomal River at Kot Murtaza 70.2454 32.0227 252 37 36,001

51 Daraban Zam at Zam Tower 70.2295 31.7817 279 16 1062

52 Indus River at Dadu Moro Bridge 67.8856 26.7453 45 25 32,634

53 Chenab River at
Alexandria Bridge 74.0584 32.4895 220 6 13,792

54 Jhelum River at Chinari 73.8580 34.1309 25 13,546

55 Jehlum at Majohi 73.5958 34.2481 796 5 14,292

56 Jhelum River at Domel 73.5140 34.3296 714 29 14,504

57 Neelum River at Dhundnial 74.1367 34.7322 1815 10 5439

58 Neelum at Nosheri 73.8377 34.5566 1336 17 6809
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Table A1. Cont.

Station No. River and Catchment Outlet
Name X Outlet DD Y Outlet DD Standard Elevation

(m.a.s.l)
Available

Record (yrs)
Catchment

(km2)

59 Kishanganga/Neelum
at Muzaffarabad 73.4854 34.4148 760 42 7278

60 Kunhar River at Naran 73.5003 34.7227 2508 41 1036

61 Kunhar River at Talhata Bridge 73.3540 34.5547 992 12 2354

62 Kunhar River at Garhi Habibullah 73.3873 34.3986 820 30 2383

63 Jhelum River at Kohala 73.4947 34.1295 586 29 248,898

64 Bishan Daur Kas near Missa 73.3203 33.2136 452 7 150

65 Jehlum at Chattar Klass 73.5119 34.0241 654 11 24,700

66 Jhelum River at Azad Pattan 73.5616 33.7828 506 28 26,485

67 Kanshi River near Palote 73.5156 33.2329 430 35 1111

68 Poonch River near Kotli 73.8967 33.5121 602 42 3237

69 Jhelum River at Mangla Cableway 73.6554 33.1480 335 19 33,411

70 Khost River at Chappar Rift 67.4999 30.3269 1431 22 1191

71 Beji River at Babar Kach 68.0450 29.7867 308 10 4558

72 Nari River near Sibi 67.8473 29.5587 134 10 22,559

73 Chakkar River at Talli Tangi 68.2746 29.6186 469 5 1484

74 Bolan River at Kundlani Bridge 67.5722 29.5004 188 10 4040

75 Mula River at Naulang 67.2708 28.3772 244 9 8599

76 Gaj Nai near Jubble 67.2420 26.8639 179 5 6863

77 Indus River near Sehwan 67.8971 26.3953 25 15 1250

78 Dasht River at Mirani Dam Site 62.7529 25.9970 68 5 22,533

79 Hub River at Karpasaniwat 67.1635 25.3759 96 14 1430

80 Hub River at Bund Murad Khan 67.0292 25.1167 47 10 9428

81 Porali River at Sinchi Bent 66.4370 26.5235 340 16 4040

82 Kud River near Mai Gundrani 66.2285 26.4235 232 14 2085

83 Khadeji River at Super Highway 67.4502 25.0300 170 13 567

84 Liyari River at Super
Highway Bridge 67.0950 24.9397 33 5 207

85 Malir River at Super
Highway Bridge 67.4045 25.0486 110 12 2235

86 Malir River at National Highway 67.5788 24.3406 2 5 2176

Table A2. List of the meteorological stations for the precipitation and temperature datasets.

S. No Station Name X (DD) Y (DD) Elevation (a.m.s.l) Available Dataset

1 Astore 74.9000 35.3333 2168.0 Precipitation, temperature

2 Bunji 74.6333 35.6667 1372.0 Precipitation, temperature

3 Chillas 74.1000 35.4167 1250 Precipitation, temperature

4 Skardu (AP) 75.6833 35.3000 2317.0 Precipitation, temperature

5 Gilgit 74.3333 35.9167 1460.0 Precipitation, temperature

6 Dir 71.8500 35.2000 1375.0 Precipitation, temperature

7 Darosh 71.7833 35.5667 1463.9 Precipitation, temperature

8 Balakot 72.3500 34.5500 995.4 Precipitation, temperature

9 Cherat 71.5500 33.8167 1372.0 Precipitation, temperature

10 Dalbandin 64.4000 28.8833 848.0 Precipitation, temperature

11 D.I. Khan 70.8667 31.9167 172.3 Precipitation, temperature

12 Hyderabad 68.4167 25.3833 28.0 Precipitation, temperature
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Table A2. Cont.

S. No Station Name X (DD) Y (DD) Elevation (a.m.s.l) Available Dataset

13 Jacobabad 68.4667 28.3000 55.0 Precipitation, temperature

14 Jhelum 73.7333 32.9333 287.2 Precipitation, temperature

15 Kakul 73.2500 34.1833 1308.0 Precipitation, temperature

16 Karachi (AP) 66.9333 24.9000 22.0 Precipitation, temperature

17 Kohat 71.4330 33.5670 512.0 Precipitation, temperature

18 Kotli 73.9000 33.5167 614.0 Precipitation, temperature

19 Muzaffarabad 73.4833 34.3667 838.0 Precipitation, temperature

20 Peshawar 71.5600 33.87200 327.0 Precipitation, temperature

21 Quetta 66.9500 30.1833 1626.0 Precipitation, temperature

22 Zhob 69.4667 31.3500 1405.0 Precipitation, temperature

23 Parachinar 70.0833 33.8666 1725.0 Precipitation, temperature

24 Bahawalpur 71.7833 29.3333 110.0 Precipitation, temperature

25 Bahawalnagar 29.9500 68.9000 163.0 Precipitation, temperature

26 Faisalabad 73.1333 31.4333 185.6 Precipitation, temperature

27 Gupis 73.4000 36.1667 2156.0 Precipitation, temperature

28 Islamabad 73.1000 33.6170 508.0 Precipitation, temperature

29 Khanpur 70.6830 28.650 88.4 Precipitation, temperature

30 Lahore (PBO) 74.3333 31.5500 214.0 Precipitation, temperature

31 Mianwali 71.5170 32.5490 212.0 Precipitation, temperature

32 Multan 71.4333 30.2000 122.0 Precipitation, temperature

33 Muree 73.3830 33.9170 2213.0 Precipitation, temperature

34 Sargodha 72.6667 32.0500 187.0 Precipitation, temperature

35 Sialkot 74.5333 32.5167 255.1 Precipitation, temperature

36 Mangla 73.6333 33.0667 283.3 Precipitation

37 Risalpur 71.9830 34.067 317 Precipitation

38 Saidu 72.35 34.767 953 Precipitation

39 Bannu 70.1000 33.0000 406 Precipitation

40 Paddian 68.1333 26.8500 46 Precipitation

41 Nawab Shah 68.3667 26.2500 37 Precipitation

42 Panjgur 64.1000 26.9667 968 Precipitation

43 Jiwani 61.8000 25.0667 56 Precipitation

44 Sibbi 67.8833 29.5500 133 Precipitation

45 Nokundi 62.7500 28.8167 682 Precipitation

46 Badin 68.9000 24.6333 9 Precipitation

47 Kalat 66.5833 29.0333 2015 Precipitation
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Table A3. Complete set of the precipitation and temperature elasticity values obtained using three
different approaches.

Precipitation Elasticity Temperature Elasticity
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1 Indus River at Kharmong 27 0.7 0.6 0.3 −0.5 −1.5 3.7

2 Shyok River at Yugo 37 0.0 0.0 −0.2 2.1 0.8 3.7

3 Shigar River at Shigar 14 0.8 0.2 0.0 0.3 −0.2 3.6

4 Indus River at Kachura 40 0.2 0.2 0.1 1.5 1.4 4.2

5 Indus River near Gunji Bridge 7 2.5 0.2 0.3 0.4 3.0 3.8

6 Hunza River at Dainyor Bridge 40 0.1 0.0 0.0 2.9 3.0 3.4

7 Gilgit River at Gilgit 40 0.3 0.3 0.4 0.0 0.3 3.4

8 Gilgit River at Alam Bridge 40 0.1 0.1 0.3 −0.4 1.1 3.6

9 Indus River at Partab Bridge 31 0.0 0.0 0.2 −0.1 0.5 3.9

10 Sai Nallah at Urkakai 8 −0.6 −0.8 −0.5 −4.5 −0.5 2.0

11 Indus River near Bunji Bridge 11 0.5 0.1 0.2 0.1 0.2 3.9

12 Astore River at Doyian 36 0.5 0.6 0.9 −2.1 −0.2 3.2

13 Indus River at Raikot 4 1.0 0.9 1.1 −7.0 0.1 4.3

14 Indus River at Shatial Bridge 25 0.2 3.0 1.4 0.6 3.0 3.7

15 Gorbund River at Kabora 30 2.4 3.0 3.6 −5.9 −7.9 0.3

16 Indus River at Bisham Qila 39 0.6 0.3 0.6 0.6 0.5 3.7

17 Brandu River near Dagger 36 0.3 0.4 0.5 −5.0 0.4 1.6

18 Siran River near Phulra 37 1.3 2.3 2.2 −3.8 −1.9 1.2

19 Golan Gol River at Bubka 6 −0.4 −0.1 −2.0 −7.8 −9.3 1.5

20 Golan Gol River at Mastuj Bridge 12 0.9 0.6 1.1 −3.7 −1.5 1.8

21 Siran River near Thapla 9 0.4 0.3 0.7 −4.0 −8.0 2.1

22 Chitral River at Chitral 42 0.2 0.1 0.6 0.4 0.6 3.1

23 Kabul River at Warsak 9 0.5 0.4 0.8 −6.8 −2.9 3.3

24 Swat River near Kalam 43 0.2 0.0 0.1 −0.2 −0.4 2.8

25 Swat River at Chakdara 43 0.0 0.0 0.0 −0.6 −0.5 3.2

26 Panjkora River at Zulam Bridge 8 2.5 3.7 3.9 −9.6 −3.3 1.0

27 Swat River at Munda Dam 8 1.7 1.7 1.5 1.4 −0.3 2.8



Water 2022, 14, 2033 24 of 30

Table A3. Cont.

Precipitation Elasticity Temperature Elasticity

C
at

ch
m

en
tN

o.

River and Station Name

A
va

il
ab

le
R

ec
or

d
(Y

ea
rs

)

Sa
nk

ar
as

ub
ra

m
an

ia
n’

s
N

P
B

iv
ar

ia
te

Es
ti

m
at

or

M
ul

ti
va

ri
at

e
N

P
A

na
ly

si
s

M
ul

ti
va

ri
at

e
D

L
A

na
ly

si
s

Sa
nk

ar
as

ub
ra

m
an

ia
n’

s
N

P
B

iv
ar

ia
te

Es
ti

m
at

or

M
ul

ti
va

ri
at

e
N

P
A

na
ly

si
s

M
ul

ti
va

ri
at

e
D

L
A

na
ly

si
s

28 Bara River at Jhansi Post 43 0.4 2.7 1.6 −4.1 −8.0 1.4

29 Kabul at Nowshehra 43 0.2 0.4 0.4 −0.6 −1.5 3.5

30 Kalpani River near Risalpur 8 0.2 0.3 0.4 −2.3 −1.8 2.4

31 Indus River at
Khairabad/Mandori 36 1.0 0.0 0.2 −2.5 −1.6 3.9

32 Haro River at Dhartian 7 3.0 3.7 2.3 1.7 −2.6 1.0

33 Nilan Kass River at Najaf Pur 7 3.5 −0.2 −0.2 −6.6 −2.5 1.3

34 Haro River near Khanpur 28 1.5 1.9 1.5 −3.9 −5.2 1.2

35 Haro River near Sanjawal 9 0.0 0.2 0.2 −0.2 −0.5 2.1

36 Haro River at Gariala 37 2.2 0.8 1.1 −3.6 −4.5 1.9

37 Kohat Toi at Jarma Weir 6 0.9 1.8 1.6 15.3 16.0 1.1

38 Soan River at Chirah 43 2.4 2.3 2.1 −7.3 −11.1 0.8

39 Ling River near Kahuta 9 −0.1 2.3 1.2 −1.8 3.5 0.9

40 Soan at Gorakh Pur Bridge 12 2.7 2.3 1.8 −2.6 4.8 1.6

41 Soan River near Rawalpindi 31 1.5 1.8 1.5 1.7 −0.7 1.6

42 Sil River near Chahan 43 1.9 1.2 1.7 −2.1 −12.6 0.6

43 Soan River at Dhok Pathan 42 2.7 1.2 1.4 −3.3 −4.4 2.0

44 Indus River at Massan 33 0.2 0.3 0.4 0.4 −0.6 3.7

45 Kurram River at Thal 39 0.6 0.7 0.8 −6.5 −6.2 2.1

46 Tochi River at Tangi Post 25 0.6 0.8 1.1 −11.2 −15.8 1.6

47 Tank Zam near Jandola 23 0.2 0.1 0.0 −9.1 −3.9 1.9

48 Zhob River at Sherik Weir 10 −0.8 −0.2 −0.3 −17.9 5.1 1.8

49 Gomal River at Khajurikach 22 1.0 0.3 0.4 −2.7 1.3 2.3

50 Gomal River at Kot Murtaza 37 1.0 2.4 1.0 8.4 5.5 2.2

51 Daraban Zam at Zam Tower 16 0.3 0.2 0.1 −9.5 −11.6 1.3

52 Indus River at Dadu Moro Bridge 25 0.1 0.1 0.3 −14.8 −10.3 3.5

53 Chenab River at Alexandria
Bridge 6 −0.5 −1.4 0.1 1.3 −6.3 3.2

54 Jhelum River at Chinari 25 2.1 1.3 1.7 −6.2 −7.0 2.4
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55 Jehlum at Majohi 5 −1.8 −2.8 −2.7 −0.9 2.3 4.7

56 Jhelum River at Domel 29 0.9 0.8 1.1 −5.0 −6.5 2.6

57 Neelum River at Dhundnial 10 0.2 1.0 0.9 −1.7 −2.8 3.0

58 Neelum at Nosheri 17 1.2 1.8 1.1 −10.1 −11.0 2.7

59 Kishanganga/Neelum at
Muzaffarabad 42 0.9 0.5 0.8 −4.1 −4.4 2.7

60 Kunhar River at Naran 41 0.3 0.1 0.5 −3.4 −1.9 2.3

61 Kunhar River at Talhata Bridge 12 0.8 0.6 1.0 −4.4 −3.4 0.4

62 Kunhar River at Garhi Habibullah 30 0.5 0.2 0.3 −0.6 −1.4 2.6

63 Jhelum River at Kohala 29 0.4 0.5 0.7 −0.7 −0.1 3.3

64 Bishan Daur Kas near Missa 7 3.1 1.1 1.0 −8.0 −14.1 0.4

65 Jehlum at Chattar Klass 11 1.6 1.1 1.4 −1.3 −1.5 2.9

66 Jhelum River at Azad Pattan 28 1.0 1.2 1.3 −1.6 −1.8 3.0

67 Kanshi River near Palote 35 1.9 2.8 1.9 1.8 7.1 1.0

68 Poonch River near Kotli 42 0.8 0.5 0.8 0.0 −4.0 2.4

69 Jhelum River at Mangla
Cableway 19 0.3 0.2 0.3 −6.2 −16.6 3.1

70 Khost River at Chappar Rift 22 0.5 0.0 0.5 0.3 1.2 1.1

71 Beji River at Babar Kach 10 −0.1 0.0 −0.1 0.2 4.0 1.8

72 Nari River near Sibi 10 0.2 0.0 0.1 0.6 15.9 2.0

73 Chakkar River at Talli Tangi 5 0.8 1.2 1.8 −12.0 15.0 2.0

74 Bolan River at Kundlani Bridge 10 0.2 0.1 0.2 −0.8 −0.5 1.5

75 Mula River at Naulang 9 0.0 0.5 0.2 0.3 1.8 1.5

76 Gaj Nai near Jubble 5 0.1 0.2 0.2 −6.0 −2.1 1.5

77 Indus River near Sehwan 15 1.3 0.0 0.1 −9.7 15.4 3.3

78 Dasht River at Mirani Dam Site 5 1.2 1.5 1.4 −6.3 −7.0 2.4

79 Hub River at Karpasaniwat 14 0.7 0.8 1.3 −4.6 −4.8 2.1

80 Hub River at Bund Murad Khan 10 0.9 1.8 1.0 −3.0 −3.8 2.0

81 Porali River at Sinchi Bent 16 1.0 1.2 0.9 −2.8 −3.1 2.0
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82 Kud River near Mai Gundrani 14 1.0 1.2 0.8 3.0 3.2 1.8

83 Khadeji River at Super Highway 13 0.9 1.3 1.1 −16.6 −13.0 1.1

84 Liyari River at Super Highway
Bridge 5 0.8 0.6 0.7 8.3 8.4 1.1

85 Malir River at Super Highway
Bridge 12 1.0 0.1 0.8 1.3 1.8 1.3

86 Malir River at National Highway 5 0.0 0.0 0.0 3.0 4.1 1.1Water 2022, 14, 2033 28 of 31 
 

 

 
Figure A1. Subbasin map of the study area and the precipitation and temperature stations used to 
compute the basin-averaged precipitation and temperature time series. 
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