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Abstract: The effects of the present global climate change appear more pronounced in high latitudes
and alpine regions. Transitions zones, such as the southern fringe of the boreal region in northern
Mongolia, are expected to experience drastic changes as a result. This area is dry and cold with forests
forming only on the north-facing slopes of hills and grasslands distributing on the south-facing
slopes, making it difficult for continuous forests to exist. However, in the Hovsgol Lake Basin, there
is a vast continuous pure forest of Siberian larch (Larix sibirica). In other words, the lake water
thawing/freezing process may have created a unique climatic environment that differs with the
climate of the adjacent Darhad Basin, where no lake exists. Thus, in order to compare the effect of the
thawing/freezing dynamics of lake water and the active layer on the thermal regime at each basin,
respectively, temperatures were simultaneously measured. The Darhad Basin has similar latitude,
topography, area, and elevation conditions. As expected, the presence of the lake affected the annual
temperature amplitude, as it was 60% of that in the Darhad Basin. The difference in the seasonal
freeze–thaw cycles of the lake and the active layer caused a significant difference in the thermal
regime, especially in winter.

Keywords: Mongolia; Hovsgol Lake; Darhad Basin; continuous permafrost; freeze–thaw cycles;
meteorological effects; lake water; active layer

1. Introduction

The effects of the present global climate change appear to be more pronounced in
high latitudes and alpine regions [1–7]. The effects are manifested in different processes
of freezing and thawing of lakes and rivers with more variability in ice thickness and
freezing periods [8,9]. Because the amount of latent heat from freezing and thawing is
much greater in lakes than in warmer regions, such as mid-latitudes and low-latitudes, the
effects of lakes on the surrounding environment, including their climatic, ecological, and
hydrological characteristics, are also significant [9–15]. However, studies evaluating the
impact of lakes on the environment based on field observations are limited. In particular,
there are hardly any studies that have evaluated the impact of lakes on the environment
compared to areas without lakes that are exposed to the same geographic conditions and
can control the freezing and thawing processes of the active layer.

The Hovsgol Lake Basin is home to a vast pure forest of Siberian larch (Larix sibirica),
which is rare in the Boreal region [16]. The Hovsgol area in the northernmost part of
Mongolia, where the basin is located, is at the southern end of continuous permafrost
and taiga zone extending from Eastern Siberia, where a pristine natural environment
remains. According to the local Hatgal weather station, the average annual temperature
over the period 1973–2020 has been –4.0 ◦C, with an average annual precipitation of
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294 mm, and snowfall during the winter months is low, with an average precipitation of
28 mm from October to March [17]. Due to the cold and dry climate, forests form on the
north-facing slopes of mountains in the region, while grasslands spread on the south-facing
slopes [18], preventing the formation of continuous forests. Forests outside the basin are
mixed coniferous and broadleaf forests [19]. In the adjacent Darhad Basin, where no lake
exists, the vegetation is a mixture of conifers such as larch (Larix sibirica), spruce (Picea
obovata), and red pine (Pinus sylvestris) and broadleaf trees such as birch (Betula pendula) and
poplar (Populus tremula) [20,21], while in the Hovsgol Lake Basin, vast pure larch forests
are widespread. In other words, the differences in the biodiversity of vegetation between
these two basins is likely driven by the presence of the lake in the Hovsgol Lake Basin, as
well as its sensitivity to climate change.

In recent years, air temperatures in northern Mongolia have been on the rise. This
has been particularly significant in the Hovsgol Lake Basin and Darhad Basin, as reported
by the few long-term meteorological stations located in each site [1,17,22]. The impact on
the sustainability of pure forests in this transition zone can be significant, since forests
can be sensitive to permafrost thawing caused by enhanced drought or forest fires. Lake
water has different freeze–thaw characteristics in comparison to soil active layers. These
differences can also lead to an assessment of the lake water annual thermal variability on
the surrounding environment. We conducted simultaneous observations of air temperature
in the Hovsgol Lake Basin and the Darhad Basin, which are similar in terms of latitude,
topography, basin bottom area, and elevation. In this study, we aimed at quantifying the
differences in the air thermal regime caused by the lake water freezing and thawing in
comparison to the freezing and thawing of soil active layers in the Darhad Basin. The
results of this study are a rare case that highlights the importance of this area as an indicator
of climate change, a source for improving the accuracy of lake environmental forecasts,
and for assessing the resilience and vulnerability of lake environments in the short- and
long-term future.

2. Methodology
2.1. Study Area

The Hovsgol region in northern Mongolia consists of a lake basin with the country’s
largest freshwater lake, Hovsgol Lake, and the Darhad Basin to the west is covered by
steppe-forest vegetation. The two basins are both aligned at the same latitude, orthogonally
to the 51st of north–south latitude (Figure 1). The elevation (MSL) of the lake is slightly
higher at 1654 m than the latter basin bottom of 1540 m to 1600 m, and the areas of the
lake and basin bottom are almost equal at 2750 km2 and 2780 km2, respectively, with much
in common (Table 1) [23–26]. Hovsgol Lake, a fault lake, has a basin area of 1.8 times
the area occupied by the lake, which is small compared to other lake basins (e.g., Lake
Baikal, 18.1 times [27]). The average depth is 138 m, the maximum depth is 267 m, the
freezing period is approximately six months from November/December to May/June, and
the maximum ice thickness exceeds 1 m [28,29]. Water transparency is not known from
measurements but is thought to be comparatively high due to the lack of human activity
and the fact that water from the Egin River at the southern end flows into Lake Baikal
(elevation 456 m), which has high transparency downstream. To the west, the Hovsgol
Lake Basin is bordered by a 3000 m high mountain range separating it from the Darhad
Basin to the north by a 3000 m high mountain range on the Russian border and to the east
by 2000 m high mountains. In contrast, the Darhad Basin is surrounded by mountains at
elevations from 2500 m to over 3000 m. At the bottom of the basin, vast, flat grasslands
spread over 100 m thick permafrost [30], and in the northern part, small lakes and marshes
are scattered, showing traces of former glacial dammed lakes [24,26]. Again, the forest limit
is around 2300 m.
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The green area shows Darhad Basin drawn by the 1600 m height contour. The dark red line marks 
the border with Russia. The area bounded by dark blue lines and the border indicates the catchment 
area of each basin. The ∆ symbols are some of mountains above 3000 m in height with number of 
the height. 
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Figure 1. Location of observation sites in Hovsgol Lake Basin and Darhad Basin, northernmost
Mongolia. The light blue area shows Hovsgol Lake, and the light blue lines represent the outflow
river. The green area shows Darhad Basin drawn by the 1600 m height contour. The dark red line
marks the border with Russia. The area bounded by dark blue lines and the border indicates the
catchment area of each basin. The ∆ symbols are some of mountains above 3000 m in height with
number of the height.

Table 1. Characteristic features of the study area.

Parameter Hovsgol Lake Darhad Basin

Latitude 50◦30′ N–51◦35′ N * (1) 50◦37′ N–51◦32′ N

Area, km2 2750 * (2) 2780 * (2)

Dimensions

N–S, km 136 * (3) 100 * (4)

E–W, km 36.5 * (3) 40 * (4)

Altitude, m a.s.l. 1645 * (2) 1540–1600 * (2)

Status Lake * (2) Dry Basin * (2)

* (1) [23], * (2) [24] the area refers to the bottom of the basin, * (3) [25], * (4) [26].

2.2. Survey and Analysis

We compared the differences in thermal regimes by a series of measurements of air,
ground, and water temperature. The set of available data included air temperature data
from Renchinlhumbe weather station and from Hatgal weather station, including the start
date of lake freezing, date and amount of maximum ice thickness, and date of completion
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of lake ice thawing, water temperature etc., that were collected [17,28]. The additional
information, except air temperature, was obtained from a water level station on the lake
shore near the southern end of Hovsgol Lake, 4 km north of the weather station. The ice
thickness was measured by station personnel at a fixed point approximately 1 km offshore.
The air temperature Ta (°C) were observed hourly at each of the five locations in the
Hovsgol Lake Basin (HL) and Darhad Basin (DB) (Figure 1, HL: HL1–HL4 and Hatgal (Hat)
and DB: DB1–DB4 and Renchinlhumbe (Ren), respectively) from August 2000 to October
2015, using sensors (TR-51, T&D) with built-in data loggers. The sensors were placed facing
north in the trees generally 2 m–3 m above the ground to prevent loss. Ground temperature
was measured at DB3 at D30 (0.3 m depth: August 2004 to August 2008), and a field survey
(thickness of active layer and soil survey) was conducted in August 2003. The daily mean
temperature Tm (◦C), calculated from Ta, represents the absolute accumulated value TT
(◦C-days) and was calculated as a 5-day moving averages. The daily ice thickness or the
freezing depth D (m) of the active layer was calculated using the integrated value of air
temperature, an empirical equation based on the Stefan’s solution [31] derived from the
unsteady heat conduction equation with a phase change for freezing,

D = α
√

TT, (1)

where α: constant.
TT = | ΣTm |, (2)

For the calculation of the freezing process, lake ice thickness D = Di (m), the freezing
depth of the active layer D = DF (m), and the constant for freezing α = αF were used. Daily
lake ice thawing thickness and active layer thickness were also calculated by applying
Equation (1) [32,33]. For the calculation of the thawing process, lake ice, or frozen layer
thawing thickness D = DT (m), freezing-related constant α = αT was used. The Ta data for
each area were used to estimate the freezing index (FI (◦C-days)) and the thawing index (TI
(◦C-days)) [30,32,33]. These indices were calculated using the following equation [34,35]:

FI =|
∫ dmin

dmax
Tm d |, (3)

TI =
∫ dmax

dmin

Tm d, (4)

where Tm(d) is the daily average temperature on day d, and dmax and dmin represent
the day when Tm shows the annual minimum and maximum, respectively, during the
targeted period.

The latent heat E (MJ m−2) associated with freezing or thawing of lake water, active
layer, lake ice, or frozen soil is,

E = L·β·D, (5)

where L is latent heat of freezing (333.6 MJ-t−1), β is a constant that varies with the object,
and D is thickness of freezing or thawing (m).

(i) Latent heat of freezing of lake water or thawing of lake ice Ei (MJ-m−2); (Equation (5),
where β (= ρi: density of ice 0.917 t-m−3) [36].

(ii) Latent heat quantity Es (MJ-m−2) associated with freezing of active layer; (Equation (5),
where β (= θ × ρw, θ: volumetric water content 0.30 (m3-m−3), ρw: density of water
0.9998 t-m−3) [36].

(iii) Latent heat of melting of frozen soil Es (MJ-m−2); (Equation (5), β (= θ × ρi × 7, θ:
volumetric water content 0.30 (m3-m−3), ρi: density of ice 0.917 t-m−3, 7: freezing
(volumetric expansion rate of water at time of freezing = 1.09).

Positive values of E indicate heat generation due to freezing, and negative values
indicate heat absorption due to thawing. The volumetric water content is based on
field surveys.
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3. Results and Discussions
3.1. Temperature Difference between Hovsgol Lake Basin and Darhad Basin

The basic temperature differences between the Hovsgol Lake Basin and Darhad Basin
are shown in terms of integrated temperatures. To compare the degree of coldness and
warmth from the temperature results observed from October 2006 to October 2007 at the
five locations in each basin, the freezing index (FI) (Figure 2a) and thawing index (TI)
(Figure 2b) were calculated from Equations (3) and (4), respectively [37]. The maximum FI
for HL was 2106 ◦C·days for Hat (Hatgal), and the minimum was 1581 ◦C·days for HL3,
while for DB the maximum was 3299 ◦C·days for Ren (Renchinlhumbe), and the minimum
was 2891 ◦C·days for DB4. The mean value in HL was 59% of that in DB. The lowest HL,
HL3, which is considered to be greatly influenced by lake water, was 50% of that in DB3.
On the other hand, the maximum TI for HL was 1632 ◦C·days for HL1 and the minimum
1341 ◦C·days for HL4, while the maximum TI for DB was 1896 ◦C·days for DB4, and the
minimum TI was 1683 ◦C·days for Ren. The average value of HL was 86% of that in DB,
and in HL3 it was 84% of that in DB3. The result indicates that the presence of the lake
water moderated winter temperatures in HL by approximately half compared to DB and
made it cooler with less warmth in summer.
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Figure 2. (a) Freezing (FI) and (b) thawing indices (TI) in Hovsgol Lake Basin and in Darhad Basin.

HL3 and DB3, located in the center of HL and DB, were representative of each basin.
Long-term temperatures in the two basins are shown in Figure 3. Observations were made
from 12 August 2000 to 28 November 2009 in HL3 and from 3 March 2004 to 7 October 2015
in DB3 and over a period of 5 years and 9 months from 3 March 2004 to 28 November 2009
in both basins. The measurements were conducted simultaneously. The annual maximum
temperature during the observation period were 28.7 ◦C at 13:00 on 20 July 2001 in HL3
and 37.1 ◦C at 17:00 on 11 August 2007 in DB3. On the other hand, the annual minimum
temperature was –36.6 ◦C at 10:00 on 26 January 2005 in HL3 and –52.4 ◦C at the same time
in DB3, with DB3 being 15.8 ◦C lower than HL3. Overall, temperatures were lower in HL
than in DB during summer and significantly higher in HL than in DB during winter. The
correlation between temperatures between HL3 (island) and Hatgal (water level station)
over a four-year period (30 August 2005–28 November 2009) was calculated.

y = 0.77x + 0.97 (R2 = 0.92, p < 0.01, N = 36,195) (6)
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Figure 3. Air temperature changes at sites HL3 and DB3.

Here, y is Ta in HL3, and x is Ta at Hatgal. Island temperatures were approximately
80% of that in Hatgal. Similarly, the correlation of temperatures from hourly simultaneous
observations at Darhad Basin Central, DB3, and Renchinlhumbe weather station yard
(observed by loggers in the yard) over a period of 8 years (15 September 2007–5 October
2015) yielded

y = 1.05 x + 0.15 (R2 = 0.99, p < 0.01, N = 70,562), (7)

Here, y is Ta in DB3, and x is Ta at Renchinlhumbe. The difference between the two
was small. Furthermore, from the simultaneous observations of HL3 and DB3 from 3 March
2004 to 28 November 2009, the correlation of temperatures was examined and found to be

y = 0.60 x + 2.28 (R2 = 0.89, p < 0.01, N = 47,689), (8)

Here, y is Ta of HL3, and x is Ta of DB3. In other words, the presence of the lake
reduced the amplitude of temperature in DB3 by approximately 60% in comparison to HL3.

3.2. Freeze–Thaw Characteristics of Lake Water and Active Layer

In order to identify the freeze–thaw period for lake water and the active layer, we
compared meteorological data for the two basins: temperature changes observed in Lake
Hovsgol basin HL3 and Darhad basin DB3 from 2007 to 2008 (Figure 4a,b) with H1–H5 and
D1–D4 (Table 2). These are based on temperature analyses and observations related to the
Hatgal and Renchinlhumbe weather stations.

Specific freeze–thaw events were followed. As shown in Figure 4a, ice melting at HL3
began on 16 April 2007 (H1) and was completed on 25 May 2007 (H2). After that, the air
temperature was generally higher than the water temperature until 14 August (H3), and
the temperature became lower than the water temperature until 18 November (H4), when
the lake water began to freeze; from H4 to 29 February (H5), when the maximum lake
ice thickness was reached, the lake ice grew; from H5 to 11 April 2008, when the lake ice
melt began (H1), the ice maintained its thickness with the temperature change, whereas,
at DB3, the frozen ground began to thaw from the surface on 5 April 2007 (D1), and the
thawing continued until the maximum active layer thickness of 1.02 m on 16 August 2007
(D2). Here, the 2007 maximum active layer thickness of DB3 was calculated based on the
26 August 2003 field survey; after D2, the active layer began to freeze from the bottom due
to the cold heat of the permafrost [37,38], and as shown in Figure 5, after a while the air
temperature dropped, and freezing also began from the top of the ground on October 4
(D3). The ratio of the final freezing thickness from the top to the bottom and that from
the bottom to the top is 4:1 based on permafrost observations and simulations [33], which
means that 0.82 m from the top began to freeze at D3. Finally, freezing of the active layer
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was completed on 9 December, D4. Thereafter, the frozen layer continued to retain itself
through repeated cooling and temperature changes until 11 April 2008 (D1).
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Figure 4. (a) Air temperature changes and meteorological events on thawing process of lake ice in
Hovsgol Lake Basin (red line) or frozen ground in Darhad Basin (blue line). (b) Air temperature
changes and meteorological events on freezing process of lake water in Hovsgol Lake Basin (red line)
or active layer in Darhad Basin (blue line). See Table 2 for symbols.

The temperature difference due to the freeze–thaw event is noted. Comparing both
HL3 and DB3 temperatures during the period from H1 to H2 with lake ice, it was found
that there was no significant difference in the daily mean temperatures, although there
were daily differences. However, during the period from H2 to H3 without lake ice, DB3′s
mean temperature was higher than that at HL3, and the difference between the two mean
temperatures became smaller from H3 to D3, but after D3, HL3 was higher than DB3
and the difference became larger, reaching a maximum around D4; from H5 to H1, the
difference between the two almost disappeared.
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Table 2. List of meteorological events on freeze–thaw cycles of lake water in Hovsgol Lake Basin or
active layer in Darhad Basin. Symbols and dates correspond to Figure 4a,b; (date) is not shown.

Symbol Meteorological Events Date of Onset

2007 2008

Hovsgol Lake Basin (HL3)

H1 Thaw start of lake ice 16 April 11 April
H2 Thaw end of lake ice 25 May 2 June

H3
Air temperature

decreases below lake
water temperature *

14 August (14 August)

H4 Freeze start of lake water 18 November (24 October)

H5 Maximum thickness of
lake water (10 February) 29 February

Darhad Basin (DB3)

D1 Thaw start at the top of
frozen ground 5 April 11 Aprilie

D2

Maximum thickness of
active layer (freeze start

at the bottom of
active layer)

16 August (14 August)

D3 Freeze start at the top of
active layer 4 October (30 September)

D4 Freeze end of
active layer 9 December (12 December)

*: The last day when 5-day moving average of daily temperature is above the lake water temperature of 13.6 ◦C
(average of August monthly water temperature for 13 years).
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Figure 5. Schematic drawings of active layer on freeze–thaw processes and of seasonal division in
Darhad Basin.

3.3. Timing of Freeze–Thaw Events

When analyzing local climate change, it is important to be able to represent freeze–
thaw events in lake water and active layers using existing meteorological data from local
weather stations, as these can be used to reproduce past freeze–thaw events.

H1, H2, and H4, which characterize the meteorological environment of Hovsgol Lake
Basin, are uniquely determined from weather station data. In the graph of integrated
temperature TT by daily mean temperature Tm, H1 and D1, which are the start of melting
of lake ice and frozen soil, can be determined from the annual minima. Similarly, D3
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can be obtained from the maximum value. H3 can be obtained from the average water
temperature data for the highest monthly temperature of August from March to November
observed by the Hatgal weather station from 2001 to 2013, which has a 13-year average
monthly temperature of 13.6 ◦C [28], and this value was used as the threshold value of H3,
in order to equalize the daily average temperatures, the five-day average temperature was
set at 13.6 ◦C. In 2007, H3 was set to 14 August, the lowest day of the summer when the
five-day mean temperature exceeded 13.6 ◦C.

D2, when the maximum active layer thickness occurs, is expected to be near the
end of the summer temperature peak. Summer ground temperatures have a time lag
with air temperatures, and periods of high ground temperatures usually occur later than
air temperature peaks. To find this date in DB3 even during periods of high ground
temperatures, we considered a ground temperature of D30 at 0.3 m depth of 6.5 ◦C or
higher, which lasted from 24 July to 19 August, where the 5-day average was higher. The
last summer peak in 5-day average air temperatures occurred from 9 August to 16 August,
with an above-average air temperature of 13.2 ◦C in August at the Renchinlhumbe weather
station. During this period, air temperatures were generally 2 ◦C above the monthly
average. The last day of the peak was 16 August at 15.2 ◦C. Since air temperatures dropped
rapidly after that, we expect the maximum active layer thickness to have occurred around
this time, and we set this date as D2 in 2007. Here, the maximum active layer thickness at
D2 can be obtained from TT, if αT was originally obtained, using Equation (1). Therefore, to
obtain αT at DB3, we used the results of the field survey on 26 August 2003, estimated using
Equation (7) from the meteorological data from the Renchinlhumbe weather station, since
there were no temperature measurements at DB3 in 2003. DB3 is located in a former river
wetland, with an active layer thickness of 1.02 m, fine sandy soil, high groundwater table,
volumetric water content θ 0.30, porosity 0.55, and wet density 1.5 t-m−3. The integrated
temperature TT of D1–D2 spent thawing the frozen soil was calculated using Equation (1),
αT = 0.0272. Using this αT, the maximum active layer thickness of 1.02 m at D2 was
calculated using Equation (1) with the 2007 D1–D2-integrated temperature TT in DB3.

Finally, D4, the date of completion of freezing of the active layer, was determined as
follows. The active layer freezes to a depth of 0.82 m from the top at D3, as described above,
and considering that D1, D2, and D3 were determined separately and that the moisture
state of the active layer does not change between the thawing and freezing processes (αF
and αT in Equation (1) are equal), the latent heat of freezing of the active layer from D2 to
D4 was calculated as described below in Section 3.4. The latent heat is equal to the latent
heat of thawing expended in D1 to D2 (Table 3). Here, for convenience, we replace the
latent heat with the integrated temperature. The integrated temperature TT from D1 to D2
spent thawing the frozen soil was 1419.2 ◦C-day, and the active layer thickness at D2 was
1.02 m. Equation (1) and αT = 0.0272 indicate that the TT required to freeze the active layer
thickness of 0.82 m is 908.3 ◦C-day. Using αF = 0.0272 in Equation (1) to trace the date of
occurrence of 908.3 ◦C-day after D3, D4, the date of completion of the freezing of the active
layer, is 9 December.

3.4. Differences in Latent Heat during Freezing and Thawing

Differences between lake ice and frozen soil thawing were examined in terms of latent
heat absorption. For each melting process, the daily melt thickness ∆D (m) of the lake
ice was calculated by Equation (1) as αT = 0.0778 using the integrated temperature TT in
Equation (2). The latent heat was calculated using ∆D with Equation (5) and plotted in
Figure 6a. In HL, melting began on 16 April 2007 (H1) and ended on 25 May 2007 (H2), for a
period of about 1.3 months with a total latent heat of−305.9 MJ-m−2 (Table 3). On the other
hand, in DB, the thawing of the frozen soil began from the surface layer on 5 April 2007 (D1)
and continued for about 4.5 months until 16 August 2007 (D2), when the maximum active
layer thickness of 1.02 m occurred, and the total latent heat was −102.4 MJ-m−2. At this
time, using Equation (1), αT = 0.0272. During this period, the daily latent heat fluctuated
sharply between heat generation due to freezing (positive value) and heat absorption due
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to thawing (negative value) at the beginning of the period, but the values settled down in
May, and the daily average values from 1 May to 25 May were −6.81 MJ-m−2 for HL and
−0.804 MJ-m−2 for DB. Heat absorption remained 8.5 times greater in HL than in DB. Lake
ice thawing was more active, whereas frozen soil thawing was slower, resulting in a large
difference in thawing times.

Table 3. Special dates or values in freeze–thaw cycles.

Date or Value Hovsgol Lake Basin Darhad Basin

Thawing process

Thaw start date 16 April 2007 5 April 2007
Thaw end date 25 May 2007 16 August 2007
Adsorbed duration of thawing
latent heat, months 1.3 4.5

Total latent heat amount, MJ m−2 –305.9 –102.4

Freezing process

Freeze start date 18 November 2007 16 August 2007
Freeze end date 29 February 2008 9 December 2007
Released duration of freezing latent
heat, months 3.5 3.8

Total latent heat amount, Mj m−2 361.0 102.4

Similarly, the difference in freezing between the lake water and the active layer is seen
in terms of latent heat generation. For each freezing process, the daily freezing thickness
was determined using Equations (1) and (2), and the latent heat was calculated using
Equation (5) and shown in Figure 6b. Lake freezing began on 18 November 2007 (H4) and
continued for about 3.5 months until the maximum lake ice thickness (H5) on 29 February
2008, when the total latent heat was 361.0 MJ-m−2. The total latent heat was 361.0 MJ-m−2.
On the other hand, the freezing of the active layer of DB started from the bottom (D3) at
the maximum active layer thickness on 16 August 2007 (D2), from the surface on 4 October
2007 (D4), and completed on 9 December 2007 (D4). During the intervening 3.8 months,
the total latent heat reached 102.4 MJ-m–2. In particular, during the winter period from
December 23 to February, after the winter solstice, no latent heat was generated in the
DB, and a large amount of latent heat was generated in the HL. As a result, the freezing
process did not differ much for the period of 3.5 months for HL3 and 3.8 months for DB3,
but the onset period shifted significantly from November of the previous year to February
of the following year and from August of the previous year to December of the previous
year, respectively.

3.5. Differential Freeze–Thaw Effects of Lake and Active Layer on the Meteorological Environment

The freeze–thaw characteristics of the lake water and the active layer can be patterned
into H1–H5 and D1–D4, respectively (Figure 7). There is a difference in the freezing period,
with the freezing period H4–H5 occurring mainly from November to February in HL and
D2–D4 occurring from August to December in DB; the annual minimum temperature on 22
January 2008 was −30.5 ◦C in HL and −49.1 ◦C in DB, showing a large difference in the
latent heat due to the freezing of lake water in HL. In HL, latent heat is generated by lake
water freezing, but in DB, no latent heat is generated, indicating the influence of lake water.
On the other hand, the thawing of lake ice and frozen ground begins at about the same
time of the year, April to May in H1–H2 and April to August in D1–D2, but the latter is
about three times longer than the former, and this difference is apparent. Since lake ice is
always floating on the lake surface, the thawing of lake ice is considered to occur from the
upper surface due to solar radiation, wind, and rain, and from the lower surface due to
the convection of lake water, and to be completed in a short time. However, the thawing
of frozen soil depends on heat from the ground in one direction, and since unfrozen soil
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has a lower thermal conductivity than frozen soil [39], thawing is suppressed and proceeds
slowly over a long period of time.
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Figure 7. Seasonal pattern of freeze–thaw cycles for lake water and an active layer in a permafrost
basin. Ta: air temperature; Tw: lake water temperature.

The freezing and thawing mechanisms of lake water are fundamentally different from
those of the active layer. In lake freezing, winter cold determines the maximum thickness
of lake ice, which is the dominant factor. Subsequent thawing is limited to the range of
maximum lake ice thickness: the absolute value of the total latent heat associated with HL
lake ice thawing in 2007 (−305.9 MJ-m−2) is equal to the total latent heat that resulted in
the maximum lake ice thickness in 2007, and the total latent heat associated with freezing
in 2008, 361.0 MJ-m−2, is equal to the absolute value of the total latent heat associated with
thawing in that year. However, the thawing thickness of frozen soil depends on summer
heat, and heat is dominant. Subsequent freezing is limited to the extent of the maximum
active layer: the thawing of the frozen ground in 2007 was accompanied by a total latent
heat of −102.4 MJ-m−2, while the freezing of the active layer in that year generated the
same amount of total latent heat of 102.4 MJ-m−2, and the absolute values of both were
the same. Therefore, the combination of lake water freezing and lake ice thawing and the
combination of frozen soil thawing and the active layer freezing occur alternately, with
the two occurring six months apart. Of the freezing and thawing, there is a time lag in the
generation of latent heat, especially in freezing, which causes a large difference in winter
temperatures, and the freeze–thaw action affects the climatic environment. If there were no
lake water in the HL Basin, the freeze–thaw action would be very close to that observed in
the DB active layer, and this difference could be one of the lake water effects on the climatic
environment of the basin, which is located in the high-latitude permafrost zone.

One of the roles of inland lakes is to mitigate the effects of climate change. In this
study, we quantitatively evaluated the lake’s effects on the surrounding thermal regime
and the difference of freeze–thaw mechanism, comparing the temperature difference be-
tween HL with lake water and DB without lake water. For example, in climate change
prediction research, simulations that were previously conducted on a global scale have
been replaced by regional-scale simulations that include lake water since around 2012, and
the impact of lakes on the surrounding climate environment has also been studied at a
higher resolution [40–43]. In such studies, the accuracy of simulation models is challenged
when making climate change predictions, and observational data are used to validate lake
water effects on the surrounding environment to enhance them. Therefore, the need for
observational data on lake effects and long-term observations [e.g., 8] will increase in the
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future to predict the future of lake effects and to assess their resilience and vulnerability
under climate change.

Finally, in addition to the freeze–thaw effect, another important factor affecting the
climatic environment of the lake basin is the free-ice period from H2 to the first half of
H3, which in 2007 was from 25 May to 14 August, and the mean temperature during the
same period differed significantly from 10.7 ◦C in HL to 14.1 ◦C in DB. This period may
have a significant impact on plant growth, especially because of the long hours of sunlight
during this period, even during the year in high latitudes. As it was pointed out in the
Introduction, the lake water forms a unique climatic environment and causes differences in
vegetation, but this difference could be the subject for future study.

4. Conclusions

To evaluate the effect of lake water on the climatic environment in a high-latitude
permafrost region, simultaneous temperature observations were conducted in two basins
with similar latitude, elevation, area, and topography, which differ only in the presence or
absence of lake water, in the Hovsgol Lake Basin and Darhad Basin, the latter not having
a lake.

The results quantified the differences in the thermal regimes of the two basins as lake
water effects on the surrounding climatic environment. The amplitude of temperature
in the lake basin HL throughout the year was 60% of that in DB, indicating that the lake
effect is responsible for the cool summer and mild winter climate. Comparison of the
seasonal freeze–thaw cycle between the lake and the active layer showed a discrepancy in
the timing of occurrence, even though the freezing period was almost equal in both. That
is, the active layer took from August to December to freeze, while the lake water took from
November to February. Lake water freezes mainly in midwinter and generates latent heat,
while the active layer is already frozen at that time and does not generate latent heat. This
difference was reflected in the annual minimum temperatures on 26 January 2005, which
were −36.6 ◦C in HL and −52.4 ◦C in DB, a difference of 15.8 ◦C. The total latent heat
generated by freezing was three times larger in the lake than in the active layer, whereas,
although the onset time of thawing for the two was almost the same, the total latent heat
absorbed by the lake ice was three times that of the frozen layer, but the duration of thawing
was three times longer for DB than for HL due to the difference in thawing efficiency.

The Hovsgol Lake Basin, located in the northernmost part of Mongolia, has a cold arid
climate, which prevents the formation of continuous forests. The vast Siberian larch forests
exist in a highly fragile environment, which is created by precipitation accumulated during
the summer under the cooler climate brought about by the lake effect. In the near future,
global warming will alter the climatic environment by changing the heat and precipitation
regimes, which will also affect vegetation. Therefore, continuous monitoring of the lake
environment is necessary.
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