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Abstract: The Arkavathi River, one of the major tributaries of the Cauvery River in southern India, is
a major source of drinking water and agricultural irrigation to villages and townships in the region.
Surface water quality distribution and characteristics of the Arkavathi Reservoir catchment and
command area were evaluated using multivariate statistical analysis on 29 water quality parameters
collected across 30 monitoring stations over a two-year, three-season period. Factor analysis (FA),
agglomerative hierarchical clustering (AHC), analysis of variance (ANOVA) and t-tests were used
to reveal strong links between parameters and to reveal significant variations in their concentration
levels with respect to monsoon seasons and sampling locations across the sub-watersheds. Results
from factor analysis showed strong groupings of specific parameters across seasons, while results
from clustering revealed distinct clusters of sampling points around the river, upstream from the
reservoir (where human activity is high), in the command area downstream from the reservoir (where
irrigation activity is similar), in hilly regions towards the northeast of the study area and in the
scrubland regions. Based on multivariate analysis findings, specific recommendations are made for
water quality improvement in the reservoir catchment and command area.

Keywords: water contaminants; sub-watershed; reservoir management; catchment area; surface
water quality; factor analysis; clustering; ANOVA

1. Introduction

Water, being one of the vital components of life, is under more scrutiny in recent
decades due to urbanization, industrial and agricultural activities, and improper man-
agement at various levels causes deterioration in water quality, in turn affecting its use
for all human activities [1,2]. Deterioration of surface water quality in reservoirs and
lakes is of particular significance when they are used for crop irrigation and more-so for
drinking purposes, as evident in the present case of the Arkavathi River, which feeds into
the Cauvery River, which is one of the main sources of drinking water for the region. For
an effective water management strategy, it is therefore imperative to collect and analyze
reliable data for spatio–temporal variations of surface water contaminants across monsoons
and sub-watersheds in reservoir catchment and command areas, which in turn can be used
to identify pollution sources and propose remedial measures to improve water quality.

1.1. Multivariate Analysis of Surface Water

Various contaminants, along with sediments, through runoff are carried through
the tributaries of the Arkavathi River (total flow length of about 210 kms) at various
locations and further into the Cauvery River, which is the main source of water supply to
many townships in the southern Indian state of Karnataka. The quality of vegetation in
the command area of the Arkavathi Reservoir (also known as the Harobele Reservoir) is
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affected by the water quality due to various stressors such as untreated domestic sewage,
effluents from agricultural runoff, etc. Surface water samples were collected to analyze
various characteristics of water quality in the six sub-watershed areas (Section 2.1) and
were analyzed with the aid of appropriate multivariate statistical tools (Section 3) to derive
meaningful conclusions about various parameters within each of these datasets and to
propose remedial solutions.

One of the most-applied multivariate methods in watershed studies is principal compo-
nents analysis (PCA), which uses correlations among multiple water quality constituents to
effectively reduce the number of parameters [3]. For example, in [4], the potential pollution
sources affecting the Jinsha River watershed in western China from 2016 to 2018 were inves-
tigated using an improved method in combination with correlation analysis and absolute
principal component score multiple linear regression receptor modelling. The multivariate
statistical techniques presented good adaptability for the analysis of pollution sources in
this river watershed, and the results were useful for the protection and management of the
watershed eco-environment. To determine relationships between physical and chemical
water quality parameters, PCA and CCA (canonical correlation analysis) have been widely
used in studies such as those in restored wetlands in northeast Denmark [5] and in the
Llobregat River in northeast Spain [6]. Though PCA has been widely used in such studies,
factor analysis (FA) has been found to be better-suited if the main objective is to identify
parameters of water quality that are related to each other and to separate them from each
other. FA has been applied to surface water quality data, for example, for a river basin in
Turkey during two different hydrological periods of low- and high-flow periods [7], where
the source of pollution changed from agricultural uses to land use during high-flow periods.

Cluster analysis (CA) has also been widely used, sometimes in conjunction with
PCA/FA for assessing variation of contaminants across either locations or seasons. In a
longitudinal analysis study, pollution profiles of 40 rivers in India were created based on
the levels of biochemical oxygen demand (BOD) [8]. CA was used to represent groups of
rivers with similar levels of pollutants. Another similar application of CA was to evaluate
dam water quality, for example that of northcentral Algeria [9], where clusters of sampling
sites reflected differences between water quality at different locations. There have been
studies demonstrating the usefulness of multivariate statistical approaches for analyzing
temporal variations in water quality for effective river water quality management [10–14].
In [13], the authors assessed the surface water quality data for 16 physical and chemical
parameters collected from 22 monitoring sites during the years from 1998 to 2001. PCA was
used to extract the parameters that were most important in assessing seasonal variations
of river water quality. The analysis showed that parameters that are most important in
contributing to water quality variation during one season may not be important during
another season, except for dissolved organic carbon and electrical conductance, which were
always the most important parameters in contributing to water quality variations over all
four seasons.

One-way and two-way ANOVA have been used to extract temporal and spatial
variations of water quality [15], mainly to show the reliability of results from CA and
FA [16]. However, two-way, and particularly three-way, ANOVA have not been widely
applied in this context. To obtain a comprehensive view of variations across years, seasons
and locations, we need to combine all the above tools in a meaningful way. In this study,
we have used a combination of factor analysis, clustering, two-way and three-way ANOVA
and t-tests to reveal interesting annual spatio–seasonal variations and groupings of different
parameters in order to identify potential sources of pollution and remedial measures for
effective water management in the catchment and command area.

Multivariate statistical analyses of surface water quality datasets in different envi-
ronmental settings have been proven to be effective for deriving meaningful associations,
relationships between various quantities and environmental factors and in assessing spatio–
temporal variations, as seen from some of the relevant studies discussed above. In our
present study, FA is used comprehensively to derive relationships between parameters
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across seasons and to reconfirm the clustering of sampling locations, which are derived
through AHC. Spatial variations are not only confirmed through AHC but also through
three-way ANOVA, which includes, apart from spatial, seasonal and annual variations
in parameter values. Most of the literature has focused on individual use of these tools,
which provides a limited view of the relationships between surface water parameters.
Additionally, most articles invariably focus on either one or the dual aspects of seasonal
and locational variations. In this article, we combine annual, seasonal and spatial vari-
ations in a significant study area that involves reservoir catchment and command areas.
The above methodology of FA–AHC–ANOVA and t-tests highlights some very interest-
ing relationships amongst parameters and spatio–temporal variations across the study
area. Additionally, the articles in the literature that focus on seasonal aspects do so in a
monthly or a traditional seasonal approach [17,18]. However, we have collected samples
and analyzed them based on monsoon seasons typical for this part of the world. This
gives insight into the monsoon effects with respect to concentration levels and groupings
between physico–chemical and biological parameters, which is vital for water management
and water usage monitoring programs in this part of the world.

1.2. Geogenic Contamination Analysis of Groundwater

The quality and quantity of surface and groundwater is influenced by geogenic and
anthropogenic factors. Pollution of groundwater primarily results from substances that
naturally occur in groundwater and the mineral environment and/or by all types of point
and diffuse sources of pollution [19]; therefore, groundwater requires regular monitoring.
In a study related to global water pollution and human health [20], the authors discussed
water pollution issues related to various pollutant source classifications such as agriculture,
geogenic, biogenic, mining, hazardous waste, and urban wastewater in industrial, devel-
oping, and emerging countries. One of the important conclusions of this study was that
geogenic contaminants act as diffuse sources of toxic elements at regional scales, inflicting
chronic diseases on large populations of all continents. To solve this problem, the authors
suggested using geochemical modeling of hydrogeochemical data and spatial analysis
to improve the geogenic problem. Monitoring of the quality of groundwater is based on
water chemistry analysis to identify the nature of pollutants. In one study [21], reaction
path modelling was used to investigate the evolution of water chemistry in shallow to
deep crystalline aquifers, with a special focus on fluoride. The water–rock interaction
led to Ca-enrichment due to the dissolution of Ca phases originating from the Ca-HCO3
water type. Magnesium was mainly contributed to the aqueous solution through biotite
dissolution, whereas chlorite dissolution played a subordinate role throughout the whole
rock-dissolution process. This study became a valuable tool for environmental applications
to understand the geochemical processes occurring in aquifers of interest and to predict
the fate of pollutants in different geological settings. In another study [22], geochemical
modelling was used to understand the release and fate of pollutants in crystalline aquifers.
It was concluded that the geochemical behavior of groundwater depends on several ge-
ogenic processes that cause hazardous enrichment of natural waters, even in remote areas
far from anthropogenic sources. In this work, arsenic pollution was addressed by studying
water–rock interactions and applying reaction-path modelling as a tool to understand
the rock-to-water release of arsenic and the fate of this natural pollutant in crystalline
aquifers. comparison of theoretical trends and experimental data showed that SO4, Fe
and As groundwater concentrations in which no arsenic anomalies were observed were
explained by the dissolution of the considered granitic rock.

A multivariate, nonparametric approach has been successfully applied for estimating
the probability of exceeding the local natural background level of arsenic in the aquifers
of the Calabria region (southern Italy) [23]. In this study, the concept of the natural
background level was used to distinguish between natural and anthropogenic contributions
to concentrations of specific contaminants as a groundwater management and protection
tool. It was concluded that, based on the triangular plots of major anions and major cations,
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165 of the 337 groundwater samples from crystalline-metamorphic water groups could
be attributed to the Ca-HCO3 chemical type, followed by Na-HCO3 (110 samples), Na-
Cl (33 samples) and Mg-HCO3 (23 samples) hydro–chemical facies. These compositions
reflected the typical groundwater evolution from shallow to deep crystalline-metamorphic
aquifers [23]. In a recent study [24], the hydrogeological features, main sources of geogenic
hazardous substances, dominant hydrogeochemical processes and key factors controlling
the occurrence of high arsenic (As ≥ 10µg/L), high fluoride (F ≥ 1 mg/L) and high iodine
(I ≥ 100µg/L) in groundwater were discussed. Four basic genetic types of geogenic
contaminated groundwaters (GCGs) were proposed by summarizing the characteristics
of the distribution and major hydrogeochemical processes, namely leaching–enrichment,
burial–dissolution, compaction–release and evaporation–concentration types. The complex
genetic mechanisms of GCGs were integrated into a new theoretical framework to analyze
their genesis and predict their spatial and temporal distribution.

In our present work, the following methodology was followed to analyze groundwater
samples. The total study area was divided into six sub-watersheds for surface water
sampling based on the drainage features of the area. The monitoring/sampling stations
were located based on practical considerations. A total of 33 groundwater samples were
collected for each of the three monsoon seasons over a period of two years. The samples
were collected and subjected to various physical, chemical and biological characteristics
as per the Bureau of Indian Standards [25] and as explained briefly in the Supplementary
Material. Piper Trilinear diagrams were generated to interpret the groundwater chemistry,
and the conclusions are noted in Section 3.4.

1.3. Significance of the Present Study

This work highlights the significance of multivariate analysis in analyzing surface
water quality of reservoir catchment and command areas, with the focus on variations
across sub-watershed locations, monsoons and years. This study is significant especially
due to the type of region we analyzed, as it has a good variety of landcover, including forest,
scrubland and irrigated land and a variety of land uses, such as domestic, agricultural
and quarrying activities, as discussed in Section 2.3. The geological features, as given in
Section 2.2, and the chemical analysis of groundwater, as given in Section 3.4, make this
region interesting for analyzing the quality of both surface water and groundwater. This
work brings out important relationships amongst water quality parameters and valuable
information on spatio–seasonal variations for effective watershed management, thereby
improving water quality for agricultural and drinking purposes in this significant region of
southern India.

2. Materials and Methods
2.1. Study Area

The Arkavathi River, with a total flow length of about 210 kms, originates in the
Nandidurga Hills (13◦22′11′ ′ N and 77◦41′5′ ′ E) of Karnataka state at an altitude of 1467 m
amsl (above mean sea level) and flows through various parts of the region before draining
into the Cauvery River, which is one of the most prominent rivers in southern India. The
study area covered approximately 1572 km2 with a total perimeter 245.72 kms and is
located between 12◦20′ to 12◦54′ N and 77◦15′ to 77◦44′ E (Figures 1–5). The flow system of
the main Arkavathi River from the point of its entry into the study area at Manchanabele
Reservoir (12◦52′19′ ′ N and 77◦20′5′ ′ E) till its exit with a waterfall at Chunchi village
(12◦21′5′ ′ N and 77◦26′46′ ′ E) is geologically structurally controlled. The Arkavathi River
has a flow length of 65 kms from Manchanabele (720 m amsl) up to the Chunchi waterfalls
(540 m amsl) and has a total fall in gradient of 180 m, i.e., an average fall in gradient of 2.8 m
per km of flow length. The flow path of the subsidiary drainages is also linear. A total area
of 62.32 km2 (cultivable command area), which is part of sub-watershed SW6, is irrigated
with Arkavathi Reservoir water. The study area is demarcated into six sub-watersheds,
which are named accordingly (Table 1) based on the drainage features of the area. The
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geology map of the study area is given in Figure 2. Contour maps, a digital elevation model
map (prepared using RS and GIS), a slope map and a drainage map are given as online
Supplementary Materials.
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Table 1. Details of sub-watersheds.

Sub-Watershed Local Name of
Sub-Watershed Area (km2)

SW1 Ramanagara sub-watershed 348.69
SW2 Suvarnamukhi sub-watershed 420.25
SW3 Mavathurkere sub-watershed 369.70
SW4 Kodihalli sub-watershed 175.06
SW5 Kanakapura sub-watershed 168.96
SW6 Harobele sub-watershed 89.39

Total 1572
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2.2. Geology and Geomorphological Features

A large extent of the Arkavathi Reservoir catchment and part of its command area,
particularly the western parts, with a geomorphic display of abundant hills, hill ranges,
inselbergs, intermittent valleys, rock-cut valleys, etc., is a type of area generally referred
to as ‘Closepet Granites’. The Geology map of the study area (Figure 2) and a soil erosion
map (Figure 3) are given here for reference. The hills at the eastern peripheral parts of the
area are the southern extension of the granite belt [26]. This long but narrow intrusive rock
body is composed of diorites, granodiorites and grey granites, and forms a divide between
the Ponnaiyar River catchment to the east and the Vrishabhavati stream system of the
Arkavathi sub-basin to the west. Suvarnamukhi, a subsidiary drainage of the Vrishabhavati
stream, is born in the western part of this granite belt. The gneissic rocks of the younger
gneissic complex are drained mainly by the Vrishabhavati stream system in the northcentral
part of the area, which is bound by the Closepet Granites. The western part of the area,
parallel to the southern-flowing Vrishabhavati stream, forms a longitudinal contact between
the massive Closepet Granite body to the west and the young Gneissic group of rocks to
the east. The Closepet Granites are of both grey and pink varieties and are coarse-grained
and porphyritic. Granites are poorly jointed and are weathered to an average depth of 15 m
in the valley zone. The depth of weathering thins out as we move towards the pediment
part of the terrain.

Granite to the west and southern extension of the granite belt forms a moderately
undulating topography. A small extent of the Arkavathi Reservoir command area also
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forms part of the gneissic terrain. Most of the gneissic terrain forms a pediplain with
considerably weathered rock. The depth of weathering ranges up to 30 m. The gneissic
rocks are easterly dipping, and the dip angle of the mineral foliation ranges from between
65◦ and 80◦. Dip joints are more prominent. These gneissic rocks are fractured at the contact
with granites, and the presence of pegmatites and quartz veins in gneisses are common.

A large part, excluding the part constituting hills and the hill range, forms the pedi-
ment zone. The presence of pediplains becomes transitionally significant from third-order
streams and onwards. The thickness of soil is dependent upon the type of landscape. Red
gravelly to loamy soils 0.3 to 1.5 m thick are commonly seen in the pediment part of the
terrain, whereas the thickness ranges up to 2.5 m in the pediplain. While the hill range
in the granite belt to the east of the southerly flowing Arkavathi River is N–S oriented,
the hills west of the river (i.e., right bank catchment part) are E–W to ESE–WSW oriented.
The height of the hills in the granite terrain ranges between 680 and 1043 m above mean
sea level (amsl). These hills are massive and steep, and many are monoliths, with most
of them attaining a height of more than 950 m amsl. The entire study area is a highly
tectonically disturbed zone. South of 13◦ latitude, the Closepet Granite is flanked on its east
by a ‘broad gravity low’ with its center near the town of Kanakapura (latitude 12◦32′36′ ′ N
and longitude 77◦25′2′ ′ E).

2.3. Land Use and Landcover of the Study Area

The study area is mainly composed of fertile land where kharif and rabi crops are
grown (Figure 4). It also comprises scrub forest, land with scrub, agricultural plantations
and an equal area of barren rocky sheetrock. A small portion of the area is occupied by
moist, dry deciduous, dense and open forest. Though not significant, mining/industrial
wasteland forms a minor part of the study area. Vegetation forms a major portion of the
study area, along with a few villages and small towns. Sub-watershed areas SW1 and
SW2 have townships along the Arkavathi River, where some cultivation takes places using
the river water. This is true to some extent in SW5 as well. Human activity is increased
in these three areas. SW3 and SW4 are predominantly forest and hilly areas with less
human activity. However, SW4 has a significant number of quarries. SW6 is the command
area and is rich in nutrients since it is mostly agricultural/irrigation land. A total area of
62.32 km2 (cultivable command area), which is part of sub-watershed (SW6), is irrigated
with Arkavathi Reservoir water. Further details regarding land use and landcover are given
in Table 2 below.

2.4. Sample Collection and Testing

Water samples were collected from 30 monitoring points over a study period of two
years covering three prominent seasons of Pre-Monsoon, Monsoon and Post-Monsoon
(Figure 5). To analyze the surface water quality of the area, we identified the sub-watersheds
using Survey of India (SOI) Topographic Maps at 1:50,000 scale—57 H5, 57 H6, 57 H7,
57 H9, 57 H10 and 57 H11. Surface water samples within these sub-watersheds were
then collected for further analysis. Two-liter polyethylene bottles/cans were thoroughly
cleaned and were used to collect samples from the sampling locations. To avoid impurities
on the surface of streams, the samples were drawn away from turbulence due to the
banks and few centimeters below the water surface. For microbiological analysis of water
samples, glass containers were used that could withstood 160 ◦C sterilization and would
not produce or release any harmful chemicals that would inhibit biological activity, induce
mortality or encourage growth. Samples for bacteriological examination were collected
in clean, sterilized, narrow-mouthed, neutral glass bottles of 250 mL, 500 mL or 1000 mL
capacity. The bottles were sterilized in a hot air oven at 100 ◦C for one hour. The sampling
bottles were not opened except at the time of sampling. The detailed sampling (BIS, Part
1: Sampling [25]) and testing procedures for each of the contaminants along with the full
dataset are given in the online Supplementary Materials section.
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Table 2. Details of land use and landcover of the study area.

Description Area (km2) Percentage of Area

Agricultural Plantation 111.26 7.07
Barren Rocky/Stony Waste/Sheet-Rock Area 95.26 6.06

Degraded Forest 22.45 1.42
Fallow Land 12.53 0.79

Forest Plantations 4.72 0.3
Gully/Ravine Land 0.73 0.04

Industrial Area 6.46 0.41
Kharif + Rabi (Double Crop) 264.89 16.85

Kharif Crop 547.91 34.85
Land With Scrub 139.72 8.88

Land Without Scrub 0.82 0.05
Mining/Industrial Wasteland 11.03 0.7

Mixed Vegetation 10.72 0.68
Moist and Dry Deciduous Dense Forest 58.06 3.69
Moist and Dry Deciduous Open Forest 20.90 1.32

Rabi Crop 0.31 0.02
Scrub Forest 169.40 10.77
Tree Groves 11.46 0.72
Town/Cities 17.81 1.13

Village 25.87 1.64
River/Stream 11.54 0.73
Lakes/Tanks 28.06 1.78

Total area 1572 100

The samples were subjected to various physical, chemical and bacteriological tests as
per the procedure given in [25] (Bureau of Indian Standards: Public Safety Standards of the
Republic of India: Chemical: Environmental Protection and Waste Management: Part 1 to
63), as explained briefly in the Supplementary Materials. For example, to test for dissolved
oxygen (DO), sampling and sample preservation were done as prescribed in BIS [25], Part
38: Dissolved Oxygen. The min–max ranges of the concentration levels of these parameters
are provided in Table 3 for both years of the study.

Table 3. Seasonal variation of surface water quality parameters (min–max values) in the study area.

Parameters
Min–Max Range for Year 1 Min–Max Range for Year 2

Pre-Monsoon Monsoon Post-Monsoon Pre-Monsoon Monsoon Post-Monsoon

pH 5.7–8.3 6.9–8.7 7.1–8.5 6.1–8.4 7.7–9.2 7.4–8.5
Temp (◦C) 28- 29 27 24–24 27 27 24–26

DO (mg/L) 3.8–6.4 3.4–6.8 4–6.3 2.2–6.14 3–6.6 2.7–4.1
BOD5 (mg/L) 2–15 1.6–6 3.2–9.1 2.1–15 2.2–12.8 5.5–16
COD (mg/L) 8–36 4.8–10.5 5.9–16.9 6.8–40 3.7–22 10.2–30

Total Suspended Solids (TSS) (mg/L) 2–13.9 1.6–8.2 3.5–9.2 1.9–15 3–11.2 6–11.5
Turbidity (NTU) 0.5–1.4 0.4–2.2 0.5–1.5 0.4–2.3 0.4–1.3 1–1.7

Total Dissolved Solids (TDS) (mg/L) 99–841 0.81–791 301–799 101–860 99–850 498–879
Conductivity EC (µmhos/cm) 220–1241 125–1217 465–1230 148–1250 399–1327 766–1353

Sodium Na+ (mg/L) 25–122 28–110 35–126 28–159 51–120 71–143
Potassium K+ (mg/L) 2.1–22.8 3–21 3.5–25 3.9–27 3–25 4.7–26
Calcium Ca2+ (mg/L) 9–119 10–90 14–92 18–111 10–101 59–96

Magnesium Mg2+ (mg/L) 3.7–34 1.7–33.6 1.9–31 2–36 6–74 8–29
Total Hardness as CaCO3 (mg/L) 81–439 42–430 209–432 89–450 55–428 275–541

Chlorides Cl− (mg/L) 31–205 28–182 35–210 33–305 35–221 130–275
Bicarbonate HCO−3 (mg/L) 90–275 80–281 95–276 92–305 90–285 161–281

Flouride F− (mg/L) 0.01–0.35 0.002–0.008 0.03–0.2 0.012–0.45 0.01–0.25 0.06–0.3
Nitrate NO−3 (mg/L) 1.0–3.9 0.8–3.2 1.4–15.7 1.1–8.1 0.9–8.6 2.7–18.2

Phosphate [PO4]
3− (mg/L) 0.01–0.31 0.02–0.52 0.02–0.9 0.01–0.48 0.05–0.45 0.1–0.28

Sulphate SO2−
4 (mg/L) 8.5–49 6–28 13–44 6.8–67 11–26 12–46.7

Hexavalent Chromium Cr+6 (mg/L) Nil 0–0.008 0.003–0.007 0.006–0.008 Nil–0.006 0.005–0.09
Iron Fe2+ (mg/L) 0.02–0.22 0.01–0.4 0.06–0.44 0.006–0.45 0.03–0.01 0.07–0.43

Copper Cu (mg/L) Nil–0.001 0–0.005 0.003–0.006 0.002–0.004 Nil–0.004 0.003–0.008
Lead Pb (mg/L) Nil 0–0 0.03–0.1 0.002–0.002 Nil–0.004 0.02–0.1

Nickel Ni (mg/L) Nil–0.001 0–0.004 0.001–0.004 0.001–0.002 Nil–0.004 0.001–0.004
Zinc Zn2+ (mg/L) 0.001–0.1 0.01–0.09 0.007–0.1 0.003–0.12 0.02–0.14 0.008–0.19

Total Alkalinity as CaCO3 (mg/L) 87–315 80–310 225–445 98–354 90–295 228–476
Total Coliform/100 mL 59–301 14–156 96–190 45–298 18–214 97–199
Fecal Coliform/100 mL 11–81 0–12 9–45 9–84 2–33 12–56
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2.5. Data Suitability

The KMO (Kaiser–Meyer–Olkin) (Kaiser, 1974) measure of sampling adequacy tests
how well-suited the data are to perform FA. It measures the proportion of variance among
parameters that might be common variances. KMO [27] returns a value between 0 and
1. If the value is closer to 1, it means that the data are better qualified for FA. In most
of our analyses, we got a KMO value in the range of 0.6–0.7. Bartlett’s test of sphericity
compares the correlation matrix to an identity matrix, i.e., it checks for redundancy between
parameters. In this case, Bartlett’s test was very highly significant (<0.001), and, therefore,
FA was appropriate. FA, clustering, ANOVA and t-tests were performed using the IBM
SPSS statistical software [28] and XLSTAT Excel add-on data analysis package [29].

2.6. Multivariate Analysis
2.6.1. Factor Analysis

Principal factor analysis (PFA) is a dimension-reduction technique and was used as an
extraction method [30–32] to reduce the large number of parameters while retaining most
of the information contained in the original dataset. Factor analysis (FA) is a model-based
statistical technique to bring out relationships between measured parameters and latent
factors, which are unobserved parameters that are believed to be the cause of the measured
values of observed parameters. The assumption is that correlations between observed
parameters are due to the causal influence of one or more factors (latent parameters). Each
principal component is identified with its eigenvalue and eigenvector. The eigenvalue for
each component (or factor, in the case of FA) measures the variance in all the parameters
that are accounted for by that component. Factors can be better interpreted with rotation, a
process which increases the loading of different parameters on the extracted factors while
reducing their loading on the rejected factors. There are different methods of rotation,
which can mainly be divided into two categories. Orthogonal rotations such as varimax
are useful if factors are expected to be unrelated, while oblique rotations such as oblimin
are more applicable if some correlation between the extracted factors is expected. Further
details on the outcome of FA are given in the results (Section 3.1 below).

2.6.2. Cluster Analysis

Cluster analysis has been used with good success in various studies of water quality
around the world. It is usually used in conjunction with other multivariate analyses as a spa-
tial clustering tool [33] or for assessing seasonal and spatial variability of water quality [34].
In this study, the distance between datapoints was calculated by the Euclidean distance
in m-dimensional space, and agglomerative hierarchical clustering (AHC) was used for
clustering. An agglomeration criterion such as unweighted pair–group average was used
to minimize and form clusters. Here, we clustered the dataset based on observations, i.e.,
the points at which samples were collected; this was done across all the parameters.

2.6.3. Two-Way and Three-Way ANOVA and t-Tests

Analysis of variance (ANOVA) is a statistical tool that tests the hypothesis of whether
there are any differences in the means of a group of datasets or not [35,36]. The null
hypothesis in ANOVA is that the means of subjects are the same in different groups, and
the alternative hypothesis is that there is a statistically significant difference in the means—
either between one group compared to all others or between multiple groups within the
study. On the other hand, for comparing whether the means of only two groups are related
or not, the t-test is used. Since sampling was conducted across three seasons over two years,
a total of six datasets for each parameter were expected for analysis. Attention was drawn
to some of the prominent parameters discovered in FA to avoid repetition of analysis of
similar parameters or similar groups of parameters. The repeated measures considered in
two-way ANOVA were the two factors of “season” and “year” together, while three-way
ANOVA was used to consider the additional aspect of “sampling location”. The repeated
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measures method was used because the data from the same set of samples were used but
across different seasons and different years.

3. Results and Discussion
3.1. Factor Groupings

The total variance explained for the dataset of the Pre-Monsoon season of the first
year in terms of variability (%) per factor is 41.70, 13.50, 9.76, 6.39 and 3.25 for the first five
factors, whose eigenvalues were >1. The cumulative variance for these first 5 factors is
74.6%, and for the first 12 factors it is 82.34%, as shown in the scree plot in Figure 6. We used
varimax rotation to increase the loading of different parameters on the extracted factors.
We then found that five new rotated factors (D1 through D5) accounted for a cumulative
variation of approximately 75%, as shown in Table 4.
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Figure 6. Scree plot for surface water: Pre-Monsoon, first year (varimax rotation). Red line depicts
the cumulative variability, that is accounted for by the Factors, with its axis on the right-hand side.

Table 4. Percentage of variation after varimax rotation.

D1 D2 D3 D4 D5

Variability (%) 23.901 21.003 13.103 8.453 8.139
Cumulative % 23.901 44.904 58.007 66.460 74.599

Table 5 gives the component matrix or factor loadings for each of the five rotated
factors for the Pre-Monsoon season. The corresponding matrices for the monsoon and
Post-Monsoon seasons for Year 1 are given in Table A1 in Appendix A. The values in bold
in Table 5, when read down through each column, indicate the groupings of the parameters
that influenced the corresponding factor to a similar extent. During the Pre-Monsoon
season, Factor 1 (D1) was influenced by parameter groupings TDS–EC, Cations K+, Ca2+,
Mg2+, Total Hardness, Cl−, HCO−3 and Total Alkalinity. These parameters loaded strongly
on D1 and hence are related to each other and can be grouped together. This grouping was
largely carried forward during the monsoon season, but during the Post-Monsoon period,
TDS and EC formed a separate grouping on D4, while Na+, K+, Ca2+, Mg2+, Cl− and
HCO−3 formed a distinct group based on their loading on D2. For both years, TDS and EC
consistently loaded together on the same factor across all seasons. The more salts dissolved
in the water, the higher the value of EC. Hence, TDS and EC grouped together. Similar is
the case with BOD5–COD and Total Coliform–Fecal Coliform and the group of Cations
(Na+, K+, Ca2+, Mg2+), Total Hardness, HCO−3 and Total Alkalinity. The granitic material
of the study area contains mineral feldspar, which is composed of sodium, potassium and
calcium, hence the grouping of these ions.
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Table 5. Factor pattern or the rotated component matrix for the Year 1 Pre-Monsoon dataset.

Parameter Rotated Factor

D1 D2 D3 D4 D5

pH −0.023 −0.564 0.185 −0.054 −0.123
DO −0.166 −0.402 −0.334 −0.450 0.081

BOD5 0.160 0.915 0.199 0.210 0.097
COD 0.326 0.813 0.149 −0.022 0.065
TSS 0.082 −0.155 0.794 −0.092 −0.193

Turbidity −0.080 0.257 0.286 0.782 0.228
TDS 0.800 0.205 0.320 0.017 0.261

Conductivity 0.833 0.092 0.302 0.157 0.157
Na+ 0.558 0.393 0.049 0.105 0.717
K+ 0.389 0.174 0.045 −0.191 0.387

Ca2+ 0.737 0.239 0.325 −0.117 −0.139
Mg2+ 0.591 0.418 0.338 −0.022 0.273

Total hardness as CaCO3 0.693 0.387 0.440 0.065 0.048
Cl− 0.582 0.364 0.379 0.018 0.427

HCO−3 0.895 0.230 0.039 −0.166 0.213
F− 0.264 0.917 −0.018 0.020 0.171

NO−3 0.355 0.152 0.716 0.352 0.038
[PO4]

3− −0.541 0.033 0.262 0.019 0.042
SO2−

4 0.355 0.867 0.138 −0.049 0.127
Fe2+ −0.219 −0.055 −0.131 0.869 0.048
Zn2+ 0.210 0.207 0.735 0.053 0.014

Total alkalinity as CaCO3 0.877 0.113 0.072 −0.136 0.031
Total coli form/100 mL −0.056 0.671 0.403 0.221 0.255
Fecal coliform/100 mL 0.098 0.472 0.460 0.330 0.365

SAR 0.037 0.182 −0.247 0.251 0.761
Note: * Values in bold for each parameter correspond to the factor for which the squared cosine is the largest [30].

BOD5 (for 5 days) and COD were consistently grouped together across all the seasons.
This is because BOD is the oxygen demand of organic matter in water, whereas COD is the
oxygen demand of organic and inorganic matter. We also noticed that pH and DO loaded
negatively with BOD5 and COD during Pre-Monsoon, and this negative linkage incremen-
tally changed from the Pre- to Post-Monsoon seasons. High COD concentrations indicate
organic and inorganic pollution [37]. Increased nutrient concentration leads to increased
organic matter concentration, and the consequent respiration and degradation of organic
matter reduces DO concentration [38]. There was another interesting grouping of BOD5
and COD with Total and Fecal Coliforms in Pre-Monsoon, which reduced significantly
during the Monsoon season and again became slightly more positively linked during the
Post-Monsoon season. This was due to the population density of Fecal Coliform in the
river being directly proportional to the degree of sewage pollution, which was reflected by
BOD5 levels [39]. Though heavy metals were largely nonexistent due to a smaller number
of industrial sites, Fe2+ and Zn2+ formed a group and loaded together during the Monsoon
and Post-Monsoon seasons. Turbidity and Fe2+ loaded together on the same factor con-
sistently across seasons since iron content in the form of colloidal particles contributes to
turbidity [40]. FA not only allows us to track the evolution of these groupings/relationships
through the season, but, as shown in Figure 7, it also validates the clustering of datapoints
based on the sampling locations across the study area. It confirms the clusters formulated
through AHC (Section 3.2, Figure 8) by plotting the observation points onto the rotated
factor axes D1, D2 as shown in Figure 7.
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3.2. Clustering

While samples from sub-watersheds SW1 and SW6 formed clear clusters, the clustering
is varied in other sub-watersheds. Sampling locations W9, W10, W14, W17, W18 and W19
formed a distinct cluster during Pre-Monsoon and Monsoon seasons since these sampling
points are located in hilly areas in sub-watersheds SW3, SW4, SW5 and partially in SW2.
Dendrogram representations revealed, as shown in Figure 8 for Pre-Monsoon season of
Year 1 and Figures A1 and A2 in Appendix A for the Monsoon and Post-Monsoon seasons,
respectively, that the locations W1, W2, W3, W4, W5, W7 and W20 formed a subcluster not
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only during the Pre-Monsoon season of Year 1, but also during the Post-Monsoon season
due to these samples being upstream from the reservoir and around the main Arkavathi
River. W21, W22 and W23 formed smaller subclusters over all the seasons. W26, W27, W28,
W29 and W30 formed a subcluster due to their location in the command area downstream
from the reservoir (sub-watershed SW6), with irrigation activities being similar in these
locations. Another interesting subcluster formation was of W6, W11 and, W12 and W8,
W13, W15 and W16 (due to these locations being covered with scrub) across all three
seasons. This is confirmed further by the distance to the cluster centroids, where points W6,
W11 and W12 have similar distances to the centroids, while W8, W13, W15 and W16 have
different distances to the same cluster centroid. For Year 2 observations, the clusters largely
remain the same. For example, W9, W10, W14, W17, W18 and W19 form a distinct cluster
during the Pre-Monsoon and Monsoon seasons. However, W9 and W10 form a separate
cluster during the Post-Monsoon season. The other subclusters also largely follow patterns
similar to those of Year 1.

3.3. Two-Way and Three-Way ANOVA: Effects due to Years, Seasons and Locations

For comparing differences between years, two-way ANOVA [35,36] was applied to
compare the means between seasons and across the two years, as shown in Figure 9 below.
The mean concentration levels across seasons and years and the corresponding F-statistics
are given in Table A2 in Appendix A. For DO, the F-statistic was F(1,29) = 69.16 for the
variation between years (considered over all seasons), which was very highly significant at
p < 0.001, while the seasonal variation (considered across both years) had F(2,58) = 56.51,
which was also very highly significant with p < 0.001. This showed that when the effects
of both seasonal and yearly variation were considered, the DO levels were significantly
different across seasons and years. Similarly, the mean BOD5 levels were different across
seasons (5.069 mg/L, 3.275 mg/L and 8.467 mg/L) with F(1,29) = 139.997 and p < 0.001
and across the two years (4.474 mg/L and 6.733 mg/L) with F(2,58) = 55.608 and p < 0.001.
Similarly, mean levels of other parameters such as TDS, TSS, NO−3 , Na+ and Total Hardness
were statistically different across seasons and years. We found that most of the physical and
chemical parameters were diluted and displayed lower concentrations during the Monsoon
season versus during Pre- or Post-Monsoon seasons. Additionally, in cases such as that
of Mg2+ and F−, results showed that, while Monsoon levels were substantially different
to that of Pre- and Post-Monsoon levels, there was no difference in concentration levels
of F− between Pre- and Post-Monsoon levels in the case of both years. The mean Total
Coliform levels were different across seasons (148.517 MPN/100 mL, 95.45 MPN/100 mL
and 152.65 MPN/100 mL) with F(2,58) = 21.97 and p = 0.01, and across the two years
(128.04 MPN/100 mL and 136.37 MPN/100 mL) with F(1,29) = 38.44 and p < 0.001; also, the
effect of interaction between seasons and years was strong with regard to the mean levels
of Total Coliform, with F(2,58) = 4.25 and p = 0.019. In the case of Total Coliform levels,
however, paired t-tests between pairs of seasons for both years showed that, while Monsoon
levels were substantially different from those of Pre- and Post-Monsoon levels, there were
no difference in concentration levels of Total Coliform between Pre- and Post-Monsoon
season in the case of both years.

On applying three-way ANOVA (to consider the effect of sampling locations), we
observed that there were some differences in mean levels of most of the parameters across
different sub-watersheds. BOD5, Na+, NO−3 , Fe2+, HCO−3 , K+, F−, SAR and COD all
showed significant (p < 0.05) differences between concentration levels across the six sub-
watershed locations (Figure 10, Table A3 in Appendix A). Further, the parameters BOD5,
Total Hardness, NO−3 , K+, Ca2+, F−, SAR and COD showed statistically strong differences
in mean values when interactions between year, location and seasons were considered
together. Since organic-pollution-loading in water bodies increases from upstream to
downstream from the reservoir, BOD5 and COD of water samples increased, while DO
decreased as we moved along from SW1 to SW6 due to addition of sewage and other
domestic activities along the river course. Since nitrate is the representation of oxidized
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organic matter in water and is one of the main components of fertilizers used in irrigation,
and its presence increases BOD5, nitrates varied similar to BOD5 with respect to location,
especially during the Post-Monsoon season. Due to run-off, TDS was especially high in
SW6, indicating potential soil erosion in upper sub-watersheds. This is supported by the
soil erosion map (see online Supplementary Materials), which indicates high soil erosion
in SW3, SW4 and SW5. The presence of iron in natural waters can be attributed to the
dissolution of rock and minerals containing biotite as part of the weathering process. We
observed that iron content was higher in the forest and hilly areas SW3, SW4 and SW5.
Similarly, Mg was high in SW4 and SW6.
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3.4. Groundwater Quality of the Study Area—Piper Trilinear Diagrams

The objective of groundwater analysis is to understand the groundwater chemistry,
the impact of land use and landcover changes on quality of groundwater, and to suggest
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suitable measures to improve groundwater quality. This is important as local populations
depend on groundwater to supplement surface water. A total of 33 groundwater samples
were collected for each of the three monsoon seasons over a period of two years. Based on
the results of the analysis, Piper Trilinear diagrams were generated to interpret the ground-
water chemistry and the conclusions were noted. Graphical interpretation of groundwater
quality of the study area is necessary since it contains minerals that are to be assessed for
the irrigation suitability. A Piper Trilinear diagram is useful for bringing out the chem-
ical relationships between groundwater samples in more definite terms than available
with other plotting methods [41]. This plot helps in understanding and identifying the
water composition in different classes. The triangular plots of major anions and major
cations have been successfully used in the interpretation of results of groundwater from
aquifers of the Calabria region (southern Italy) [23]. Piper Trilinear diagrams generated
for groundwater for the three seasons and over the two years of study are presented in
Figure 11a–f. They reveal the analogies, dissimilarities and different types of water in the
study area as identified and listed in Table 6. It can be concluded from the below results
that during the Pre-Monsoon and Monsoon seasons, most of the samples consist of calcium
and magnesium bicarbonate waters, which is typically shallow, fresh groundwater, and
a few samples are of calcium and magnesium sulfate waters, which is typically gypsum
groundwater. During the Post-Monsoon season of both the years, all samples are of calcium
and magnesium bicarbonate waters, which is typically shallow, fresh groundwater. This
indicates that Ca and Mg are dominant in the groundwater of the study area during the
study period.
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Table 6. Characterization of groundwater of the study area based on Piper Trilinear diagrams.

Subdivision
of the

Diamond

Characteristics of
Corresponding Subdivision of

Diamond-Shaped Fields

Percentage of Samples in Each Category

Pre-
Monsoon
(Year 1)

Monsoon
(Year 1)

Post-Monsoon
(Year 1)

Pre-
Monsoon
(Year 2)

Monsoon
(Year 2)

Post-
Monsoon
(Year 2)

1 Alkaline earth (Ca+ Mg) 100 93.93 100 100 96.96 100
2 Alkalies exceed alkaline earths 0 6.01 0 0 3.33 0

3 Weak acids (CO3 + HCO3)
exceed strong acids (SO4 + Cl) 78.78 81.81 100 81.81 75.75 100

4 Strong acids exceed weak acids 21.21 18.18 0 18.18 24.24 0
5 Magnesium bicarbonate type 78.78 75.75 100 81.81 72.72 100
6 Calcium-chloride type 0 0 0 0 0 0
7 Sodium-chloride type 0 0 0 0 0 0
8 Sodium-bicarbonate type 0 0 0 0 0 0

9 Mixed type (No cation–anion
exceeds 50%) 21.21 24.24 0 18.18 27.27 0

4. Conclusions

In this study, we carried out a comprehensive multivariate statistical analysis of the
concentration levels of physical, chemical and biological parameters in surface water
samples collected from six sub-watersheds of the Arkavathi Reservoir catchment and
command area over a period of two years (2013 and 2014) and three seasons of monsoon
(Pre-Monsoon, Monsoon and Post-Monsoon). We also conducted chemical analysis of
groundwater of the study area and classified the groundwater based on Piper Trilinear
diagrams. The present study demonstrates the applicability of FA–AHC–ANOVA as a
significant analysis tool for effective watershed management to improve water quality in
rivers and reservoir catchment and command areas. This work forms a basis for further
exploration of variations of such surface water contaminants in different terrains and
watersheds worldwide. A few specific, significant recommendations follow:

1. Considering the many townships along the Arkavathi River in SW1, domestic sewage
needs to be treated effectively at the border region of SW1 and SW5 and within SW6,
especially during the Post-Monsoon season.

2. Usage of fertilizers, especially in the agricultural lands in command area SW6, should
be closely monitored and controlled.

3. Erosion control plans need to be put in place in SW3, SW4 and SW5, as indicated by
high TDS in SW6.

4. Quarry activities in SW4 and SW3 need to be monitored for potential contamination
of smaller streams.
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Table A1. Factor pattern or the rotated component matrix for Monsoon and Post-Monsoon seasons
of Year 1.

Monsoon Post-Monsoon

D1 D2 D3 D4 D5 D1 D2 D3 D4 D5

pH −0.015 −0.379 0.225 −0.031 −0.134 −0.011 −0.212 −0.030 −0.089 −0.509
DO 0.008 −0.523 −0.428 0.157 −0.383 −0.267 −0.103 0.747 −0.003 0.017

BOD5 0.190 0.325 0.269 0.164 0.739 0.477 0.073 −0.012 0.169 0.811
COD 0.057 0.052 −0.410 −0.003 0.694 0.509 0.063 −0.006 0.182 0.783
TSS 0.046 −0.621 −0.044 0.032 0.105 0.695 0.333 −0.379 0.105 0.291

Turbidity −0.039 −0.117 0.965 0.084 0.161 0.860 0.258 −0.043 0.186 −0.070
TDS 0.889 −0.047 0.059 −0.076 0.213 0.272 0.296 0.029 0.888 0.201

Conductivity 0.895 −0.057 0.065 −0.080 0.209 0.274 0.297 0.022 0.888 0.198
Na+ 0.518 0.726 −0.001 −0.142 0.283 0.436 0.744 0.297 0.125 0.307
K+ 0.640 0.164 −0.219 −0.054 −0.080 −0.088 0.523 −0.144 0.411 0.349

Ca2+ 0.863 −0.186 −0.003 −0.199 0.205 0.107 0.699 −0.269 0.126 −0.217
Mg2+ 0.697 0.158 −0.162 0.264 −0.331 0.242 0.769 0.028 0.176 0.144

Total hardness as CaCO3 0.935 −0.067 −0.006 0.011 −0.085 0.762 0.386 −0.074 0.287 0.219
Cl− 0.796 0.446 −0.093 0.076 0.237 0.322 0.849 0.042 0.092 0.055

HCO−3 0.775 0.239 −0.270 −0.395 0.051 0.035 0.896 −0.045 0.190 0.166
F− 0.203 0.479 −0.249 −0.413 0.318 0.765 0.279 −0.150 0.082 0.243

NO−3 0.523 −0.347 0.135 0.039 0.286 0.601 0.156 0.150 0.158 0.673
[PO4]

3− −0.275 −0.362 0.350 0.174 0.022 0.715 0.027 0.053 0.011 0.325
SO2−

4 0.668 −0.364 0.071 0.045 −0.308 0.760 0.443 −0.045 −0.031 0.109
Fe2+ −0.172 0.026 0.793 0.090 −0.089 0.690 −0.154 0.186 0.096 0.618
Zn2+ 0.120 0.097 0.551 0.340 −0.157 0.794 0.277 −0.329 0.109 0.310

Total alkalinity as CaCO3 0.734 0.082 −0.234 −0.430 0.035 0.769 0.340 0.023 0.321 0.095
Total coliform/100 mL −0.113 −0.180 0.172 0.872 −0.014 0.742 −0.133 0.033 0.172 0.378
Fecal coliform/100 mL −0.094 0.039 0.082 0.952 0.144 0.713 −0.062 0.268 0.185 0.575

SAR −0.282 0.775 0.110 0.005 0.103 0.352 0.168 0.544 0.058 0.399

Note: Values in bold for each parameter correspond to the factor for which the squared cosine is the largest [30].

Table A2. Mean concentration levels of a few parameters across seasons and years, and the corre-
sponding F-statistic.

Pre-
Monsoon Monsoon Post-

Monsoon
F-Statistic

for Seasons Year 1 Year 2 F-Statistic
for Years

F-Statistic for
Interaction

between
Seasons and

Years

Parameter
Mean con-
centration

level (mg/L)

Mean con-
centration

level (mg/L)

Mean con-
centration

level (mg/L)

(F(2,58) at
p < 0.001)

Mean con-
centration

level (mg/L)

Mean con-
centration

level (mg/L)

(F(1,29) at
p < 0.001)

(F(2,58) at
p < 0.001)

TDS 571.27 523.72 666.15 14.58 563.48 610.61 29.22 20.59
TSS 5.065 4.230 7.72 36.033 5.11 6.23 101.73 24.56

NO−3 2.804 1.987 9.58 52.8 4.28 5.31 79.25 22.61
Na+ 90.22 80.82 96.83 22.22 83.53 95.04 37.37 8.676 (p = 0.001)
Total
Hard-
ness

242.017 201.688 347.83 47.04 249.29 278.4 53.02 31.02

Mg2+ 15.397 11.74 15.74 9.2 (p = 0.01) 13.32 15.26 27.01 7.437

F− 0.112 0.038 0.105 12.21
(p = 0.01) 0.073 0.097 22.6 13.97

Ca2+ 61.73 62.03 69.68 4.93
(p = 0.01) 59.05 69.91 76.73 22.35

HCO−3 199.88 190.78 209.43 4.91
(p = 0.01) 193.156 206.91 28.34 9.48

K+ 11.14 10.44 14.17 24.55
(p = 0.01) 10.52 13.31 47.17 18.16
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Table A3. Tests of between-subject effects of surface water when location is considered.

Source Measure Type III Sum of Squares df Mean
Square F Sig. Partial Eta

Squared

Location

DO 13.500 5 2.700 1.348 0.279 0.219
BOD5 465.845 5 93.169 7.239 0.000 0.601
TDS 806,893.156 5 161,378.631 1.105 0.384 0.187
TSS 92.440 5 18.488 1.680 0.178 0.259
Na+ 54,851.996 5 10,970.399 6.212 0.001 0.564

Total Hardness 229,868.853 5 45,973.771 1.436 0.247 0.230
NO−3 558.440 5 111.688 9.626 0.000 0.667
Fe2+ 0.796 5 0.159 9.461 0.000 0.663

HCO−3 196,681.589 5 39,336.318 3.328 0.020 0.409
K+ 2739.124 5 547.825 6.748 0.000 0.584

Ca2+ 17,471.293 5 3494.259 1.581 0.203 0.248
F− 0.397 5 0.079 5.260 0.002 0.523

Mg2+ 2795.772 5 559.154 2.026 0.111 0.297
Total Coliform 95,860.353 5 19,172.071 2.136 0.096 0.308

SAR 38.724 5 7.745 6.947 0.000 0.591
COD 1677.707 5 335.541 7.483 0.000 0.609

Error

DO 48.084 24 2.003
BOD5 308.906 24 12.871
TDS 3,505,192.488 24 146,049.687
TSS 264.095 24 11.004
Na+ 42,387.315 24 1766.138

Total Hardness 768231.299 24 32,009.637
NO−3 278.471 24 11.603
Fe2+ 0.404 24 0.017

HCO−3 283,709.877 24 11,821.245
K+ 1948.345 24 81.181

Ca2+ 53,035.943 24 2209.831
F− 0.362 24 0.015

Mg2+ 6623.993 24 276.000
Total Coliform 215,430.875 24 8976.286

SAR 26.758 24 1.115
COD 1076.217 24 44.842
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